Symmetries, Conserved Charges and (Black) Holes in Two Dimen

更新时间:2023-04-23 18:00:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

Two dimensional string theory is known to have an infinite dimensional symmetry, both in the continuum formalism as well as in the matrix model formalism. We develop a systematic procedure for computing the conserved charges associated with these symmetrie

hep-th/0408064

Symmetries,ConservedChargesand(Black)Holes

inTwoDimensionalStringTheory

arXiv:hep-th/0408064v1 9 Aug 2004AshokeSenHarish-ChandraResearchInstituteChhatnagRoad,Jhusi,Allahabad211019,INDIAE-mail:ashoke.sen@cern.ch,sen@mri.ernet.inAbstractTwodimensionalstringtheoryisknowntohaveanin nitedimensionalsymmetry,bothinthecontinuumformalismaswellasinthematrixmodelformalism.Wedevelopasystematicprocedureforcomputingtheconservedchargesassociatedwiththesesym-metriesforanycon gurationofD-branesinthecontinuumdescription.WeexpresstheseconservedchargesintermsoftheboundarystateassociatedwiththeD-brane,andalsointermsoftheasymptotic eldcon parisonoftheconservedchargescomputedinthecontinuumdescriptionwiththosecomputedinthematrixmodeldescriptionfacilitatesidenti ingthisweputconstraintsonthecontinuumdescriptionoftheholestatesinthematrixmodel,andmatrixmodeldescriptionoftheblackholessolutionsofthecontin-uumtheory.WealsodiscusspossiblegeneralizationoftheconstructionoftheconservedchargestothecaseofD-branesincriticalstringtheory.

1

Two dimensional string theory is known to have an infinite dimensional symmetry, both in the continuum formalism as well as in the matrix model formalism. We develop a systematic procedure for computing the conserved charges associated with these symmetrie

Contents

1IntroductionandSummary

2SymmetriestoConservedChargesinOpenStringTheory283SymmetriesandConservedChargesinTwoDimensionalStringTheory144ChargesCarriedbytheRollingTachyonBackground

5AsymptoticFieldsProducedbytheRollingTachyon

6RelationtoConservedChargesintheMatrixModel

7CommentsonHoleStates

8µ→0Limit

9ConservedChargesfromAsymptoticStringFieldCon gurations10TwoDimensionalBlackHoles

11LessonsforCriticalStringTheory

LLAPropertiesof|ψ(j),m and|η(j),m 212731333639434850

52 BNormalizationofQj,m

1IntroductionandSummary

Recentinvestigationintwodimensionalstringtheory[1,2,3,4,5]hasshownthattheycanprovideuswithausefularenaforstudyingvariousgeneralpropertiesofstringtheory,mostnotablytherelationshipbetweentheopenandclosedstringdescriptionofunstableD-branesystems[6,7,8,9,10,11].(See[12,13]foraspectsofopen-closedstringdualityforstableD-branesinthisstringtheory.).Thefeaturethatmakesthistheorymostusefulisthatithastwodi erentformulations.The rstone,knownasthecontinuumdescription[14,15](seealso[16]),followstheusualformulationofstringtheorybasedonaworld-sheetactioncontainingamatterpartwithcentralcharge26andaghostpartwithcentralcharge 26.Thematterpartinturnconsistsofafreetime-likescalar eldX0ofcentralcharge1andaLiouvillescalar eld withanexponentiallygrowing

2

Two dimensional string theory is known to have an infinite dimensional symmetry, both in the continuum formalism as well as in the matrix model formalism. We develop a systematic procedure for computing the conserved charges associated with these symmetrie

potential.AlineardilatonbackgroundalongtheLiouvilledirectionmakestheLiouvilletheoryhavetotalcentralcharge25.Inthisformalismthetheorycanbestudiedusingtheusualstringperturbationtheorybasedongenusexpansion.Theotherformulationofthetheory,knownasthematrixmodel,isbasedondiscretizingtheworldsheetpathintegralandtakinganappropriatedoublescalinglimit[17,18,19].Thisinturncanbeshowntobeequivalenttoatheoryoffreenon-interactingfermions,eachmovingunderaninvertedharmonicoscillatorpotential.Thevacuumofthetheoryisastateinwhichalllevelsbelowacertain xedenergyare lledandalllevelabovethisenergyareempty.Inthisformulationwecaneasilyanalyzethesystemtoallordersinperturbationtheory.Theusualclosedstringstatesofthecontinuumstringtheoryarerelatedtothematrixmodelstatesbybosonizationofthefermion eldfollowedbyanon-local eldrede nition[20,21,22].Whileearlyworkonthissubjectfocussedonthecomparisonofthepropertiesofclosedstringsinthetwoformulations,therecentsurgeofinterestinthissubjectarisesfromthestudyofD-branesinthetwodescriptionsofthetheory.ThecontinuumversionofthetheoryadmitsanunstableD0-branecon gurationwithanopenstringtachyononitsworld-volume[23].Followingthegeneralmethoddevelopedin[24,25]onecanconstructanexactclassicalsolutiondescribingtheopenstringtachyonrollingawayfromthemaximumofthepotential.Bystudyingtheclosedstringdescriptionofthisprocessinthecontinuumstringtheoryfollowing[26,27,28],andcomparingthiswiththesinglefermionexcitationinthematrixmodelusingtheknownrelationbetweenthestatesofthematrixmodelandtheclosedstringstatesinthecontinuumdescription,itwasconcludedin[2]thattherollingtachyoncon gurationonasingleD0-braneinthecontinuumtheorydescribespreciselysinglefermionexcitationsinthematrixmodel.Despitethisnewunderstandingoftherelationshipbetweenthematrixmodelandcontinuumdescriptionoftwodimensionalstringtheories,severalquestionsremainunan-swered.Inparticularwestilldonothaveacompletemapbetweentheknownstatesofthecontinuumtheoryandknownstatesofthematrixmodel.Forexamplethematrixmodel,besidescontainingfermionicexcitations,alsocontainsholelikeexcitationswhereweremoveafermionfromanenergylevelbelowthefermilevel.Acompletelyconvinc-ingdescriptionofthesestatesinthecontinuumtheoryisstillmissing(althoughsomecandidateshavebeenproposedin[5,29]).Ontheotherhandthecontinuumversionofthistheoryadmitsblackholesolutions[30,31].AlthoughtherearesomeproposalsforarepresentationoftheEuclideanblackholeinthematrixmodel[32,33],asatisfactorydescriptionoftheseblackholestatesintheLorenzianversionofthematrixmodelisstilllacking.

