The RR Lyrae Period-Luminosity Relation. I. Theoretical Calibration
更新时间:2023-05-28 18:49:01 阅读量: 实用文档 文档下载
- the推荐度:
- 相关推荐
The RR Lyrae Period-Luminosity Relation. I. Theoretical Calibration
ApJSupplementSeries,inpress
APreprinttypesetusingLTEXstyleemulateapjv.4/12/04
THERRLYRAEPERIOD-LUMINOSITYRELATION.
I.THEORETICALCALIBRATION
M.Catelan
Ponti ciaUniversidadCat´olicadeChile,DepartamentodeAstronom´ ayAstrof´ sica,
Av.Vicu naMackenna4860,782-0436Macul,Santiago,Chile
BartonJ.Pritzl
MacalesterCollege,1600GrandAvenue,SaintPaul,MN55105
arXiv:astro-ph/0406067v1 2 Jun 2004
and
HoraceA.Smith
Dept.ofPhysicsandAstronomy,MichiganStateUniversity,EastLansing,MI48824
ApJSupplementSeries,inpress
ABSTRACT
WepresentatheoreticalcalibrationoftheRRLyraeperiod-luminosity(PL)relationintheUBVRIJHKJohnsons-Cousins-Glasssystem.Ourtheoreticalworkisbasedoncalculationsofsyn-thetichorizontalbranches(HBs)forseveraldi erentmetallicities,fullytakingintoaccountevolu-tionarye ectsbesidesthee ectofchemicalcomposition.Extensivetabulationsofourresultsareprovided,includingconvenientanalyticalformulaeforthecalculationofthecoe cientsoftheperiod-luminosityrelationinthedi erentpassbandsasafunctionofHBtype.Wealsoprovide“average”PLrelationsinIJHK,forapplicationsincaseswheretheHBtypeisnotknownapriori;aswellasanewcalibrationoftheMV [M/H]relation.Thesecanbesummarizedasfollows:
MI=0.471 1.132logP+0.205logZ,MJ= 0.141 1.773logP+0.190logZ,MH= 0.551 2.313logP+0.178logZ,MK= 0.597 2.353logP+0.175logZ,
and
MV=2.288+0.882logZ+0.108(logZ)2.
Subjectheadings:stars:horizontal-branch–stars:variables:other
1.INTRODUCTION
RRLyrae(RRL)starsarethecornerstoneofthePop-ulationIIdistancescale.Yet,unlikeCepheids,whichhaveforalmostacenturybeenknowntopresentatightperiod-luminosity(PL)relation(Leavitt1912),RRLhavenotbeenknownforpresentingaparticularlynote-worthyPLrelation.Instead,mostresearchershaveuti-lizedanaveragerelationbetweenabsolutevisualmag-nitudeandmetallicity[Fe/H]whenderivingRRL-baseddistances.Thisrelationpossessesseveralpotentialpit-falls,includingastrongdependenceonevolutionaryef-fects(e.g.,Demarqueetal.2000),apossiblenon-linearityasafunctionof[Fe/H](e.g.,Castellani,Chie ,&Pulone1991),and“pathologicaloutliers”(e.g.,Pritzletal.2002).
Tobesure,RRLhavealsobeennotedtofollowaPLrelation,butonlyintheKband(Longmore,Fernley,&Jameson1986).ThisisinsharpcontrastwiththecaseoftheCepheids,whichfollowtightPLrelationsboth
Electronicaddress:mcatelan@astro.puc.clElectronicaddress:pritzl@macalester.eduElectronicaddress:smith@pa.msu.edu
inthevisualandinthenear-infrared(see,e.g.,Tanvir1999).ThereasonwhyCepheidspresentatightPLre-lationirrespectiveofbandpassisthatthesestarscoveralargerangeinluminositiesbutonlyamodestrangeintemperatures.Conversely,RRLstarsarerestrictedtothehorizontalbranch(HB)phaseoflow-massstars,andthusnecessarilycoveramuchmoremodestrangeinluminosities—somuchsothat,intheircase,therangeintemperatureoftheinstabilitystripisasimportantas,ifnotmoreimportantthan,therangeinluminositiesofRRLstars,indeterminingtheirrangeinperiods.There-fore,RRLstarsmayindeedpresentPLrelations,butonlyifthebolometriccorrectionsaresuchastoleadtoalargerangeinabsolutemagnitudeswhengoingfromthebluetotheredsidesoftheinstabilitystrip—asisindeedthecaseinK.
Thepurposeofthepresentpaper,then,istoperformthe rstsystematicanalysisofwhetherausefulRRLPLrelationmayalsobepresentinotherbandpassesbesidesK.Inparticular,weexpectthat,usingband-passesinwhichtheHBisnotquite“horizontal”attheRRLlevel,aPLrelationshouldindeedbepresent.Since
The RR Lyrae Period-Luminosity Relation. I. Theoretical Calibration
2M.Catelan,B.J.Pritzl,H.A.Smith
Fig.1.—Upperpanels:MorphologyoftheHBindi erentbandpasses(left:B;middle:V;right:I).RRLvariablesareshowningray,andnon-variablestarsinblack.Lowerpanels:CorrespondingRRLdistributionsintheabsolutemagnitude—log-periodplane.Thecorrelationcoe cientrisshowninthelowerpanels.AllplotsrefertoanHBsimulationwithZ=0.002andanintermediateHBtype,asindicatedintheupperpanels.
theHBaroundtheRRLregionbecomesdistinctlynon-horizontalbothtowardsthenear-ultraviolet(e.g.,Fig.4inFerraroetal.1998)andtowardsthenear-infrared(e.g.,Davidge&Courteau1999),wepresentafullanal-ysisoftheslopeandzeropointoftheRRLPLrelationintheJohnsons-Cousins-Glasssystem,fromUtoK,in-cludingalsoBVRIJH.
2.MODELS
TheHBsimulationsemployedinthepresentpaperaresimilartothosedescribedinCatelan(2004a),towhichthereaderisreferredforfurtherdetailsandreferencesabouttheHBsynthesismethod.TheevolutionarytracksemployedherearethosecomputedbyCatelanetal.(1998)forZ=0.001andZ=0.0005,andbySweigart&Catelan(1998)forZ=0.002andZ=0.006,andas-sumeamain-sequenceheliumabundanceof23%bymassandscaled-solarcompositions.ThemassdistributionisrepresentedbyanormaldeviatewithamassdispersionσM=0.020M⊙.Forthepurposesofthepresentpa-per,wehaveaddedtothiscodebolometriccorrectionsfromGirardietal.(2002)forURJHKovertherele-vantrangesoftemperatureandgravity.Thewidthoftheinstabilitystripistakenas logTe =0.075,whichprovidesthetemperatureoftherededgeoftheinstabil-itystripforeachstaronceitsblueedgehasbeencom-putedonthebasisofRRLpulsationtheoryresults.Morespeci cally,theinstabilitystripblueedgeadoptedinthispaperisbasedonequation(1)ofCaputoetal.(1987),whichprovidesa ttoStellingwerf’s(1984)results—exceptthatashiftby 200Ktothetemperatureval-uesthusderivedwasappliedinordertoimproveagree-
mentwithmorerecenttheoreticalprescriptions(see§6inCatelan2004aforadetaileddiscussion).Weincludebothfundamental-mode(RRab)and“fundamentalized” rst-overtone(RRc)variablesinour nalPLrelations.Thecomputedperiodsarebasedonequation(4)inCa-puto,Marconi,&Santolamazza(1998),whichrepresentsanupdatedversionofthevanAlbada&Baker(1971)period-meandensityrelation.
