试题页表4.(简答题)

更新时间:2024-07-10 17:02:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

序号 试 题 内 容 1 用真值表法判断下列公式的类型. (1)?(P?Q)?(?P??Q) (2)(P??Q)?R (3)(P?(P?Q))?R (4)?(P?Q)?Q 求下列公式的主析取和合取范式。 (1)(┐P ? Q)∧(P ? R) (2)(P ? Q)∨(P∧R) (3)P∧Q∨R 设A={a, b, {a, b}}, B={a, b},试求B-A,A?B 对60个学生参加课外活动的情况进行调查。结果发现,25人参加物理小组,26人参加化学小组,26人参加生物小组。9人既参加物理小组又参加生物小组,11人既参加物理小组又参加化学小组,8人既参加化学小组又参加生物小组。8人什么小组也没参加,回答下列各问题: (1)有多少人参加了3个小组? (2)只参加一个小组的有多少人? 在20名青年有10名是公司职员,12名是学生,其中5名既是职员又是学生,问有几名既不是职员,又不是学生。 求1到500之间能被2,3,7任一数整除的整数个数。 设A={1,2,3,4},R,S都是A上的二元关系,其中: R={<1,2>,<2,1>,<2,3>,<3,2>,<4,4>}, S={<1,1>,<4,4>} (1)给出R的关系矩阵和关系图; (2)求dom(R?S),ran(R?S), fld(R-S),RoS ,R2 ,R-1 设A={1,2,3,4,5,6,7,8,9,10},R是A上的二元关系, R={|x,y∈A ∧x+y=10}说明R具有哪些性质。 设A={a,b,c},试给出A上的一个二元关系R,使其同时不满足自反性、反自反性、对称性、反对称性和传递性(要求画出R的关系图)。 4 10 11 12 13 14 15 16 第 1 页 共 7 页

序号 试 题 内 容 将集合A??1,2,3?上的下述二元关系: R={〈1,1〉,〈1,2〉〈1,3〉〈3,3〉} T={〈1,1〉,〈1,2〉〈2,1〉〈2,2〉,〈3,3〉} 17 S={〈1,1〉,〈1,2〉〈2,2〉〈2,3〉} φ A×A 分别画出R、S、T、φ、A×A的关系图,并按自反性、对称性、反对称性和传递性分类(10分) 设集合A={1,2,3,4,5},试求A上的模2同余关系R的关系式。 18 设A={a,b,c},A上的二元关系R的关系图如下图所示, (1)写出二元关系R的关系式和关系矩阵M; 19 (2)求r(R),s(R),t(R)。 c ab 设A??a,b,c?,A上的二元关系20 R???a,a?,?a,b?,?b,c?,?c,b??, 求r(R),s(R),t(R)。 设集合A={a,b,c,d},R1,R2都是A上的二元关系,R1={,},R2=?,试求R1和R2的自反闭包,对称闭包和传递闭包。 设A={a,b,c,d},A上的二元关系R={,,,,},求R的自反闭包r(R),对称闭包s(R)和传递闭包t(R)。 设集合A={a,b,c},A上的二元关系R={, },试给出R,r(R),s(R), t(R)的关系图。 设A={a,b,c},写出集合A上的所有不同的划分和等价关系 21 22 23 24 第 2 页 共 7 页

序号 试 题 内 容 设A={a, b, c, d, e, f}, A上的等价关系R=IA∪{, ,,},求: 25 (1)a的等价类[a]n; (2)求c的等价类[c]n (3)求商集A/R 分别画出下列各偏序集的哈斯图, 并求A的极大元、极小元,最大元、最小元。 26 (1)A??a,b,c,d,e?,A上的二元关系R为: R???a,b?,?a,c?,?a,d?,?a,e?,?b,e??c,e?,?d,e???IA (2)A={1,2,3,4,6,9,24,54},R是A上的整除关系。 下图给出了一个偏序关系R的哈斯图。 abdc27 ef (1)写出二元关系R的关系式。 (2)求子集{b,c,d}上的最大元、最小元、极大元、极小元、上界、上确界、下界、下确界。 设A={a,b,c,d,e},A上的偏序关系R={}?IA ,求: (1)画出偏序集的哈斯图; (2)求子集B={c,d,e}的极大元,极小元,最大元,最小元,上确界,下确界。 28 第 3 页 共 7 页

序号 试 题 内 容 设A= {a,b,c,d,e},给定?如下: ?1={{a,b,c},{d,e}}, ?2={{a,b},{c},{d,e}}, 30 ?3={{a,b,c},{c,d,e}}, ?4={{a},{d,e}}, ?5={φ,{a,b,c},{d,e}}, ?6={{a,{b},c},{d,e}}, 问:哪些是A的划分? 33 已知无向图G有11条边,2度与3度顶点各2个,其余都是4度顶点,求G中共有几个顶点。(写出过程) 下面的无向图G1和G2同构吗?为什么? agcbdef2561347 34 G1G2 下面的有向图G1和G2同构吗?说明理由 (4分) abe51435 3cdG12G2 有向图G如图所示。用矩阵法求: (8分) (1)G中长度为2的通路有几条? (2)G中长度为3的回路有几条? (3)G的可达矩阵P。 36 V1V4 V2V3 第 4 页 共 7 页

序号 试 题 内 容 有向图G如下所示。求: (1)图G的邻接矩阵A(G); (2)从V1到V4长度为2和4的通路各有几条? (3)经过V4的长度不大于4的回路共有几条? 37 (4)图G的可达矩阵P(G) V1V4 V2V3 设有向图G=(V,E)如下图所示, (1)试用邻接矩阵方法求长度为3的路的总数和回路总数; (2)求图G的可达矩阵. 38 V1V4 V2V3 有向图PERT图如下所示: (1)求图中各顶点的最早完成时间; (2)求图中各顶点的最晚完成时间; (3)求图中的关键路径。 42 1ae44df022b64cgh 13341 第 5 页 共 7 页

本文来源:https://www.bwwdw.com/article/p6t.html

Top