Boththecontinuumversionandthematrixmodelversionofthetheoryareknowntohavein nitenumberofglobalsymmetries[21,34,35,36,37,38,39,40,41,42,43],and

3

Two dimensional string theory is known to have an infinite dimensional symmetry, both in the continuum formalism as well as in the matrix model formalism. We develop a systematic procedure for computing the conserved charges associated with these symmetrie

henceassociatedwiththemtheremustbein nitenumberofconservedcharges.Thusifwecan ndthepreciserelationbetweentheconservedchargesinthecontinuumdescriptionandthoseinthematrixmodeldescription,thencomparisonoftheseconservedchargescouldprovideususefulguidelinesformakingsuitableidenti cationbetweenthestatesinthecontinuumdescriptionandstatesinthematrixmodeldescription.Theconstructionoftheconservedchargesinthematrixmodeldescriptionfollowsstraightforwardapplica-tionofNoether’smethod.Thusthemainissueistoconstructtheseconservedchargesinthecontinuumdescriptionandrelatethemtotheconservedchargesinthematrixmodeldescription.Thisprogramwasinitiatedinapreviouspaper[44]whereitwasshownthatrequirementofBRSTinvarianceconstrainsthetimeevolutionofcertaincomponentsoftheboundarystatedescribingaD-brane,andhenceleadstocertainconservedcharges.Byevaluatingtheseconservedchargesfortherollingtachyoncon guration,andcom-paringthemwiththeconservedchargesofthesamecon gurationinthematrixmodeldescription,wefoundtherelationshipbetweenthesetwosetsofconservedcharges.How-everinthisanalysistheconstructionoftheconservedchargesonthecontinuumsidewassomewhatadhoc,inthesensethatitrequiredassumingacertainstructureoftheboundarystate,andwithinthatstructurerequirementofBRSTinvariance xedthetimedependenceofcertaintermsoftheboundarystate.Ageneralprocedureforconstructingtheconservedchargesforageneralboundarystatewasnotgiven.Alsotheconservedchargesconstructedthiswaydidnotgetrelatedtoanyspeci csymmetryofthetheory.ThemaingoalofthispaperwillbetodevelopasystematicmethodforcomputingthechargecarriedbyaD-braneassociatedwithagivenaglobalsymmetrytransformationinanystringtheory,andthenapplythistotwodimensionalstringtheory.Inparticular,parisonofthechargescarriedbyaD0-braneinthematrixmodelandthecontinuumdescriptionofthetwodimensionalstringtheorythenallowsusto ingtheserelationswecanputconstraintsonwhatkindofD-branedescribestheholestatesofthematrixmodel,andalsowhatkindofmatrixmodelcon gurationdescribestheblackholestatesofthecontinuumstringtheory.

Thepaperisorganizedasfollows.Insection2wereviewhowarigidclosedstringgaugetransformation,forwhichthe eldindependentpartofthetransformationvanishes,generatesglobalsymmetriesoftheopenstring eldtheory[45].Associatedwiththisglobalsymmetrywecanassociateaconservedcharge.WedevelopanalgorithmforcomputingthisconservedchargeforanyD-branesystemintermsoftheboundarystatedescribingtheD-brane.The nalformulafortheconservedchargeisgivenineq.(2.26).Thesimplestglobalsymmetryofthiskindistimetranslation,andtheassociatedconservedchargegives

4

Two dimensional string theory is known to have an infinite dimensional symmetry, both in the continuum formalism as well as in the matrix model formalism. We develop a systematic procedure for computing the conserved charges associated with these symmetrie

theenergyoftheD-brane.

Insection3wereviewthestructureofrigidclosedstringgaugetransformationsinthetwodimensionalstringtheory.TheseareobtainedfromtheelementsofrelativeBRSTcohomologyintheghostnumberonesector,andhavebeenclassi edinrefs.[46,36,47,48,42].Therearein nitenumberofsuchrigidgaugetransformations,labelledbySU(2)quantumnumbers(j,m)withj≥1,m= (j 1), (j 2),...(j 1).Thusassociatedwiththesetransformationstherearein nitenumberofconservedchargesQj,ingtheresultofsection2weexplicitlywritedownineqs.(3.31),(3.32)theexpressionforQj,mcarriedbyaD-braneoftwodimensionalstringtheoryintermsoftheboundarystateoftheD-brane.

Insection4weevaluatetheseconservedchargesforaspeci cD-branesystem,–namelytherollingtachyoncon gurationontheunstableD0-braneoftwodimensionalstringtheory.Thesecon gurationsarelabelledbyasingleparameterλ,andwe ndineq.(4.38)explicitexpressionforQj,masafunctionoftheparameterλ.

In[44]wehadcalculatedthediscretestateclosedstringbackgroundproducedbytherollingtachyoncon gurationintheweakcouplingregionoflargenegative .Werecalltheseresultsinsection5(eq.(5.7)),andpointoutthattherearesomeadditionalcontri-butionstothisclosedstringbackgroundduetosomesubtletieswhichwereoverlookedin

[44].Eq.(5.14)givesatypicalexampleofsuchadditionalcontributions.