InordertostudythedependenceofthezeropointandslopeoftheRRLPLrelationwithbothHBtypeandmetallicity,wehavecomputed,foreachmetallicity,se-quencesofHBsimulationswhichproducefromverybluetoveryredHBtypes.Thesesimulationsarestandard,anddonotincludesuche ectsasHBbimodalityortheimpactofsecondparametersotherthanmasslossontheredgiantbranch(RGB)orage.Foreachsuchsimula-tion,linearrelationsofthetypeMX=a+blogP,inwhichXrepresentsanyoftheUBVRIJHKbandpasses,wereobtainedusingtheIsobeetal.(1990)“OLSbisec-tor”technique.Itiscrucialthat,iftheserelationsaretobecomparedagainstempiricaldatatoderivedistances,preciselythesamerecipebeemployedintheanalysisofthesedataaswell,particularlyincasesinwhichthecor-relationcoe cientisnotverycloseto1.The nalresultforeachHBmorphologyactuallyrepresentstheaveragea,bvaluesover100HBsimulationswith500starseach.
3.GENESISOFTHERRLPLRELATION
InFigure1,weshowanHBsimulationcomputedforametallicityZ=0.002andanintermediateHBmorphology,indicatedbyavalueoftheLee-ZinntypeL≡(B R)/(B+V+R)= 0.05(whereB,V,
The RR Lyrae Period-Luminosity Relation. I. Theoretical Calibration
TheRRLPLrelationinUBVRIJHK3
Fig.2.—PLrelationsinseveraldi erentpassbands.Upperpanels:U(left),B,V,R(right).Lowerpanels:I(left),J,H,K(right).Thecorrelationcoe cientisshowninallpanels.AllplotsrefertoanHBsimulationwithZ=0.001andanintermediateHBtype.
andRarethenumbersofblue,variable,andredHBstars,respectively).EvenusingonlythemoreusualBVIbandpassesoftheJohnson-Cousinssystem,thechangeinthedetailedmorphologyoftheHBwiththepassbandadoptedisobvious.Inthemiddleupperpanel,onecanseethetraditionaldisplayofa“horizontal”HB,asob-tainedintheMV,B Vplane.Asaconsequence,onecansee,inthemiddlelowerpanel,thatnoPLrelationre-sultsusingthisbandpass.Ontheotherhand,theupperleftpanelshowsthesamesimulationintheMB,B Vplane.OneclearlyseesnowthattheHBisnotanymore“horizontal.”ThishasaclearimpactupontheresultingPLrelation(lowerleftpanel):nowonedoesseeanindi-cationofacorrelationbetweenperiodandMB,thoughwithalargescatter.Thereasonforthisscatteristhatthee ectsofluminosityandtemperaturevariationsupontheexpectedperiodsarealmostorthogonalinthisplane.Nowonecanalsosee,intheupperrightpanel,thattheHBisalsonotquitehorizontalintheMI,B Vplane—onlythatnow,incomparisonwiththeMB,B Vplane,thestarsthatlookbrighterarealsotheonesthatarecooler.Sinceadecreaseintemperature,aswellasanincreaseinbrightness,bothleadtolongerperiods,oneexpectsthee ectsofbrightnessandtemperatureupontheperiodstobemorenearlyparallelwhenusingI.Thisisindeedwhathappens,ascanbeseeninthebottomrightpanel.Wenow ndaquitereasonablePLrelation,withmuchlessscatterthanwasthecaseinB.
ThesameconceptsexplainthebehavioroftheRRLPLrelationintheotherpassbandsoftheJohnson-Cousins-Glasssystem,whichbecomestighterbothtowardsthenear-ultravioletandtowardsthenear-infrared,ascom-paredtothevisual.InFigure2,weshowthePLrelationsinalloftheUBVR(upperpanels)andIJHK(lowerpanels)bandpasses,forasyntheticHBwithamorphol-ogysimilartothatshowninFigure1,butcomputedforametallicityZ=0.001(theresultsarequalitativelysim-
ilarforallmetallicities).Asonecansee,asonemovesredwardfromV,wheretheHBise ectivelyhorizontalattheRRLlevel,anincreasinglytighterPLrelationde-velops.Conversely,asonemovesfromVtowardstheultraviolet,theexpectationisalsoforthePLrelationtobecomeincreasinglytighter—whichiscon rmedbytheplotforB.InthecaseofbroadbandU,ascanbeseen,theexpectedtendencyisnotfullycon rmed,ane ectwhichweattributetothecomplicatingimpactoftheBalmerjumpuponthepredictedbolometriccorrectionsintheregionofinterest.1AninvestigationoftheRRLPLrelationinStr¨omgrenu(e.g.,Clemetal.2004),whichismuchlessa ectedbytheBalmerdiscontinuity(andmightaccordinglyproduceatighterPLrelationthaninbroadbandU),aswellasoftheUVdomain,shouldthusproveofinterest,buthasnotbeenattemptedinthepresentwork.
4.THERRLPLRELATIONCALIBRATED
InFigure3,weshowtheslope(leftpanels)andzeropoint(rightpanels)ofthetheoretically-calibratedRRLPLrelation,inUBVR(fromtoptobottom)andforfourdi erentmetallicities(asindicatedbydi erentsymbolsandshadesofgray;seethelowerrightpanel).Eachdat-apointcorrespondstotheaverageover100simulationswith500starsineach.The“errorbars”correspondtothestandarddeviationofthemeanoverthese100sim-ulations.Figure4isanalogoustoFigure3,butshowsinsteadourresultsfortheIJHKpassbands(fromtop
TheBalmerjumpoccursataroundλ≈3700 A,markingtheasymptoticendoftheBalmerlineseries—andthusadiscontinuityintheradiativeopacity.ThebroadbandU lterextendswellred-wardof4000 A,andisthusstronglya ectedbythedetailedphysicscontrollingthesizeoftheBalmerjump.InthecaseofStr¨omgrenu,ontheotherhand,thetransmissione ciencyispracticallyzeroalreadyatλ=3800 A,thusshowingthatitisnotseverelya ectedbythesizeoftheBalmerjump.
1
The RR Lyrae Period-Luminosity Relation. I. Theoretical Calibration
4M.Catelan,B.J.Pritzl,H.A.Smith
Fig.3.—TheoreticallycalibratedPLrelationsintheUBVRpassbands(fromtoptobottom),forthefourindicatedmetallicities.Thezeropoints(leftpanels)andslopes(rightpanels)aregivenasafunctionoftheLee-ZinnHBmorphologyindicator.
tobottom).Itshouldbenotedthat,forallbandpasses,thecoe cientsofthePLrelationsaremuchmoresub-jecttostatistical uctuationsattheextremesinHBtype(bothveryredandveryblue),duetothesmallernum-bersofRRLvariablesfortheseHBtypes.IntermsofFigures3and4,thisisindicatedbyanincreaseinthesizeofthe“errorbars”atboththeblueandredendsoftherelations.
