DH4618弦振动共振波形及波的传播速度测量(0703)

更新时间:2023-09-17 22:52:01 阅读量: 幼儿教育 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

弦振动实验 传统的教学实验多采用音叉计来研究弦的振动与外界条件的关系。采用柔性或半柔性的弦线,能用眼睛观察到弦线的振动情况,一般听不到与振动对应的声音。

本实验在传统的弦振动实验的基础上增加了实验内容,由于采用了钢质弦线,所以能够听到振动产生的声音,从而可研究振动与声音的关系;不仅能做标准的弦振动实验,还能配合示波器进行驻波波形的观察和研究,因为在很多情况下,驻波波形并不是理想的正弦波,直接用眼睛观察是无法分辨的。结合示波器,更可深入研究弦线的非线性振动以及混沌现象。 【实验目的】

1、了解波在弦上的传播及弦波形成的条件。

2、测量拉紧弦不同弦长的共振频率。 3、测量弦线的线密度。

4、测量弦振动时波的传播速度。 【实验原理】

张紧的弦线4在驱动器3产生的交变磁场中受力。移动劈尖6改变弦长或改变驱动频率,当弦长是驻波半波长的整倍数时,弦线上便会形成驻波。仔细调整,可使弦线形成明显的驻波。此时我们认为驱动器所在处对应的弦为振源,振动向两边传播,在劈尖6处反射后又沿各自相反的方向传播,最终形成稳定的驻波。

图 1

为了研究问题的方便,当弦线上最终形成稳定的驻波时,我们可以认为波动是从左端劈尖发出的,沿弦线朝右端劈尖方向传播,称为入射波,再由右端劈尖端反射沿弦线朝左端劈尖传播,称为反射波。入射波与反射波在同一条弦线上沿相反方向传播时将相互干涉,在适当的条件下,弦线上就会形成驻波。这时,弦线上的波被分成几段形成波节和波腹。如图1所示。

设图中的两列波是沿X轴相向方向传播的振幅相等、频率相同、振动方向一致的简谐波。向右传播的用细实线表示,向左传播的用细虚线表示,当传至弦线上相应点时,相位差为恒定时,它们就合成驻波用粗实线表示。由图1可见,两个波腹或波节间的距离都是等于半个波长,这可从波动方程推导出来。

下面用简谐波表达式对驻波进行定量描述。设沿X轴正方向传播的波为入射波,沿X轴负方向传播的波为反射波,取它们振动相位始终相同的点作坐标原点 “O”,且在X=0处,振动质点向上达最大位移时开始计时,则它们的波动方程分别为:

Y1=Acos2?(ft-x/ ?) Y2=Acos2?(ft+x/ ?)

式中A为简谐波的振幅,f为频率,?为波长,X为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为:

Y1+Y2=2Acos2?(x/ ?)cos2?ft ······ ① 由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2Acos2?(x / ?) |,只与质点的位置X有关,与时间无关。

由于波节处振幅为零,即|cos2?(x / ?) |=0

2?x / ?=(2k+1) ? / 2 ( k=0.1. 2. 3. ······) 可得波节的位置为:

X=(2K+1)? /4 ······ ② 而相邻两波节之间的距离为:

XK+1-XK =[2(K+1)+1] ?/4-(2K+1)? / 4)=? / 2 ······③ 又因为波腹处的质点振幅为最大,即|cos2?(X / ?) | =1

2?X / ? =K? ( K=0. 1. 2. 3. ······) 可得波腹的位置为:

X=K? / 2= 2k? / 4 ······ ④ 这样相邻的波腹间的距离也是半个波长。因此,在驻波实验中,只要测得相邻两波节(或相邻两波腹)间的距离,就能确定该波的波长。

在本实验中,由于弦的两端是固定的,故两端点为波节,所以,只有当均匀弦线的两个固定端之间的距离(弦长)L等于半波长的整数倍时,才能形成驻波,其数学表达式为:

L=n? / 2 ( n=1. 2. 3. ···)

由此可得沿弦线传播的横波波长为:

?=2L / n ······⑤ 式中n为弦线上驻波的段数,即半波数,L为弦长。 根据波动理论,弦线横波的传播速度为:

V=(T/ρ)1/2 ······⑥ T??V2即:

式中T为弦线中张力,ρ为弦线单位长度的质量,即线密度。

根据波速、频率与波长的普遍关系式V=f ?,和⑤式可得横波波速为:

V=2Lf/n ······⑦ 如果已知张力和频率f,则由⑥⑦式可得线密度为:

ρ=T(n/2Lf)2 ( n=1. 2. 3. ······) ······⑧ 如果已知线密度和频率f,则由⑧式可得张力为:

T=ρ(2Lf/n) 2 ( n=1. 2. 3. ······) ······⑨ 如果已知线密度和张力,则由⑧式可得频率f为:

Tn f ? ? ······⑩

?2L 以上的分析是根据经典物理学得到的,实际的弦振动的情况是复杂的。我们在实验中可以看到,接收波形很多时候并不是正弦波,或者带有变形,或者没有规律振动,或者带有不稳定性振动,这就要求我们引入更新的非线性科学的分析方法。可以参见有关的资料,例如参考文献1。 【实验仪器】

1、DH4618型弦振动研究实验仪 2、双踪示波器

实验仪器由测试架和信号源组成,测试架的结构如图2所示。

126345679108Y1Y21Kg2

图 2

1—调节螺杆 2—圆柱螺母 3—驱动传感器 4—弦线 5—接收传感器 6—支撑板 7—张力杆 8—砝码 9—信号源 10—示波器

【实验内容】

一、实验前准备

1、选择一条弦,将弦的带有铜圆柱的一端固定在张力杆的U型槽中,把带孔的一端套到调整螺杆上圆柱螺母上。

2、把两块劈尖(支撑板)放在弦下相距为L的两点上(它们决定弦的长度),注意窄的一端朝标尺,弯脚朝外,如图2;放置好驱动线圈和接收线圈,按图2连接好导线。

3、挂上质量可选砝码到张力杆上,然后旋动调节螺杆,使张力杆水平(这样才能从挂的物块质量精确地确定弦的张力),见图3。因为杠杆的原理,通过在不同位置悬挂质量已知的物块,从而获得成比例的、已知的张力,该比例是由杠杆的尺寸决定的。如图3(a),挂质量为“M”的重物在张力杆的挂钩槽3处,弦的拉紧度等于3M;如图3(b),挂质量为“M”的重物在张力杆的挂钩槽4处,弦紧度为4M,……。

注意:由于张力不同,弦线的伸长也不同,故需重新调节张力杆的水平。

(a)张力3M (b)张力4M

图 3 张力大小的示意

二、实验内容

1、张力、线密度和弦长一定,改变驱动频率,观察驻波现象和驻波波形,测量共振频率。

1) 放置两个劈尖至合适的间距,例如60cm,装上一条弦。在张力杠杆上挂上一定质量的砝码(注意,总质量还应加上挂钩的质量),旋动调节螺杆,使张力杠杆处于水平状态,把驱动线圈放在离劈尖大约5~10cm处,把接收线圈放在弦的中心位置。提示:为了避免接收传感器和驱动传感器之间的电磁干扰,在实验过程中要保证两者之间的距离至少有10cm。

2) 驱动信号的频率调至最小,合适调节信号幅度,同时调节示波器的通

道增益为10mV/格。

3) 慢慢升高驱动信号的频率,观察示波器接收到的波形的改变。注意:频率调节过程不能太快,因为弦线形成驻波需要一定的能量积累时间,太快则来不及形成驻波。如果不能观察到波形,则调大信号源的输出幅度;如果弦线的振幅太大,造成弦线敲击传感器,则应减小信号源输出幅度;适当调节示波器的通道增益,以观察到合适的波形大小。一般一个波腹时,信号源输出为2~3V(峰-峰值),即可观察到明显的驻波波形,同时观察弦线,应当有明显的振幅。当弦的振动幅度最大时,示波器接收到的波形振幅最大,这时的频率就是共振频率。

4) 记下这个共振频率,以及线密度、弦长和张力,弦线的波腹波节的位置和个数等参数。如果弦线只有一个波腹,这时的共振频率为最低,波节就是弦线的两个固定端(两个劈尖处)。

5) 再增加输出频率,连续找出几个共振频率(3~5个)并记录。注意,接收线圈如果位于波节处,则示波器上无法测量到波形,所以驱动线圈和接收线圈此时应适当移动位置,以观察到最大的波形幅度。当驻波的频率较高,弦线上形成几个波腹、波节时,弦线的振幅会较小,眼睛不易观察到。这时把接收线圈移向右边劈尖,再逐步向左移动,同时观察示波器(注意波形是如何变化的),找出并记下波腹和波节的个数,及每个波腹和波节的位置。

2、张力和线密度一定,改变弦长,测量共振频率。 1) 选择一根弦线和合适的张力,放置两个劈尖至一定的间距,例如60cm,调节驱动频率,使弦线产生稳定的驻波。

2) 记录相关的线密度,弦长,张力,波腹数等参数。

3) 移动劈尖至不同的位置改变弦长,调节驱动频率,使弦线产生稳定的驻波。记录相关的参数。

3、弦长和线密度一定,改变张力,测量共振频率和横波在弦上的传播速度。

1) 放置两个劈尖至合适的间距,例如60cm,选择一定的张力,改变驱动频率,使弦线产生稳定的驻波。

2) 记录相关的线密度,弦长,张力等参数。

3) 改变砝码的质量和挂钩的位置,调节驱动频率,使弦线产生稳定的驻波。记录相关的参数。

【数据处理】

1、张力和弦长一定,测量弦线的共振频率和横波的传播速度。 根据公式10求得的共振频率计算值,与实验得到的共振频率相比较,分析这两者存在差异的原因。

弦长 (cm) 张力 (kg.m/S2) 线密度 (kg/m) 波腹位置 波节位置 波腹(cm) (cm) 数 波长 (cm) 频率计算值 共振频率 f?T?n(Hz) ? 2L 传播速度V=2Lf/n (m/s) 2、张力和线密度一定,改变弦长,测量弦线的共振频率和横波的传播速度