Thematrixmodeldescriptionofthetheoryalsocontainsanin nitesetofconservedchargesWl,mwith2m∈Z,(l m)∈Z,l≥|m|.Insection6wecomparetheconservedchargesofthematrixmodeldescriptionwiththeconservedchargesofthecontinuumstringtheory.ByevaluatingtheconservedchargesWl,mofsinglefermionexcitationsinthematrixmodel,andcomparingtheλandtimedependenceofthesechargeswiththoseofQj,mcarriedbyasingleD0-braneinthecontinuumdescription,wedetermineineq.(6.6)therelationbetweentheconservedchargesofthematrixmodelandthoseinthecontinuumdescriptionofthetheory.AlthoughtheserelationsarederivedbyevaluatingthechargesinthetwodescriptionsoftheD0-brane,oncetherelationshipisdetermined,itmustholdforanyothersystem.

Insection7wetryto ndacontinuumdescriptionoftheholestatesofthematrixmodelwiththehelpoftheconservedchargesofthetheory.Fromthedescriptionoftheconservedchargesinthefermionicformulationofthematrixmodelitiseasytoevaluatetheseconservedchargesforagivenholestate.Thesearegivenineq.(7.1).Usingtheknownrelationbetweentheconservedchargesinthematrixmodelandthose(Qj,m’s)inthecontinuumtheory,wecalculateineq.(7.2)theexpectedQj,mfortheholestates.Whateverbethecontinuumdescriptionoftheholemustcarrythesamecharges.Ontheotherhandouranalysisofsection3givesanexplicitexpressionfortheQj,m’sin

5

Two dimensional string theory is known to have an infinite dimensional symmetry, both in the continuum formalism as well as in the matrix model formalism. We develop a systematic procedure for computing the conserved charges associated with these symmetrie

termsoftheboundarystateoftheD-brane.Thisgivesconstraintsontheboundarystatedescribingaholestate,butdoesnotdetermineitcompletely.Theproposalsmadein[5,29]satisfytheseconstraints;howeverwearguethattheydonotreproducetheexpectedclosedstringpro leofaholestate.Weproposeapossiblecandidatefortheseholsstatesbasedonsomequalitativearguments,butthereisnode niteconclusionyet.EarlierworkontherelationbetweensymmetriesofthematrixmodelandthoseinthecontinuumdescriptionwascarriedoutinthelimitofzeropotentialfortheLiouville eld,andwasbasedonthecomparisonofthesymmetryalgebrasinthetwodescriptions.Inordertocompareourresultstotheearlierresults,westudyinsection8thelimitofourresultsaswetakethepotentialfortheLiouville eldtozero.Weshow rstofallthatthislimitexistsandgivesawellde nedrelation(8.11)betweentheconservedchargesinthecontinuumtheoryandthoseinthematrixmodel.Furthermore,uptonormalizationfactorstheserelationsareconsistentwiththeearlierresultsobtainedbyworkingdirectlywiththeLiouvilletheorywithoutanypotentialterm.WealsostudythelimitofthediscretestateclosedstringbackgroundproducedbytheD0-braneboundarystateaswetaketheLiouvillepotentialtozerokeepingtheenergyoftheD0-brane xed.We ndthattheclosedstring eldcon gurationapproachesa nitevalue(8.14)inthislimit.Theanalysisofsection3expressestheconservedchargescarriedbyaD-braneintermsofitsboundarystate.Thisrelationisspeci ctoD-branessinceonlyD-branesaredescribedbyboundarystates.Insection9wemanipulatetheresultsofsection3torewritetheconservedchargeintermsoftheasymptoticvaluesofcertaincomponentsofclosedstring eldsproducedbythebraneforlargenegative .The nalformula,givenin(9.10),istheanalogoftheGausslawforelectrodynamicsrelatingtheelectricchargetoasymptoticelectric eld,ortheADMformulaingravityrelatingthemassofasystemtotheasymptoticgravitational eld.Theserelationsbetweenconservedchargesandasymptoticclosedstring eldsareexpectedtoholdforanysystemintwodimensionalstringtheory,evenifthesystemcannotberegardedasacollectionofD-branes.

Insection10weusethisresulttodeterminetheconservedchargescarriedbytheblackholesolutionofthetwodimensionalstringtheory.ForsimplicitytheanalysisofthissectioniscarriedoutforvanishingpotentialfortheLiouville eld,whichinthematrixmodeldescriptioncorrespondstothefermilevelcoincidingwiththemaximumofthepotential.Althoughtheblackholewasinitiallyconstructedasasolutionofthee ective eldtheory[30]orasanexactconformal eldtheory[31],itispossibletorepresentitasasolutioninstring eldtheorybyusinganiterativeprocedureforsolvingtheequationsofmotionofstring eldtheory[49].Usingthiswecan ndtheasymptoticclosedstring eldcon gurationassociatedwiththeblackholeandhencethechargesQj,mcarriedbytheblackhole.We ndthattheblackholecarriesonlytheconservedchargeQ1,0;all

6

Two dimensional string theory is known to have an infinite dimensional symmetry, both in the continuum formalism as well as in the matrix model formalism. We develop a systematic procedure for computing the conserved charges associated with these symmetrie

otherchargesQj,mfor(j,m)=(1,0)ingtheknownrelation(6.6)betweenQj,mandtheconservedchargesinthematrixmodeldescriptionofthesystemwecanthenconstrainthepossiblecon gurationsinthematrixmodelwhicharecompatiblewiththeseconservedcharges.Inparticularwe ndthatthematrixmodeldescriptionoftheblackholemustconsistofalargenumberoflowenergyfermion-holepairsinsteadofa nitenumberof niteenergyfermionsandholes.