TheslopesandzeropointsfortheUBVRIJHKcal-ibrationsaregiveninTables1through8,respectively.AppropriatevaluesforanygivenHBmorphologymay
beobtainedfromthesetablesbydirectinterpolation,orbyusingsuitableinterpolationformulae(Catelan2004b),whichwenowproceedtodescribeinmoredetail.
4.1.AnalyticalFits
AstheplotsinFigures3and4show,allbandsshowsomedependenceonbothmetallicityandHBtype,thoughsomeofthee ectsclearlybecomelesspro-nouncedasonegoestowardsthenear-infrared.Analysisofthedataforeachmetallicityshowsthat,exceptfortheUandBcases,thecoe cientsofallPLrelations(at
The RR Lyrae Period-Luminosity Relation. I. Theoretical Calibration
TheRRLPLrelationinUBVRIJHK5
Fig.4.—AsinFigure3,butforIJHK(fromtoptobottom).
a xedmetallicity)canbewelldescribedbythird-orderpolynomials,asfollows:
MX=a+blogP,
with
a=
3 i=0
5.REMARKSONTHERRLPLRELATIONS
(1)
ai(L),b=
i
3 i=0
bi(L).
i
(2)
ForalloftheVRIJHKpassbands,theai,bicoe cients
areprovidedinTable9.
Figures3and4revealacomplexpatternforthevaria-tionofthecoe cientsofthePLrelationasafunctionofHBmorphology.While,asanticipated,thedependenceonHBtype(particularlytheslope)isquitesmallfortheredderpassbands(notethemuchsmalleraxisscalerangeforthecorrespondingHandKplotsthanfortheremainingones),thesamecannotbesaidwithrespecttothebluerpassbands,particularlyUandB,forwhichonedoesseemarkedvariationsasonemovesfromveryredtoveryblueHBtypes.Thisisobviouslyduetothemuchmoreimportante ectsofevolutionawayfromthe
The RR Lyrae Period-Luminosity Relation. I. Theoretical Calibration
M. Catelan, B. J. Pritzl, H. A. SmithFig. 5.— Variation in the MU log P relation as a function of HB type, for a metallicity Z= 0.001. The HB morphology, indicated by the L value, becomes bluer from upper left to lower right. For each HB type, only the rst in the series of 100 simulations used to compute the average coe cients shown in Figures 3 and 4 and Table 1 was chosen to produce this gure.
The RR Lyrae Period-Luminosity Relation. I. Theoretical Calibration
The RRL PL relation in U BV RIJHK
Fig. 6.— As in Figure 5, but f
or the MB log P relation.
The RR Lyrae Period-Luminosity Relation. I. Theoretical Calibration
M. Catelan, B. J. Pritzl, H. A. SmithFig. 7.— As in Figure 5, but for the MV log P relation.
The RR Lyrae Period-Luminosity Relation. I. Theoretical Calibration
The RRL PL relation in U BV RIJHK
Fig. 8.— As in Figure 5, but for the MR log P relation.
The RR Lyrae Period-Luminosity Relation. I. Theoretical Calibration
M. Catelan, B. J. Pritzl, H. A. SmithFig. 9.— As in Figure 5, but for the MI log P relation.
The RR Lyrae Period-Luminosity Relation. I. Theoretical Calibration
The RRL PL relation in U BV RIJHK
Fig. 10.— As in Figure 5, but for the MJ log P relation.
The RR Lyrae Period-Luminosity Relation. I. Theoretical Calibration
M. Catelan, B. J. Pritzl, H. A. SmithFig. 11.— As in Figure 5, but for the MH log P relation.
The RR Lyrae Period-Luminosity Relation. I. Theoretical Calibration
The RRL PL relation in U BV RIJHK
Fig. 12.— As in Figure 5, but for the MK log P relation.
The RR Lyrae Period-Luminosity Relation. I. Theoretical Calibration
14M.Catelan,B.J.Pritzl,H.A.Smith
TABLE1
RRLPLRelationinU:CoefficientsoftheFits
Lσ(L)aσ(a)b
σ(b)
Z=0.0005
00.000.9340.00.042 0.00.8777760.0130180.0.0.6270.0220.4970.0.5195470.034 08630.129 0.8490. 0.0.414167.1020.027.0280290.5520.0311.7990.024 0.8270.1101..0450130.0552670..01401000.8600.0791920..037.8257060.9490..058048 0.3580.0310.9930.0100.6300.046 0.5900.0250.9830.0090.5950.041 0.7650.0210.9800.0100.5860.050 0.8830.0140.9770.0130.5870.068 0.950
0.010
0.979
0.038
0.605
0.200
Z=0.0010
00.000.9400..0110.53700.070 00.87374400.0180.5800. 10.1910.070 0.0270. 0.5560.282.0370.0250340.6090..0330351.1.844.1341360.083277 0.9520.2170..10901200.9230..151.8338180.2759620..376055 0.3420.0361.1170.0110.7410.047 0.6030.0251.1070.0120.6980.055 0.7890.0221.0980.0170.6590.081 0.9060.0151.0940.0170.6460.078 0.963
0.008
1.104
0.034
0.701
0.169
Z=0.0020
00.00.9650.00900 0.89000.9107940..0150.0.6757080.22401.8530.207 0.8260.69600.4050. 0.5940.307.0230.0250.029.0360341.1550.1..2552680.2860.250.1170150.0.6430.541.8478650.9208160..383066 0.3560.0351.2580.0170.8200.069 0.6300.0321.2480.0170.7710.069 0.8220.0211.2470.0210.7680.089 0.9280.0121.2420.0300.7390.127 0.974
0.008
1.236
0.077
0.709
0.326
Z=0.0060
00.010.922.8106010.0150.1.03201.0.369 00.4390 00.298.0700.0210.034.0390391.2430.0.1281.9851.445.5355740.3830.285.1860770.0.0340.648.8719590.0.792.520210 0.4200.0361.5820.0240.9580.075 0.6930.0251.5860.0320.9540.095 0.8680.0181.5710.0790.8870.229 0.951
0.012
1.564
0.136
0.866
0.398
zero-ageHBinthebluerpassbands.InordertofullyhighlightthechangesinthePLrelationsineachoftheconsideredbandpasses,weshow,inFigures5through12,thechangesintheabsolutemagnitude–log-perioddistri-butionsforeachbandpass,fromU(Fig.5)toK(Fig.12),forarepresentativemetallicity,Z=0.001.Each gureiscomprisedofamosaicof10plots,eachforadi erentHBtype,fromveryred(upperleftpanels)toveryblue(lowerrightpanels).Inthebluerpassbands,onecanseethestarsthatareevolvedawayfromapositiononthebluezero-ageHB(andthusbrighterforagivenperiod)graduallybecomingmoredominantastheHBtypegetsbluer.Asalreadydiscussed,thee ectsofluminosityandTABLE2
RRLPLRelationinB:CoefficientsoftheFits
L
σ(L)
a
σ(a)
b
σ(b)
Z=0.000500.934000.8770.01300..124110 0.7760.0180.5530 00 0..7638380.5240.0.0220.0.1.5551.7390930.25700.2630.431 0.6270.414167.1020.0270.028.0290311.1040.0580.9330.1..1071060.0.013.0120100.8990.9400..8738510.1990440..040037 0.3580.0311.1050.0100.8360.035 0.5900.0251.1050.0100.8310.036 0.7650.0211.1070.0110.8390.047 0.8830.0141.1050.0130.8380.060 0.950