张力 (kg.m/S2) 线密度 (kg/m) 弦线长度(cm) 波腹位置 波节位置 (cm) (cm) 波腹数 波长 (cm) 共振频率 传播速度(Hz) V=2Lf/n (m/s) 作弦长与共振频率的关系图

3、弦长和线密度一定,改变张力,测量弦线的共振频率和横波的传播速度

弦长 (cm) 线密度 (kg/m) 张力波腹位置 波节位置 2(kg.m/S) (cm) (cm) 波腹数 波长 (cm) 共振频率 传播速度(Hz) V=2Lf/n (m/s) 作张力与共振频率的关系图。

根据 V ? T 算出波速,这一波速与V?f??=2Lf/n(f是共振频率,?是

?波长)作比较,分析存在差别的原因。

作张力与波速的关系图。

比较测量所得的线密度与上述静态线密度有何差别,试说明原因。 【注意事项】

1、仪器应可靠放置,张力挂钩应置于实验桌外侧,并注意不要让仪器滑落。

2、弦线应可靠挂放,砝码的悬挂的取放应动作轻小,以免使弦线崩断而发生事故。 【思考题】

1、通过实验,说明弦线的共振频率和波速与哪些条件有关? 2、换用不同弦线后,共振频率有何变化?存在什么关系?

3、如果弦线有弯曲或者不是均匀的,对共振频率和驻波有何影响? 4、相同的驻波频率时,不同的弦线产生的声音是否相同? 5、试用本实验的内容阐述吉它的工作原理。

*6、移动接收传感器至不同位置时,弦线的振动波形有何变化?是否依然为正弦波?试分析原因。 参考文献:

1、《利用驻波实验研究混沌现象》 吴本科、肖苏等 《物理实验》2006年第1期 2、《ZCXS—A型弦音实验仪说明书》 浙大城市学院 杭州大华科教仪器研究所

附录1 DH4618型弦振动实验仪信号源使用说明

一、概述

在研究弦振动实验时,需要功率信号源对弦线进行激励驱动,使其产生

驻波。本信号源可配合DH4618型弦振动研究实验仪进行弦振动实验。仪器的特点是输出阻抗低,激振信号不易失真,同时频率稳定性好,频率的调节细度和分辨率也足够小,能很好地找到弦线的共振频率。 本仪器也可在其它合适的场合作正弦波信号源用。 二、主要技术指标

1、环境条件

使用温度范围:5℃~35℃,相对湿度范围:25%~85% 2、电源:交流220V±10%,50Hz。

3、频率:频率信号为正弦波,失真度≤1%。

频率范围:频段I为15~100Hz,频段Ⅱ为100~1000Hz。 4、频率显示:采用等精度测频,四位数字显示。 测量范围:0~99.99Hz,分辨率0.01Hz,测频精度:±(0.2%+0.01 Hz);

100.0~999.9Hz,分辨率0.1Hz,测频精度:±(0.2%+0.1

Hz);

1000~9999Hz,分辨率1Hz,测频精度:±(0.2%+1 Hz);

5、功率输出

输出幅度:0~10VP-P连续可调,输出电流:≥0.5A

三、仪器结构

仪器的信号输出及调节均在前面板上进行,附图1为仪器的前面板图。

附图 1

1、四位数显频率表 2、频段选择 3、频率粗调 4、频率细调 5、激励信号输出 6、激励信号波形 7、激励信号幅度调节 四、仪器的使用

1、打开信号源的电源开关,信号源通电。调节频率,频率表应有相应的频率指示。用示波器观察“波形”端,应有相应的正弦波;调节“幅度”旋钮,波形的幅度产生变化,当幅度调节至最大时,波形的峰-峰值应≥10V,这时仪器已基本正常,再通电预热10分钟左右,即可进行弦振动实验。

2、按DH4618型弦振动研究实验仪的讲义说明,将驱动传感器的引线接至本仪器的“激振”端,注意连线的可靠性。

3、仪器的频率“粗调”用于较大范围地改变频率,“细调”用于准确地寻找共振频率。由于弦线的共振频率的范围很小,故应细心调节,不可过快,以免错过相应的共振频率。

4、当弦线振动幅度过大时,应逆时针调节“幅度”旋钮,减小激振信号;振动幅度过小时,应加大激振信号的幅度。 五、注意事项

1、仪器的“激振”输出为功率信号,应防止短路。

2、仪器的频率稳定度和显示精度都较高,故使用前应预热。

本文来源:https://www.bwwdw.com/article/pebh.html

Top