Thisdescriptionoftheblackholeposesanapparentpuzzle.Sinceinthematrixmodeldescriptionthefermionsarenon-interacting,andsincetheblackholebackgrounddi ersfromtheusualvacuumintermsofcreationofalargenumberoflowenergyfermion-holepairs,aclassicalD0-branecarrying niteenergyshouldnotbeabletorecognizethedi erencebetweenablackholeandtheordinaryvacuum.Canthisbetrueintwodimensionalstringtheory?WhileacompleteanswertothisquestionrequiresstudyingtheD0-branemotioninthesebackgroundstoallordersinα′,weshowthatatleastintheapproximationwherewetaketheD0-braneworld-lineactiontobeoftheDirac-Born-Infeldform,theclassicalD0-branecannotdistinguishtheblackholefromtheusuallineardilatonbackground.Thisisshownbydemonstratingthatthereisacoordinatetransformationthatconvertsthee ectivemetricseenbytheD0-braneintheblackholebackgroundtothee ectivemetricseenbytheD0-branetothelineardilatonbackground.Thiscoordinatetransformationactsonlyonthespacecoordinateandleavesthetimecoordinateunchanged.Thisisconsistentwiththefactthatbothfortheblackholeandtheusual atbackgroundwithalineardilaton eld,thetimecoordinateshouldbeidenti edwiththetimecoordinateofthematrixmodel.

Althoughthemainemphasisofthepaperhasbeenontheconstructionofthecon-servedchargesandtheirinterpretationinthetwodimensionalstringtheory,wecantrytogeneralizetheconstructiontocriticalstringtheorybyreplacingtheprimaryvertexoper-atorsintheLiouville eldtheorybyappropriateprimaryvertexoperatorsinthecriticalstringtheory,andbyreplacingtheLiouvilleVirasorogeneratorsbythetotalVirasorogeneratorsassociatedwithallthe25space-likecoordinate eldsinthecriticalstringthe-ory.Therearehowevervarioussubtleissuesinthisapproach.Therearediscussedinsection11.

Finallytheappendicescontainsometechnicalresultswhicharerequiredfortheex-plicitconstructionofconservedchargesandtheirnormalizationintwodimensionalstringtheory.

7

Two dimensional string theory is known to have an infinite dimensional symmetry, both in the continuum formalism as well as in the matrix model formalism. We develop a systematic procedure for computing the conserved charges associated with these symmetrie

2SymmetriestoConservedChargesinOpenString

Theory

Inthissectionwebrie youtlinethegeneralprocedureforobtainingtheconservedchargeinclassicalopenstringtheoryassociatedwithaspeci cglobalsymmetry.Weshallfocusontheglobalsymmetriesassociatedwithrigidgaugetransformationsinclosedstringtheory[45].Anexampleofthisisspace-timetranslationsymmetry,whichcanbethoughtofasarigidgeneralcoordinatetransformation.

Weshallcarryoutthediscussioninthecontextofstring eldtheory.Webeginwithsomeversionofcovariantopen-closedstring eldtheory[45]formulatedforagivenD-braneinagivenspace-timebackground.Howeverouranalysiswillbequitegeneralandweshallnotrestrictourselvestoanyspeci cformoftheaction.Letusdenoteby{Φα}theclosedstringdegreesoffreedomandby{Ψr}theopenstringdegreesoffreedom,withtheindicesαandr,besidescontainingdiscretelabels,alsocarryinginformationaboutmomentaofthe eldsalongnon-compactspace-timedirections.Thentheopen-closedstring eldtheoryactionhastheform[45]:

1

gs0S1(Φ,Ψ)+O(gs),(2.1)

2 1wheregsdenotesstringcouplingconstant.Theordergsandgstermsgetcontributions

respectivelyfromthesphereanddiskcorrelationfunctionsoftheworld-sheettheory.LetDdenotethedimensionofspace-timeinwhichtheclosedstringtheorylives.Thenatypicalclosedstringgaugetransformationisparametrizedbysomearbitraryfunction (p)ofDdimensionalmomentump.Thein nitesimalgaugetransformationlawstaketheform:

δΦα=

δΨr=n=0∞ ∞ ngs

ngsn)δΦ(αn)δΨ(r== dp (p)dp (p)DD

n=0 h(0)α(Φ,p)+gsh(1)α(Φ,Ψ,p)+O(gs), +2O(gs) (0)fr(Φ,Ψ,p)(2.2)

n)(n)(0)forsuitablefunctionh(αandfr.Thecontributionstohαcomefromspherecorrelation

(0)functions,whereasthecontributionstoh(1)comefromdiskcorrelationfunctions.αandfr

NotethattheleadingcontributiontotheactionandtheleadingcontributiontoδΦαdonotdependontheopenstring eldsΨr.Wecallthisactionandgaugetransformationlawstreelevelclosedstringactionandgaugetransformationlawsrespectively.Ontheotherhand1Sopen(Ψ)≡

Two dimensional string theory is known to have an infinite dimensional symmetry, both in the continuum formalism as well as in the matrix model formalism. We develop a systematic procedure for computing the conserved charges associated with these symmetrie

iscalledthetreelevelopenstring eldtheoryactionintheΦ=0closedstringbackground.1Invarianceofthefullaction(2.1)underthegaugetransformationlaws(2.2)gives:

δS0(Φ)

δS1(Φ,Ψ)(2.5)δΦαδΦα

etc.Weshallchoosethestring eldvariablessuchthatΦ=0istriviallyasolutionoftheclassicalclosedstring eldequations.ThusδS0/δΦαvanishesatΦ=0.PuttingΦ=0ineq.(2.5)andusing(2.2),(2.3)weget

δΦ(0)α+δΦ(1)α=0δS1(Φ,Ψ)

δΨr(0)fr(Φ=0,Ψ,p)=0. (2.6)

Ingeneralh(0)α(Φ=0,p)isnon-zero.Howeversupposeforsomespecialvalueofthemomentumpitvanishes:

h(0)(2.7)α(Φ=0,p=c)=0.