0.010
1.108
0.020
0.853
0.100
Z=0.001000.0000.9400.0.5680. 00.8737440.0110.0180250.0.123196 0.0.4370.271000.665 0.5560.282.0370.0341.6510..0330351.9941951..2022060.1.362.9667680.9440.016.0130150.0010..9739550.0.048.046051 0.3420.0361.2050.0130.9350.044 0.6030.0251.2050.0130.9230.048 0.7890.0221.2030.0150.9060.067 0.9060.0151.2000.0190.8950.076 0.963
0.008
1.207
0.036
0.930
0.164
Z=0.002000.96500.0.00900 0.910.7945940.0150.741 000.1.8220.30000.6590. 00.307.0230.0251.0.1..4420.9740.029.0360341.1160.3051.302.3153200.2940680..0170171.4660220.9729391..0240110.2140..059063 0.3560.0351.3190.0180.9900.066 0.6300.0321.3200.0190.9690.066 0.8220.0211.3200.0210.9690.080 0.9280.0121.3210.0330.9550.125 0.974
0.008
1.315
0.084
0.923
0.346
Z=0.006000.922010.8100.0.0151.0720 1.2880.41300.1 0.6010.298.0700.0210340..0390391.0.3770.3702051.1.495.5635740.0.212.0790271.9070.1101..0670680.0205890..222069 0.4200.0361.5800.0281.0600.078 0.6930.0251.5880.0351.0650.099 0.8680.0181.5730.1080.9920.317 0.951
0.012
1.571
0.145
0.987
0.420
temperatureupontheperiod-absolutemagnitudedistri-butionarealmostorthogonalinthesebluerpassbands.Asaconsequence,whenthenumberofstarsevolvedawayfromthebluezero-ageHBbecomescomparabletothenumberofstarsonthemainphaseoftheHB,whichoc-cursatL~0.4 0.8,asharpbreakinsloperesults,fortheUandBpassbands,ataroundtheseHBtypes.Thee ectismorepronouncedatthelowermetallicities,wheretheevolutionarye ectisexpectedtobemoreim-portant(e.g.,Catelan1993).Fortheredderpassbands,includingthevisual,thechangesaresmootherasafunc-tionofHBmorphology.
ThedependenceoftheRRLPLrelationinIJHKon
The RR Lyrae Period-Luminosity Relation. I. Theoretical Calibration
TheRRLPLrelationinUBVRIJHK
15
TABLE3
RRLPLRelationinV:CoefficientsoftheFitsL
σ(L)
a
σ(a)
b
σ(b)
Z=0.0005
00.934000.8770.00. 00.0.0130.0.038 0.9730.0.776.6274140.0180220.2030.0270.2312740.029021 0.9470.017 0.8710.126 0.8150.096065 00.167.1020.0.3050.028.0290310.0.338.3603740.0.013.013014 0.7490.049 00..7237140.0.041.045053 0.3580.0310.3850.017 0.7230.069 0.5900.0250.4150.096 0.6390.409 0.7650.0210.4480.134 0.5300.600 0.8830.0140.5100.158 0.2710.745 0.950
0.010
0.520
0.137
0.249
0.689
Z=0.0010
00.94000 00.8730.0110.21500.0.065036 1.1620.0.0.0.0180.2650.028 1.0600.188103 0.7440.556282.0370.0250340.0..0330350.3120.351.3833990. 0.9670.0880.019.016016 0.879 00..8158010.0.057.044057 0.3420.0360.4280.096 0.7410.359 0.6030.0250.4680.147 0.6270.567 0.7890.0220.5960.205 0.1460.824 0.9060.0150.6250.183 0.0370.762 0.963
0.008
0.664
0.152
0.126
0.678
Z=0.0020
00.96500.0.0090000.910.7945940.0.2760. 0.4150.015.0250290.3100.142063 1.195 1.118 00.307.02300.0.3610.041 1.0070.1720..0360340.401.4294640.0.024.023097 0.9190. 00..8657840.1070.068.061314 0.3560.0350.4770.092 0.7710.312 0.6300.0320.5330.171 0.6100.590 0.8220.0210.6300.224 0.2930.796 0.9280.0120.7330.1960.0720.715 0.974
0.008
0.737
0.170
0.073
0.654
Z=0.0060
00.000.922.8106010.0.0150.00.177 00.428454 00.298.0700.0210340..0390390.4870.065 1 1..1030610.4450..5135510.0.046.033074 10. 0.0.001.9578800.1520.113.084201 0.4200.0360.5840.117 0.8150.325 0.6930.0250.6420.201 0.6770.561 0.8680.0180.7890.273 0.2800.781 0.951
0.012
0.840
0.257
0.142
0.748
theadoptedwidthofthemassdistribution,aswellasontheheliumabundance,hasbeenanalyzedbycomput-ingadditionalsetsofsyntheticHBsforσforamain-sequenceheliumM=0.030M⊙(Z=0.001)andabundanceof28%(Z=0.002).TheresultsareshowninFigure13.AscanbeseenfromtheIplots,thepreciseshapeofthemassdistributionplaysbutaminorroleinde ningthePLrelation.Ontheotherhand,thee ectsofasignif-icantlyenhancedheliumabundancecanbemuchmoreimportant,particularlyinregardtothezeropointofthePLrelationsinallfourpassbands.Therefore,cautionisrecommendedwhenemployinglocallycalibratedRRLPLrelationstoextragalacticenvironments,inviewofthe
TABLE4
RRLPLRelationinR:CoefficientsoftheFits
L
σ(L)
a
σ(a)
b
σ(b)
Z=0.000500.934000.8770.013 0. 0.0. 00.031 10 1..1950.1080.776.6274140.018 0.1320.022027 0.10600..0650280.021 10.068 00.167.1020.0280..0290310.0.017014 0.163.0810.0.013.0470700.0110..011009 00.0490.040033 0.9960.891.8017380..033031 0.3580.0310.0870.008 0.6890.029 0.5900.0250.0980.008 0.6560.032 0.7650.0210.1070.010 0.6300.039 0.8830.0140.1100.012 0.6190.055 0.950
0.010
0.110
0.020
0.634
0.102
Z=0.001000.00. 00.9408730. 00.7440.011 00.018025 0.1190.051 1.0.0.032026 10.148089 0.5560.282.0370.03400.0700..0330350..0210.023.0650980.018 1.354.2480.0780..017015 1 0.1340.017.9068150.0.054.051047 0.3420.0360.1250.014 0.7400.045 0.6030.0250.1430.014 0.6870.049 0.7890.0220.1590.016 0.6390.058 0.9060.0150.1670.019 0.6100.070 0.963
0.008
0.167
0.027
0.623
0.116
Z=0.002000..9650 00.009 0.0710 100.0.910.7945940.0.01500.0270.0.0.092 1..401 10.268 00.307.0230.0250290..0360340.0270.0590430.074.1101450.0280..029 1.290.1580.163118024 00390..9488540.0820..082070 0.3560.0350.1650.020 0.8030.061 0.6300.0320.1910.022 0.7320.067 0.8220.0210.2010.029 0.7080.095 0.9280.0120.2240.036 0.6400.116 0.974
0.008
0.233
0.049
0.619
0.183
Z=0.006000.92200..8100.01500.0210.00.103 00.252 00.601298.0700.0.0601110.070 1 1..3320.1680.034.0390390.1470..1792170.0510..041041 1 1.2170.142.0769910.1270..106103 0.4200.0360.2460.039 0.9280.101 0.6930.0250.2700.048 0.8760.125 0.8680.0180.3150.055 0.7670.146 0.951
0.012
0.320
0.080
0.763
0.221
possibilityofdi erentchemicalenrichmentlaws.Fromatheoreticalpointofview,aconclusiveassessmentofthee ectsofheliumdi usiononthemainsequence,dredge-uponthe rstascentoftheRGB,andnon-canonicalheliummixingontheupperRGB,willallberequiredbeforecalibrationssuchasthepresentonescanbecon-sidered nal.
6.“AVERAGE”RELATIONS
InapplicationsoftheRRLPLrelationspresentedinthispaperthusfartoderivedistancestoobjectswhoseHBtypesarenotknownapriori,asmayeasilyhappeninthecaseofdistantgalaxiesforinstance,some“av-
The RR Lyrae Period-Luminosity Relation. I. Theoretical Calibration
16M.Catelan,B.J.Pritzl,H.A.Smith
TABLE5
RRLPLRelationinI:CoefficientsoftheFits
Lσ(L)aσ(a)b
σ(b)
Z=0.0005
00.934000.0.013 0.023 0.8770.018 0.0. 1.45300.7766270. 00.022 0.343.3220.015 1.4260. 1.3640.082046 0.4140.167.1020.027028 0 0.291.2612310.012010 1.2940.0360..029031 00..2071920.0090..008007 1.2150. 11..1501090.0300270..026022 0.3580.031 0.1820.006 1.0800.020 0.5900.025 0.1760.006 1.0600.023 0.7650.021 0.1710.007 1.0440.029 0.8830.014 0.1700.008 1.0380.037 0.950
0.010
0.171
0.014
1.050
0.070
Z=0.0010
00.0 00.9408730.011 0.0.037 00.7440.0.018 00. 10.1070.025 1..5680. 0.0.556282.0370.025034 0.318.2790..033035 0 0.2390.204.1721480.019014 10.0680570..013012 1.482.385 11.292.2081400.0420..039037 0.3420.036 0.1300.011 1.0890.034 0.6030.025 0.1190.010 1.0550.033 0.7890.022 0.1100.011 1.0280.037 0.9060.015 0.1060.014 1.0120.051 0.963
0.008
0.105
0.020
1.013
0.086
Z=0.0020
00.96500..9100. 0.2650 1.59200.7945940.0090.015025 0.2300. 0.1850.074 1.5030. 1.3900.216128 00.307.0230.0290..036034 0.1480.047035 00..1200940.0230..022018 1.2950.097 11..2251540.0.067.062052 0.3560.035 0.0800.014 1.1190.044 0.6300.032 0.0620.016 1.0700.048 0.8220.021 0.0560.020 1.0540.066 0.9280.012 0.0410.025 1.0110.080 0.974
0.008
0.036
0.037
0.999
0.137
Z=0.0060
00..9220 0 0.8106010.0.015021 0.0.088 1.5230 00.298.0700.034 0 0.142.0980.057 1.4230.0.2141390..039039 00.068.0420130.0.042.034033 1.358 11..3022370.1040..086083 0.4200.0360.0100.031 1.1880.080 0.6930.0250.0300.037 1.1450.098 0.8680.0180.0620.042 1.0680.112 0.951
0.012
0.066
0.061
1.061
0.168
erage”formofthePLrelationmightbeusefulwhichdoesnotexplicitlyshowadependenceonHBmorphol-ogy.Intheredderpassbands,inparticular,ameaningfulrelationofthattypemaybeobtainedwhenoneconsid-ersthatthedependenceofthezeropointsandslopesofthecorrespondingrelations,aspresentedinthepre-vioussections,isfairlymild.Therefore,inthepresentsection,wepresent“average”relationsforI,J,H,K,obtainingbysimplygatheringtogetherthe389,484starsinallofthesimulationsforallHBtypesandmetallicities(0.0005≤Z≤0.006).Utilizingasimpleleast-squaresprocedurewiththelog-periodsandlog-metallicitiesas
TABLE6
RRLPLRelationinJ:CoefficientsoftheFits
L
σ(L)
a
σ(a)
b
σ(b)
Z=0.000500.000.9340.013 0..012 100.8777760. 0.82600.6270.018 00.022027 0..8158000.007007 1.9020.0450.006 1.8900.024 1.8610. 0.0.414167.1020.028 0.7860..029031 0.772 00..7607540.0.005.005004 1.8250.020 1.7881..7577390.0170150..015012 0.3580.031 0.7500.003 1.7270.011 0.5900.025 0.7480.004 1.7170.014 0.7650.021 0.7470.004 1.7100.018 0.8830.014 0.7460.005 1.7060.021 0.950
0.010
0.747
0.008
1.709
0.040
Z=0.001000.9400 00.0. 0.7950. 00.873.7445560.0110180.025 0.7740.020014 1.9810.0.010 1.9340.057039 00.282.0370. 0.7510.034.033035 0.733 00..7177050. 1.8790.0300.008.007007 1.830 11..7867520.0.024.021020 0.3420.036 0.6960.006 1.7260.019 0.6030.025 0.6910.005 1.7100.017 0.7890.022 0.6870.006 1.6980.020 0.9060.015 0.6850.008 1.6890.030 0.963
0.008
0.684
0.011
1.685
0.049
Z=0.002000.00.9659100.009 0.0 0.7940. 200..5943070.015 00.042 0.748.7280. 1..0059550.123 10. 0.0230.0250290..036034 00.027 0.7020.681.6676530.0200130..012010 1..8908370.072056 11..8007630.0380..034028 0.3560.035 0.6470.008 1.7450.024 0.6300.032 0.6380.009 1.7210.027 0.8220.021 0.6350.011 1.7130.034 0.9280.012 0.6280.014 1.6910.044 0.974
0.008
0.625
0.020
1.682
0.076
Z=0.006000.9220 0..8100.0.015 00 0.6490.0.052033 10 1..9899290.0.125 00.601298.0700.0210340..039039 0.623 0.6060..5915750.0.024.019019 1.891 11..8608260.0800590..049047 0.4200.036 0.5630.017 1.8000.044 0.6930.025 0.5530.021 1.7770.053 0.8680.018 0.5360.023 1.7390.062 0.951
0.012
0.534
0.033
1.733
0.092
independentvariables,weobtainthefollowing ts:2
MI=0.4711 1.1318logP+0.2053logZ,(3)
withacorrelationcoe cientr=0.967;
2
rorsFor10 5in 10theallequations 3derivedcoe cientspresentedinarethisalwayssection,verythestatisticaler-corresponding,duetotheverylargesmall,oforderthatthesewe ts.Consequently,wenumberomitthemofstarsfrominvolvedtheequationsintheabundancesrelationsprovide.areUndoubtedly,systematicratherthemainthansourcesstatistical—e.g.,oferrora ectingheliumcientoftheperiod-mean(see§5),bolometricdensityrelation,corrections,etc..