Physicallyitmeansthatthe eldindependentterminthetreelevelclosedstringgaugetransformationlawvanishes.InotherwordswehavearigidgaugetransformationthatleavestheΦ=0backgroundunchanged.Puttingp=cin(2.6)wenowget

δSopen(Ψ)

Afamilyofopenclosedstring eldtheorywasconstructedin[45],andWitten’sopenstring eldtheory[50]appearsastheopenstringsectorofaspecialmemberofthisfamily.1

9

Two dimensional string theory is known to have an infinite dimensional symmetry, both in the continuum formalism as well as in the matrix model formalism. We develop a systematic procedure for computing the conserved charges associated with these symmetrie

Howeverthisprocedureonlygivesthedi erencebetweentheconservedchargecarriedbyagivenopenstring eldcon guration,andthatcarriedbytheΨ=0con gurationrepresentingtheoriginalD-braneonwhichwehaveformulatedtheopenstring eldtheory.Inparticularifwesettheopenstring eldΨtozero,thentheexpressionfortheconservedchargevanishes.OurmaininterestontheotherhandwillbeintheexpressionfortheconservedchargethattheoriginalD-branecarries.Forthisweneedtouseadi erentmethodwhichweshalldescribenow.

ThebasicprocedurecanbeunderstoodinanalogywiththecomputationoftheenergymomentumtensorofaD-brane.De ningtheenergy-momentumtensorintheopenstring eldtheorythroughtheNoetherprescriptiongivescorrectlythedi erenceintheenergy-momentumtensorbetweentwoopenstringcon gurations[51],butthisdoesnotgivetheenergy-momentumtensoroftheD-braneitself.ThelattercanbecalculatedbyexaminingthecouplingofthemetrictotheD-braneworld-volume.InasimilarspiritonewouldexpectthattheinformationaboutallotherconservedchargescarriedbytheD-brane,whichareassociatedwithrigidgaugetransformationsthatleavetheclosedstringbackgroundΦ=0invariant,shouldalsobecalculablebyexaminingthecouplingofthevariousclosedstringmodestotheD-brane.Infacttherelevantinformationisalreadycontainedineq.(2.6).Usingeq.(2.7)andassumingthath(0)α(Φ=0,p)isanalyticatp=c,wecanwrite

µh(0)(2.10)α(Φ=0,p)=(pµ cµ)hα(p),

µ.Ifwede neforsomehα

Gα(Ψ)=δS1(Φ,Ψ)

δΨr(0)fr(Φ=0,Ψ,p)=0.(2.12)

Nowifthe eldsΨssatisfytheirequationsofmotionthenδSopen(Ψ)/δΨr=0.Inthiscasewehave

µ(p)=0.(pµ cµ)Gα(Ψ)h(2.13)α

Ifwede ne

F(x)=

then(2.13)mayberewrittenasµ µ(p)dDpe ip.xGα(Ψ)hα

ic.x(2.14) µe F(x)=0.µ (2.15)

10

Two dimensional string theory is known to have an infinite dimensional symmetry, both in the continuum formalism as well as in the matrix model formalism. We develop a systematic procedure for computing the conserved charges associated with these symmetrie

Thisgivestheconservedcharge

dD 1xeic.xF0(x).(2.16)

Weshallnowmakethisconstructionmoreexplicitbyworkingwithspeci crepresen-tationofclosedstring elds.Weshallrestrictouranalysistoaclosedstringbackgroundinwhichthetimedirectionhasassociatedwithitaworld-sheetconformal eldtheory(CFT)ofafreescalar eldX0whichdoesnotcoupletoanyotherworld-sheet eld.InthiscasewecanworkwiththeEuclideancontinuationofthetheoryobtainedbythereplacementx0→ ix.Wecanrepresenttheclosedstring eldbyastate|Φ ofghostnumbertwointhebulkCFTonacylinder,satisfying

(b0 ¯b0)|Φ =0,¯0)|Φ =0,(L0 L(2.17)

¯ndenotethetotalwherebn,¯bn,cn,c¯ndenotetheusualghostoscillators,andLn,L

Virasorogeneratorsoftheworld-sheettheoryofmatterandghost elds.Closedstringgaugetransformationsinthistheoryaregeneratedbyghostnumberonestates|Λ oftheCFTonacylinder,satisfying

(b0 ¯b0)|Λ =0,¯0)|Λ =0.(L0 L(2.18)

Thee ectofthein nitesimalgaugetransformationsontheclosedstring eldsisgivenby:¯B)|Λ +O(Φ),δ|Φ =(QB+Q(2.19)

¯BaretheholomorphicandantiholomorphiccomponentsoftheBRSTwhereQBandQ

chargeinclosedstringtheory.Thusfora|Λ satisfying

¯B)|Λ =0,(QB+Q(2.20)

thein nitesimalgaugetransformationof|Φ vanishesat|Φ =0.Asaresultthisgaugetransformationleavesthe|Φ =0backgroundunchanged.Byourpreviousargument,thismustgenerateasymmetryofthepureopenstring eldtheorylivingonaD-brane,andgiverisetoaconservedchargeinthistheory.2

OurgoalwillbetoconstructexpressionsfortheseconservedchargesexplicitlyforanyD-branesystemlivinginthisclosedstringbackground.Forsimplicityweshallevaluate

Two dimensional string theory is known to have an infinite dimensional symmetry, both in the continuum formalism as well as in the matrix model formalism. We develop a systematic procedure for computing the conserved charges associated with these symmetrie

thechargeintrivialopenstringbackgroundΨ=0,–thiswillevaluatethechargecarriedbythespeci cD-braneusedintheconstructionoftheopenclosedstring eldtheorywithoutanyfurtheropenstringexcitationsonthebrane.Let|Λ(p) denoteafamilyofclosedstringgaugetransformationparameterslabelledbyXmomentump,suchthat¯B)|Λ(p) vanishesatp=c|Λ(p=c) =|Λ forsomespecialmomentumc.3Then(QB+Q

andwecanwrite¯B)|Λ(p) =(p c)|φ(p) ,(QB+Q(2.21)

¯B)isnilpotent,wewhere|φ(p) issomeghostnumbertwostate.Nowsince(QB+Q

seefromeq.(2.21)that|φ(p) isBRSTinvariantforallp=c,andhencebyanalyticcontinuationBRSTinvariantalsoforp=c.Furthermoreithasthepropertythatforanyp=citisBRSTtrivial,butforp=citcouldbeanon-trivialelementoftheBRSTcohomologyintheghostnumbertwosector.Weshallseelaterthatwecangetnon-trivialconservedchargesonlyif|φ(p=c) isnotBRSTtrivial.

Letusdenoteby|B theboundarystateassociatedwiththeD-braneonwhichwehaveformulatedtheopenstringtheory.Thenthefullstring eldtheoryactioncontainsacoupling:

B|(c0 c¯0)|Φ .(2.22)

Invarianceofthistermunderthein nitesimalgaugetransformation(2.19)generatedbythefamilyofgaugetransformationparameters|Λ(p) requires:

¯B)|Λ(p) =0, B|(c0 c¯0)(QB+Q(2.23)

ForordinaryD-braneseq.(2.23)followsfromtheBRSTinvarianceof B|andtheanalogsof(2.17),(2.18):

¯B)=0, B|(QB+Q B|(b0 ¯b0)=0,¯0)=0. B|(L0 L(2.24)

¯B)by{(c0 c¯B)}in(2.23).ThisThisallowsustoreplace(c0 c¯0)(QB+Q¯0),(QB+Q

doesnothaveanyzeromodeof(c0 c¯0)ing(2.21),eq.(2.23)becomes:

(p c) B|(c0 c¯0)|φ(p) =0.

Ifwede ne:

F(x)=

3(2.25)Weareassumingthattheothermomentumcomponentshavealreadybeensetequaltothespeci c¯B)|Λ(p) vanishes.valuesforwhich(QB+Q dp

12

Two dimensional string theory is known to have an infinite dimensional symmetry, both in the continuum formalism as well as in the matrix model formalism. We develop a systematic procedure for computing the conserved charges associated with these symmetrie

then(2.25)mayberewrittenas

xeF(x)=0.

Replacingxbyix0wenowget:

icx (2.27) 0e

0 cx0F(ix)=0.0 (2.28)Thuse cxF(ix0)isaconservedcharge.Thisgivesageneralprocedureforconstructing

theconservedchargecarriedbyaD-branecorrespondingtoaspeci crigidgaugetrans-formationinclosedstringtheory.ThesuggestionthattheBRSTinvarianceof B|carriesinformationaboutconservedchargeshasbeenmadeearlierin[52].

Givenanelement|Λ oftheBRSTcohomologywithaspeci cmomentumc,thereareclearlyin nitenumberoffamilies|Λ(p) withthepropertythat|Λ(p=c) =|Λ .Onphysicalgroundstheconservedchargeassociatedwiththesymmetrygeneratedby|Λ shouldnotdependonthechoiceofthefamily.Weshallnowprovethisexplicitlybydemonstratingthatiftwofamiliesofgaugetransformationsparameters|Λ(1)(p) and|Λ(2)(p) approachthesamevalueatp=c,thentheygiverisetothesameconservedcharge.Inthiscase,wemaywrite

|Λ(1)(p) |Λ(2)(p) =(p c)|Λ(0)(p) ,(2.29)

forsome|Λ(0)(p) ,sothatthedi erencebetween|Λ(1)(p) and|Λ(2)(p) vanishesatp=c.Eqs.(2.21)and(2.29)nowgive:

¯B)|Λ(0)(p) ,|φ(1)(p) |φ(2)(p) =(QB+Q(2.30)

where|φ(i)(p) isrelatedto|Λ(i)(p) asineq.(2.21).IfF(1)(x)andF(2)(x)denotethecorrespondingconservedchargesasde nedin(2.26),thenwehave

F(1)(x) F(2)(x)= dp

Two dimensional string theory is known to have an infinite dimensional symmetry, both in the continuum formalism as well as in the matrix model formalism. We develop a systematic procedure for computing the conserved charges associated with these symmetrie

someghostnumberzerostate|χ .Let|χ(p) denoteafamilyofstateslabelledbythemo-

p) ≡(Q+Q¯B)|χ(p) hasthementumpsuchthat|χ(p=c) =|χ .Thenthefamily|Λ(B

propertythatitreducesto|Λ forp=c.Thuswecancomputetheconservedchargeasso-

p) .Howeverinthiscase(Q+Q p) ¯B)|Λ(ciatedwiththissymmetryusingthisfamily|Λ(B (p) =(p m) 1(Q+Q p) ¯B)|Λ(vanishesforallp,andhencethecorrespondingstate|φB

ingthede nition(2.26)oftheconservedchargeweseeclearlythatthecorrespondingconservedchargealsovanishesinthiscase.

Finallywenotefromthede nition(2.26)ofF(x)andthefactthatF(x)∝e icxduetotheconservationlaw,thatthevalueofFdependsonthematrixelement B|(c0 c¯0)|φ(p) atp=c.If|φ(p=c) isBRSTexactthenthismatrixelementvanishesandwedonotgetanon-trivialconservedcharge.