temperaturecoe -
The RR Lyrae Period-Luminosity Relation. I. Theoretical Calibration
TheRRLPLrelationinUBVRIJHK
17
TABLE7
RRLPLRelationinH:CoefficientsoftheFitsL
σ(L)
a
σ(a)
b
σ(b)
Z=0.0005
00.93400.013 0.018 10 2.31100.0. 1..1360.003 2.3150.0.8777760.022 10.002 1.137.1370. 2.3170.0130.627 2.3160.009008 0.0.414167.1020.0270280..029031 10.002002 1.1371.137.1381390.0020..002002 2.3160.007 22..3153160.0.006.007006 0.3580.031 1.1410.002 2.3200.006 0.5900.025 1.1420.002 2.3200.008 0.7650.021 1.1430.003 2.3230.011 0.8830.014 1.1440.003 2.3220.013 0.950
0.010
1.146
0.005
2.327
0.027
Z=0.0010
00.940000.8730.011 0.006 00.0. 10.018 1..1010. 2.0.0190.005 20.014 0.7440.556282.0370.025034 10..033035 1.096.090 11.086.0830810.003003 2.358.3460.0..002002 2 2.3322.322.3103040.0090.009.007008 0.3420.036 1.0790.003 2.2970.008 0.6030.025 1.0790.002 2.2950.008 0.7890.022 1.0790.003 2.2950.011 0.9060.015 1.0800.004 2.2920.016 0.963
0.008
1.080
0.006
2.292
0.025
Z=0.0020
00.0 0.9659100.009 10 200.0.7940.0150. 1.0580. 1.0510.015009 2.380 2.3610.045025 0.0.594307.0230.0250.029.036034 1.0420.007 1.0351..0310270..005005 2.3390.0210.004 2.3212..3082970.0.014.013012 0.3560.035 1.0250.003 2.2910.010 0.6300.032 1.0230.004 2.2840.012 0.8220.021 1.0230.004 2.2820.014 0.9280.012 1.0210.006 2.2750.019 0.974
0.008
1.020
0.009
2.271
0.034
Z=0.0060
00.92200.0. 0000.0150. 2.0.053 0.8100.601298.0700.021034 0.9750.0220140.0..039039 0.964 0.9570..9509440.010 20..008008 2.381.355 22.338.3253120.0350.026.021020 0.4200.036 0.9390.007 2.3010.019 0.6930.025 0.9350.009 2.2920.023 0.8680.018 0.9290.010 2.2770.027 0.951
0.012
0.928
0.014
2.274
0.040
MJ= 0.1409 1.7734logP+0.1899logZ,(4)
withacorrelationcoe cientr=0.9936;
MH= 0.5508 2.3134logP+0.1780logZ,(5)
withacorrelationcoe cientr=0.9991;
MK= 0.5968 2.3529logP+0.1746logZ,
(6)
withacorrelationcoe cientr=0.9992.Notethatthelatterrelationisofthesameformastheonepresentedby
TABLE8
RRLPLRelationinK:CoefficientsoftheFits
L
σ(L)
a
σ(a)
b
σ(b)
Z=0.0005
00.000.9340.013 0. 00.8777760. 1.1680.002002 2 2..3430.0120.6270.018 1.1690.022027 1.1700.0020. 20.009 2.348.3520. 0.0.414167.1020.028 1.1710..029031 1.172 11..1731750.0020.002.002002 20.007 2.3522.355.3553580.0070060..007006 0.3580.031 1.1770.002 2.3620.006 0.5900.025 1.1780.002 2.3640.008 0.7650.021 1.1800.003 2.3680.011 0.8830.014 1.1810.003 2.3670.013 0.950
0.010
1.183
0.005
2.3730.026
Z=0.001000.9400 00.0. 1.1330. 00.873.7445560.0110180.025 1.1280.005004 2.3880.0.003 2.379 2.3670.0170130.009 00.282.0370. 1.1240.034.033035 1.121 11.118.11700..003002.002 2.359 22..3503450.0.009.007008 0.3420.036 1.1150.002 2.3390.008 0.6030.025 1.1160.002 2.3380.008 0.7890.022 1.1170.003 2.3390.011 0.9060.015 1.1170.004 2.3370.016 0.963
0.008
1.11
70.006
2.338
0.024
Z=0.002000.00.9659100.009 1.0 0.7940. 200..5943070.015 10.014 1.091.0840. 2..4103930.041 20. 0.0230.0250290..036034 10.008 1.0771.071.0670640.0070040..004004 2..3743580.022019 22..3473370.0130..012011 0.3560.035 1.0630.003 2.3330.010 0.6300.032 1.0610.004 2.3270.012 0.8220.021 1.0610.004 2.3250.013 0.9280.012 1.0590.006 2.3200.018 0.974
0.008
1.059
0.009
2.317
0.032
Z=0.006000.9220 0..8100.0.015 10 1.0110.0.021013 20 2..4133890.0.049 00.601298.0700.0210340..039039 0.001 0.9940..9889830.0.010.008008 2.374 22..3623490.0320240..019019 0.4200.036 0.9780.007 2.3400.018 0.6930.025 0.9740.008 2.3310.021 0.8680.018 0.9680.009 2.3170.025 0.951
0.012
0.968
0.013
2.315
0.037
Bonoetal.(2001).ThemetallicitydependencewederiveisbasicallyidenticaltothatinBonoetal.,whereasthelogPslopeisslightlysteeper(by0.28),inabsolutevalue,inourcase.Intermsofzeropoints,thetworelations,atrepresentativevaluesP=0.50dandZ=0.001,provideK-bandmagnitudeswhichdi erbyonly0.05mag,oursbeingslightlybrighter.