3SymmetriesandConservedChargesinTwoDi-

mensionalStringTheory

Inthissectionweshallusetheresultsofsection2toconstructin nitenumberofconservedchargesintwodimensionalbosonicstringtheory.Webeginwithabriefreviewoftwodimensionalstringtheory.Theworld-sheetdescriptionofthetheoryinvolvesatimelikescalar eldX0,aLiouville eldtheorywithc=25andtheusualghost eldsb,c,¯b,c¯.Intheα′=1unitthatweshallbeusing,theLiouvilletheoryisdescribedbyasinglescalar eld withexponentialpotentialintheworldsheetaction:4

sliouville= dz2 1

TheLiouviletheorywithc=25actuallyhasaterm∝ e2 intheworld-sheetaction[53,54].Asin[1,2,3]weshallregardthec=25Liouvilletheoryasthec→25limitoftheorieswithc>25.Forc>25,(3.1)(withe2 replacedbyanappropriatepowerofe )isthecorrectformoftheaction,butµundergoesanin niterenormalizationaswetakethec→25limit.4

14

Two dimensional string theory is known to have an infinite dimensional symmetry, both in the continuum formalism as well as in the matrix model formalism. We develop a systematic procedure for computing the conserved charges associated with these symmetrie

oftheworld-sheetscalar eldX=iX0andtheLiouville eld asindependent,con-structstatesintheleft-andtheright-movingsectorsseparately,andthencombinethemmatchingthemomentaintheleft-andtheright-movingsectortoconstructproperstatesofthetwodimensionalstringtheory.WebeginwiththeCFTassociatedwiththefreescalar eldX.LetusdenotebyXLandXRtheleftandtheright-movingcomponentsofX.TheCFT,besidescontainingtheusualprimarystateseikXL(0)|0 XandeikXR(0)|0 X,containsasetofprimaries|j,m L,|j,m Roftheform[55]:

L|j,m L=Pj,me2imXL(0)|0 X,R2imXR(0)|j,m R=Pj,me|0 X,(3.3)

LRwherePj,mandPj,maresomecombinationofnon-zeromodeXL,XRoscillatorsoflevel(j2 m2),and(j,m)areSU(2)quantumnumberswith j≤m≤j.5Forexample,wehave|1,0 L=α 1|0 X,|1,0 R=α¯ 1|0 X,whereαn,α¯naretheusualoscillatorsof

LRtheX- eld.Pj,±jandPj,±j,beingoflevel0,mustbeidentityoperators.Thus|j,j L=

e2ijXL(0)|0 ,|j,j R=e2ijXR(0)|0 .Weshallcombinetheleftandtheright-movingmodestode ne:

LR|j,m X=|j,m L×|j,m R=Pj,mPj,me2imX(0)|0 X.(3.4)

Infactthistheorycontainsamoregeneralsetofprimaries|j,m L×|j′,m R,butweshallnotintroduceaspecialsymboltolabelthesestates.Forlateruseweshallalsode ne:

L|j,m,p L=Pj,meipXL(0)|0 X,R|j,m,p R=Pj,meipXR(0)|0 X,(3.5)

foranarbitraryX-momentump,and

LR|j,m,p X=|j,m,p L×|j,m,p R=Pj,mPj,m|p X,(3.6)

(3.7)where

LRWeshallnormalizePj,m,Pj,msuchthat:

X j,m,p|j′|p X=eipX(0)|0 X.′X p|p X,m,p′ X=δjj′=2πδ(p+p′)δjj′,(3.8)

whereX ·|· XdenotesBPZinnerproductintheCFToftheX- eld.Thevanishingofthisinnerproductforj=j′followssimplyfromthefactthatthetwostateshavedi erentconformalweights.

Two dimensional string theory is known to have an infinite dimensional symmetry, both in the continuum formalism as well as in the matrix model formalism. We develop a systematic procedure for computing the conserved charges associated with these symmetrie

TheLiouville eldtheorycontainsasetofprimaryvertexoperatorsVβofconformalweight(hβ,hβ)with1hβ=

Γ( iP)

Γ( iP) 2Thesecondterminthisexpressionisrequiredbythere ectionsymmetry[58,59]V2+iP≡ 2δ(P P′) . (3.10)

Γ( iP)e(2 iP) ,(3.11)

forlargenegative .Thesecondtermre ectsthee ectoftheexponentiallygrowingpotentialforlargepositive .

Thisnormalizationdi ersfromtheimplicitnormalizationassumedin[44]wheretheseconddeltafunctionin(3.10)wasabsent,andwepretendedthatV2+iPandV2 iPareindependentvertexoperators.AslongasweworkwithappropriatelinearcombinationsofV2+iPandV2 iPwhichobeythere ectionsymmetry,thisproceduregivesthecorrectresult.TheclosestanalogyofthisinordinaryquantummechanicsisthatwhilestudyingafreeparticleonahalflinewithNeumann(Dirichlet)boundaryconditiononthewave-functionattheorigin,wecanstudythetheoryonthefulllinewithbasisstateseikxandattheendrestrictthe eldcon gurationstobeeven(odd)underre ectionaroundtheorigin.IncontrastinthispaperweusetheconventionthatV2+iPitselfobeysthere ectionsymmetrydictatedbytheCFT.Thisisanalogoustousing2cosx(2sinx)asbasisfunctionsforfreeparticleonahalflinewithNeumann(Dirichlet)boundaryconditiononthewave-functionattheorigin.Anybasisindependentrelatione.g.eq.(5.7)willnotbea ectedbythisdi erenceinthechoiceofbasis.

ForsimplifyingthenotationweshallregardthevertexoperatorVβasaproductofaleft-chiralvertexoperatorVβLandaright-chiralvertexoperatorVβRofdimension(hβ,0)and(0,hβ)respectively,althoughinthe nalexpressiononlytheproductVβLVβRwillappear.

16

Two dimensional string theory is known to have an infinite dimensional symmetry, both in the continuum formalism as well as in the matrix model formalism. We develop a systematic procedure for computing the conserved charges associated with these symmetrie

WeshallnowreviewsomeresultsonthechiralBRSTcohomologyoftheworld-sheettheory[46,47,48,36,42,5,61,62]inghostnumberzeroandonesectors.6Asweshallsee,thesewillbethebasicbuildingblocksfortheconstructionofnon-trivialsymmetrygeneratorsofthetwodimensionalstringtheoryunderwhichD-branesarecharged.Forde nitenessweshalldescribetheresultsintheleft-moving(holomorphic)sector,butidenticalresultsholdintheright-movingsectoraswell.Webeginintheghostnumberonesector.Inthissectorwehaveanin nitenumberofelementsoftheBRSTcohomologylabelledbytheSU(2)quantumnumbers(j,m)with j≤m≤j,representedbythestates

LL|Yj,m =|j,m L V2(1 j)(0)|0 liouville c1|0 ghost

LL=Pj,me2imXL(0)|0 X V2(1 j)(0)|0 liouville c1|0 ghost,(3.12)

LwherePj,mhasbeende nedin(3.3).ByconstructionthesestateshavezeroL0eigenvalue.Forlaterusewede ne:

LLL|Yj,m(p) =Pj,meipXL(0)|0 X V2(1 j)(0)|0 liouville c1|0 ghost.(3.13)

Intheghostnumber0sectoralsowehaveanin nitenumberofelementsoftheBRSTcohomologylabelledbytheSU(2)quantumnumbers(j 1,m)with (j 1)≤m≤j 1.TherepresentativeelementsoftheBRSTcohomologycanbechosentobeoftheform

LLL|Oj 1,m =Qj 1,m|j 1,m L V2(1 j)(0)|0 liouville c1|0 ghost,(3.14)

whereQLj 1,misanoperatorofghostnumber 1,level(2j 1)constructedfromnegativemodedghostoscillatorsandXandLiouvilleVirasorogenerators[61].Using(3.3)thiscanberewrittenas

LL2imXL(0)L|Oj|0 X V2(1 1,m =Rj 1,me j)(0)|0 liouville c1|0 ghost(3.15)

Two dimensional string theory is known to have an infinite dimensional symmetry, both in the continuum formalism as well as in the matrix model formalism. We develop a systematic procedure for computing the conserved charges associated with these symmetrie

LLwhereRLj 1,m≡Qj 1,mPj 1,misanoperatorofghostnumber 1constructedfrom

negativemodedXandghostoscillatorsandLiouvilleVirasorogenerators.7Forlaterusewenowde ne:

LLipXL(0)L|Oj|0 X V2(1 1,m(p) =Rj 1,me j)(0)|0 liouville c1|0 ghost.(3.16)

LLNotethat|Yj,m(p) and|Oj 1,m(p) arebothbuiltbytheactionofXandghostoscillators

LandLiouvilleVirasorogeneratorsonthesameFockvacuumeipXL(0)|0 X V2(1 j)(0)|0 liouville c1|0 ghost,andsatisfy

Lb0|Oj 1,m(p) =0,Lb0|Yj,m(p) =0.(3.17)

LLFurthermore,since|Yj,m(p=2m) and|Oj 1,m(p=2m) havezeroL0eigenvalues,we

have

LL0|Oj 1,m(p) =1

4(3.18)

LLLLGiventhat|Oj 1,m =|Oj 1,m(p=2m) and|Yj,m =|Yj,m(p=2m) areBRST

invariant,wemusthave8

LLQB|Oj 1,m(p) =(p 2m)|η(j),m(p) ,L(p2 4m2)|Yj,m(p) .(3.19)

(3.20)and

LLforsomestates|η(j),m(p) and|ψ(j),m(p) .Itfollowsfromeqs.(3.19)and(3.20)andthe

LLnilpotenceofQBthatboth|η(j),m(p) and|ψ(j),m(p) areBRSTinvariantforanyp=2m

andhencebyanalyticcontinuationalsoforp=2m.Wealsoseefromeqs.(3.19),(3.20)

LLthatforp=2m,|η(j),m(p) and|ψ(j),m(p) areBRSTtrivialbutforp=2mtheycanbe

LLBRSTnon-trivial.Finallywenotethatsince|Oj 1,m(p) and|Yj,m(p) havenon-vanishing

LLL0eigenvaluesproportionalto(p2 4m2),|η(j),m(p) and|ψ(j),m(p) de nedthrough(3.19)

and(3.20)arenotannihilatedbyb0ingeneral.

IthasbeenshowninappendixAthatatp=2m,

LLLL (|η(j),m ,j),m ≡|η(j),m(p=2m) =|Yj,m +|ηLLQB|Yj,m(p) =(p 2m)|ψ(j),m(p) ,(3.21)

Two dimensional string theory is known to have an infinite dimensional symmetry, both in the continuum formalism as well as in the matrix model formalism. We develop a systematic procedure for computing the conserved charges associated with these symmetrie

L (where|ηj),m isalinearcombinationofstatescarryingSU(2)quantumnumbers(j 1,m)and(j 2,m),and|τjL 1,m hasSU(2)quantumnumbers(j 1,m).This nishesourdiscussionofchiralBRSTcohomologyinghostnumberszeroand

onesectors.Weshallnowcombinetheleftandtheright-movingstatesmatchingXand momentatoconstructafamilyofstates|Λj,m(p) ofghostnumber1,satisfyingtherequirement(2.21).Wede ne:9LLLL|ψ(j),m ≡|ψ(j),m(p=2m) =mc0|Yj,m +|τj 1,m ,(3.22)

|Λj,m(p) =1

2 LRLR|η(j),m(p) ×|Yj,m(p) +|Oj 1,m(p) ×|ψ(j),m(p)

L |ψ(j),m(p) ×R|Oj 1,m(p) +L|Yj,m(p) ×R|η(j),m(p) .(3.26)

Eqs.(3.24),(3.25)nowgive

(b0 ¯b0)|φj,m(p) =0,¯0)|φj,m(p) =0.(L0 L(3.27)

Forexplicitcomputationoftheconservedchargeinsection4weshallneedtheformof|φj,m(p=2m) .Usingeqs.(3.21),(3.22)weget

LR|φj,m(p=2m) =|Yj,m ×|Yj,m +|ωj,m 1+

2 L|Oj 1,m ×Rc¯0|Yj,m Lc0|Yj,m ×R|Oj 1,m ,(3.28)

本文来源:https://www.bwwdw.com/article/p6tq.html

Top