Inaddition,thesametypeofexercisecanprovideuswithanaveragerelationbetweenHBmagnitudeinthevisualandmetallicity.Performinganordinaryleast-squares toftheformMV=f(logZ)(i.e.,withlogZastheindependentvariable),weobtain:
The RR Lyrae Period-Luminosity Relation. I. Theoretical Calibration
18M.Catelan,B.J.Pritzl,H.A.Smith
TABLE9
CoefficientsoftheRRLPLRelationinBVRIJHK:AnalyticalFits
Metallicitya0a1a2a3V
b0b1b2b3
ZZZZ====0.00600.00200.00100.00050.52760.44700.39760.3668 0.0420 0.0232 0.0416 0.03140.10560.06660.0482 0.0053 0.2011 0.2309 0.2117 0.1550R
0.9440 0.8512 0.8243 0.7455 0.04360.0122 0.02310.04070.32070.31070.32120.1342 0.5303 0.7248 0.7169 0.4966
ZZZZ====0.00600.00200.00100.00050.21070.14690.10200.0659 0.0701 0.0566 0.0808 0.0811 0.0204 0.0633 0.0784 0.0832 0.0764 0.0995 0.0744 0.0537I
1.0050 0.8523 0.8086 0.7553 0.1507 0.1500 0.2397 0.2482 0.0390 0.1519 0.1809 0.1769 0.1723 0.2521 0.1608 0.0677
ZZZZ====0.00600.00200.00100.0005 0.0162 0.0913 0.1445 0.1939 0.0540 0.0393 0.0545 0.0515 0.0216 0.0568 0.0680 0.0679 0.0640 0.0788 0.0614 0.0450J
1.2459 1.1499 1.1340 1.1192 0.1155 0.1058 0.1647 0.1640 0.0442 0.1397 0.1614 0.1474 0.1466 0.2002 0.1378 0.0655
ZZZZ====0.00600.00200.00100.0005 0.5766 0.6517 0.7023 0.7546 0.0278 0.0181 0.0250 0.0209 0.0150 0.0335 0.0383 0.0343 0.0378 0.0452 0.0355 0.0238H
1.8291 1.7599 1.7478 1.7438 0.0581 0.0498 0.0786 0.0728 0.0318 0.0809 0.0891 0.0706 0.0874 0.1167 0.0824 0.0379
ZZZZ====0.00600.00200.00100.0005 0.9447 1.0262 1.0798 1.1385 0.0110 0.0041 0.00370.0037 0.0070 0.0124 0.0108 0.0027 0.0160 0.0152 0.00790.0012K
2.3128 2.2953 2.3019 2.3169 0.0231 0.0138 0.01700.0016 0.0149 0.0292 0.0242 0.0029 0.0375 0.0414 0.01860.0056
ZZZZ====0.00600.00200.00100.0005 0.9829 1.0630 1.1159 1.1742 0.0101 0.0032 0.00240.0051 0.0066 0.0113 0.0093 0.0012 0.0148 0.0132 0.00610.0028 2.3499 2.3357 2.3427 2.3580 0.0210 0.0115 0.01310.0061 0.0140 0.0268 0.0212 0.0004 0.0346 0.0361 0.01420.0090
MV=1.455+0.277logZ,(7)
logZ=[M/H] 1.765.(9)
withacorrelationcoe cientr=0.83.
Theaboveequationhasastrongerslopethanisoftenadoptedintheliterature(e.g.,Chaboyer1999).ThisislikelyduetothefactthattheMV [M/H]relationisac-tuallynon-linear,withtheslopeincreasingforZ 0.001(Castellanietal.1991),wheremostofoursimulationswillbefound.Aquadraticversionofthesameequationreadsasfollows:
MV=2.288+0.8824logZ+0.1079(logZ)2.
(8)
Thee ectsofanenhancementinα-captureelementswithrespecttoasolar-scaledmixture,asindeedobservedamongmostmetal-poorstarsintheGalactichalo,canbetakenintoaccountbythefollowingscalingrelation(Salaris,Chie ,&Straniero1993):
[M/H]=[Fe/H]+log(0.638f+0.362),
(10)
Asonecansee,theslopeprovidedbythisrelation,atametallicityZ=0.001,is0.235,thusfullycompatiblewiththerangediscussedbyChaboyer(1999).
Thelasttwoequationscanalsobeplacedintheirmoreusualform,with[M/H](or[Fe/H])astheindependentvariable,ifwerecall,fromSweigart&Catelan(1998),thatthesolarmetallicitycorrespondingtothe(scaled-solar)evolutionarymodelsutilizedinthepresentpaperisZ=0.01716.Therefore,theconversionbetweenZand[M/H]thatisappropriateforourmodelsisasfollows:
wheref=10[α/Fe].NotethatsucharelationshouldbeusedwithduecareformetallicitiesZ>0.003(Vanden-Bergetal.2000).
Withtheseequationsinmind,thelinearversionoftheMV [M/H]relationbecomes
MV=0.967+0.277[M/H],
whereasthequadraticonereadsinstead
MV=1.067+0.502[M/H]+0.108[M/H]2.
(12)(11)
ThelatterequationprovidesMV=0.60magat[Fe/H]= 1.5(assuming[α/Fe] 0.3;e.g.,Carney1996),in
The RR Lyrae Period-Luminosity Relation. I. Theoretical Calibration
TheRRLPLrelationinUBVRIJHK19
Fig.13.—E ectsofσMandoftheheliumabundanceupontheRRLPLrelationintheIJHKbands.Thelinesindicatetheanalytical tsobtained,fromequations(1)and(2),forourassumedcaseofYMS=0.23andσM=0.02M⊙forametallicityZ=0.001(thickgraylines)orZ=0.002(dashedlines).Inthetwoupperpanels,theresultsofanadditionalsetofmodels,computedbyincreasingthemassdispersionfrom0.02M⊙to0.03M⊙,areshown(graycircles).Asonecansee,σMdoesnota ecttherelationinasigni cantway,sothatsimilarresultsforanincreasedσMareomittedinthelowerpanels.Theheliumabundance,inturn,isseentoplayamuchmoreimportantrole,particularlyinde ningthezeropointofthePLrelation.
verygoodagreementwiththefavoredvaluesinChaboyer(1999)andCacciari(2003)—thussupportingadistancemodulusfortheLMCof(m M)0=18.47mag.
Toclose,wenotethatthepresentmodels,whichcoveronlyamodestrangeinmetallicities,donotprovideusefulinputregardingthequestionofwhethertheMV [M/H]relationisbetterdescribedbyaparabolaorbytwostraightlines(Bonoetal.2003).Toillustratethis,weshow,inFigure14,theaverageRRLmagnitudesforeachmetallicityvalueconsidered,alongwithequations(11)and(12).Notethatthe“errorbars”actuallyrepresent
thestandarddeviationofthemeanoverthefullsetofRRLstarsinthesimulationsforeach[M/H]value.
7.CONCLUSIONS
WehavepresentedRRLPLrelationsintheband-passesoftheJohnsons-Cousins-GlassUBVRIJHKsys-tem.WhileinthecaseoftheCepheidstheexistenceofaPLrelationisanecessaryconsequenceofthelargerangeinluminositiesencompassedbythesevariables,inthecaseofRRLstarsusefulPLrelationsareinsteadpri-marilyduetotheoccasionalpresenceofalargerangeinbolometriccorrectionswhengoingfromtheblueto
The RR Lyrae Period-Luminosity Relation. I. Theoretical Calibration
20M.Catelan,B.J.Pritzl,H.A.Smith
Fig.14.—PredictedcorrelationbetweenaverageRRLV-bandabsolutemagnitudeandmetallicity.Eachofthefourdatapointsrepresentstheaveragemagnitudeoverthefullsampleofsimulationsforthatmetallicity.The“errorbars”actuallyindicatethestandarddeviationofthemean.Thefullanddashedlinesshowequations(11)and(12),respectively.
therededgeoftheRRLinstabilitystrip.ThisleadstoparticularlyusefulPLrelationsinIJHK,wheretheef-fectsofluminosityandtemperatureconspiretoproducetightrelations.Inbluerpassbands,ontheotherhand,thee ectsofluminositydonotreinforcethoseoftem-perature,leadingtothepresenceoflargescatterintherelationsandtoastrongerdependenceonevolutionarye ects.Weprovideadetailedtabulationofourderivedslopesandzeropointsforfourdi erentmetallicitiesandcoveringvirtuallythewholerangeinHBmorphology,fromveryredtoveryblue,fullytakingintoaccount,forthe rsttime,thedetailede ectsofevolutionawayfromthezero-ageHBuponthederivedPLrelationsinalloftheUBVRIJHKpassbands.Wealsoprovide“av-erage”PLrelationsinIJHK,forapplicationsincases
Bono,G.,Caputo,F.,Castellani,V.,Marconi,M.,&Storm,J.,2001,MNRAS,326,1183
Bono,G.,Caputo,F.,Castellani,V.,Marconi,M.,Storm,J.,&Degl’Innocenti,S.2003,MNRAS,344,1097
Cacciari,C.2003,inNewHorizonsinGlobularClusterAstronomy,ASPConf.Ser.,Vol.296,ed.G.Piotto,G.Meylan,S.G.Djorgovski,&M.Riello(SanFrancisco:ASP),329
Caputo,F.,DeStefanis,P.,Paez,E.,&Quarta,M.L.1987,A&AS,68,119
Caputo,F.,Marconi,M.,&Santolamazza,P.1998,MNRAS,293,364
Carney,B.W.1996,PASP,108,900
Castellani,V.,Chie ,A.,&Pulone,L.1991,ApJS,76,911Catelan,M.1993,A&AS,98,547Catelan,M.2004a,ApJ,600,409
Catelan,M.2004b,inVariableStarsintheLocalGroup,ASPConf.Ser.,Vol.310,ed.D.W.Kurtz&K.Pollard(SanFrancisco:ASP),inpress(astro-ph/0310159)
Catelan,M.,Borissova,J.,Sweigart,A.V.,&Spassova,N.1998,ApJ,494,265
Chaboyer,B.1999,inPost-HipparcosCosmicCandles,ed.A.Heck&F.Caputo(Dordrecht:Kluwer),111
Clem,J.L.,VandenBerg,D.A.,Grundahl,F.,&Bell,R.A.2004,AJ,127,1227
Davidge,T.J.,&Courteau,S.1999,AJ,117,1297
wheretheHBtypeisnotknownapriori;aswellasanewcalibrationoftheMV [Fe/H]relation.InPaperII,wewillprovidecomparisonsbetweentheseresultsandtheobservations,particularlyinI,whereweexpectournewcalibrationtobeespeciallyusefulduetothewideavail-abilityandeaseofobservationsinthis lter,incompar-isonwithJHK.
M.C.acknowledgessupportbyProyectoFONDECYTRegularNo.1030954.B.J.P.wouldliketothanktheNationalScienceFoundation(NSF)forsupportthroughaCAREERaward,AST99-84073.H.A.S.acknowledgestheNSFforsupportundergrantAST02-05813.
Demarque,P.,Zinn,R.,Lee,Y.-W.,&Yi,S.2000,AJ,119,1398Ferraro,F.R.,Paltrinieri,B.,FusiPecci,F.,Rood,R.T.,&Dorman,B.1998,ApJ,500,311
Girardi,L.,Bertelli,G.,Bressan,A.,Chiosi,C.,Groenewegen,M.A.T.,Marigo,P.,Salasnich,B.,&Weiss,A.2002,A&A,391,195
Isobe,T.,Feigelson,E.D.,Akritas,M.G.,&Babu,G.J.1990,ApJ,364,104
Leavitt,H.S.1912,HarvardCircular,173(reportedbyE.C.Pickering)
Longmore,A.J.,Fernley,J.A.,&Jameson,R.F.1986,MNRAS,220,279
Pritzl,B.J.,Smith,H.A.,Catelan,M.,&Sweigart,A.V.2002,AJ,124,949
Salaris,M.,Chie ,A.,&Straniero,O.1993,ApJ,414,580Stellingwerf,R.F.1984,ApJ,277,322
Sweigart,A.V.,&Catelan,M.1998,ApJ,501,L63
Tanvir,N.R.1999,inPost-HipparcosCosmicCandles,ed.A.Heck&F.Caputo(Kluwer:Dordrecht),17
vanAlbada,T.S.,&Baker,N.1971,ApJ,169,311vanAlbada,T.S.,&Baker,N.1973,ApJ,185,477
VandenBerg,D.A.,Swenson,F.J.,Rogers,F.J.,Iglesias,C.A.,&Alexander,D.R.2000,ApJ,532,430
REFERENCES
正在阅读:
The RR Lyrae Period-Luminosity Relation. I. Theoretical Calibration05-28
基层电子政务发展中的问题与对策06-01
热心肠的同桌作文600字07-02
校考评部“时尚低碳”活动2.doc修改版05-06
人资案例库06-10
怎样合作01-13
第1章 逻辑代数基础作业06-06
电梯评估报告00810-19
高中化学课本结构07-20
CAD经验小结(一)12-13
- 1Soil Respiration in European Grasslands in Relation to Climate
- 2A theoretical look at the direct detection of giant planets
- 3Uncertainty Relation in Quantum Mechanics with Quantum Group Symmetry
- 4A multistage camera self-calibration algorithm
- 51rr万科集团财务分析
- 6统计学中的RR OR AR HR
- 7Immersive Calibration PRO Step By Step Guide - Dome
- 8DIMACS Series in Discrete Mathematics and Theoretical Computer Science On the Number of Con
- 91rr万科集团财务分析
- 10Dual Class IPOs,Share Recapitalizations, and Unifications:A Theoretical Analysis
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- I.
- Theoretical
- Calibration
- Luminosity
- Relation
- Period
- Lyrae
- RR
- 12-5,6,end 位移电流 电磁场基本方程的积分形式
- 曝气生物滤池计算
- OBIEE11.6 地图学习总结
- 终端销售模式创新---“杭宝牌”清目片市场分析
- 2020下半年浙江省湖州市南浔区城投集团招聘试题及解析
- 湘少版五年级英语1-3单元复习资料
- 2010中考语文作文范文
- 塑料考试模板项目可行性研究报告(发改立项备案+2013年最新案例范文)详细编制方案
- 教师招聘《中学教育心理学》通关试题每日练卷7067
- 2020H1业绩点评:业绩超预期,新能源汽车业务表现强劲
- 初中所有化学方程式及反应现象总结(方程式)
- 焦化废水中难降解有机物去除的研究
- 学校心理咨询室工作制度
- 如何教育好孩子的方法
- 刍议幼儿园体育活动的设计与指导
- 《三角形的面积》微课教学设计方案
- 老外十八种手势的含义
- 城市道路井盖安装施工工艺
- 臭氧O3气体泄露检测仪
- 《嵌入式系统原理》试题B(2013秋)