Average Rate of Downlink Heterogeneous Cellular Networks
更新时间:2023-07-21 20:48:01 阅读量: 实用文档 文档下载
- average推荐度:
- 相关推荐
3050IEEETRANSACTIONSONCOMMUNICATIONS,VOL.61,NO.7,JULY2013
AverageRateofDownlinkHeterogeneousCellularNetworksoverGeneralizedFadingChannels:
AStochasticGeometryApproach
MarcoDiRenzo,Member,IEEE,AlessandroGuidotti,StudentMember,IEEE,
andGiovanniE.Corazza,SeniorMember,IEEE
Abstract—Inthispaper,weintroduceananalyticalframeworktocomputetheaveragerateofdownlinkheterogeneouscellularnetworks.Theframeworkleveragesrecentapplicationofstochas-ticgeometrytoother–cellinterferencemodelingandanalysis.TheheterogeneouscellularnetworkismodeledasthesuperpositionofmanytiersofBaseStations(BSs)havingdifferenttransmitpower,density,path–lossexponent,fadingparametersanddistri-bution,andunequalbiasingfor exibletierassociation.Along–termaveragedmaximumbiased–received–powertierassociationisconsidered.ThepositionsoftheBSsineachtieraremodeledaspointsofanindependentPoissonPointProcess(PPP).Undertheseassumptions,weintroduceanewanalyticalmethodologytoevaluatetheaveragerate,whichavoidsthecomputationoftheCoverageProbability(Pcov)andneedsonlytheMomentGeneratingFunction(MGF)oftheaggregateinterferenceattheprobemobileterminal.Thedistinguishablecharacteristicofouranalyticalmethodologyconsistsinprovidingatractableandnumericallyef cientframeworkthatisapplicabletogeneralfadingdistributions,includingcompositefadingchannelswithsmall–andmid–scale uctuations.Inaddition,ourmethodcanef cientlyhandlecorrelatedLog–Normalshadowingwithlittleincreaseofthecomputationalcomplexity.TheproposedMGF–basedapproachneedsthecomputationofeitherasingleoratwo–foldnumericalintegral,thusreducingthecomplexityofPcov–basedframeworks,whichrequire,forgeneralfadingdistributions,thecomputationofafour–foldintegral.
IndexTerms—Heterogeneouscellularnetworks,aggregatein-terferencemodeling,stochasticgeometry,averagerate.
characterofthewirelesschannel[2].Forthisreason,accurateperformanceanalysisisusuallyconductedviacostly,time–consuming,andoftenproprietarysystem–levelsimulators[3].Thisapproach,however,seldomprovidesinsightfulinforma-tiononsystemdesignandonthedependencyofthesystemparameterstooptimize.Thissituationisevenexacerbatedinfuturecellulardeployments,whicharebecomingmoreheterogeneouswiththeintroductionofnewinfrastructureelements,e.g.,femto/picoBSs, xed/mobilerelays,cognitiveradios,anddistributedantennas[4]–[9]and[10]forasurvey.A.AbstractionModelsforAnalysisandDesignofCellularNetworks
Tocircumventthisproblem,communicationstheoristsusu-allyresortto“abstractions”fortractableother–cellinterfer-encemodelingandforperformanceanalysis.Theseabstrac-tionsusuallyencompasssimpli edspatialmodelsforthelocationsoftheBSs.Inparticular,threeabstractionmodelsarecommonlyadopted:i)theWynermodel[11];ii)thesingle–cellinterferingmodel[12];andiii)theregularhexagonalorsquaregridmodel[13].Theseabstractionmodels,however,areofteneitherover–simplisticorinaccurate[14].Further-more,insomecases,asfortheregularhexagonal/squaregridmodel,theystillrequireeitherintensivenumericalsim-ulationsormulti–foldnumericalintegrations.Finally,theseabstractionmodelsusuallyprovideinformationforspeci cBSsdeployments,andtypicallyfailtoprovideusefulinfor-mationformorerandom,unplanned,and/orclusteredBSsdeployments,whicharetypicalofemergingheterogeneouscellularnetworkswith,e.g.,overlaidfemtocellsandpicocells[9],[10].Motivatedbytheseconsiderations,anewabstractionmodeliscurrentlyemergingandgainingpopularity,accordingtowhichthepositionsoftheBSsaremodeledaspointsofaPoissonPointProcess(PPP)andpowerfultoolsfromappliedprobability,suchasstochasticgeometry,areleveragedtodeveloptractableintegralsandclosed–formmathematicalframeworksforimportantperformancemetrics(e.g.,coverageandaveragerate)[15]–[17].
B.StochasticGeometrybasedModelingofHeterogeneousCellularNetworks
Thestochasticgeometrybasedabstractionmodelfortheanalysisofcellularnetworksdatesbackto(atleast)1997
I.INTRODUCTION
T
HEanalyticalperformancemodelingofcellularnetworksisalong–standingopenissue[1].Themathematicalintractabilitymainlyarisesfromthedif cultyofaccuratelymodelingother–cellinterferencebytakingintoaccountthespatialpositionsoftheBaseStations(BSs)andthestochastic
ManuscriptreceivedNovember18,2012;revisedMarch18,2013.TheeditorcoordinatingthereviewofthispaperandapprovingitforpublicationwasM.Tao.
M.DiRenzoiswiththeLaboratoiredesSignauxetSyst`emes,Unit´eMixtedeRecherche8506,CentreNationaldelaRechercheScienti que–´´EcoleSup´erieured’Electricit´e–Universit´eParis–SudXI,91192Gif–sur–YvetteCedex,France(e–mail:marco.direnzo@lss.supelec.fr).
A.GuidottiandG.E.CorazzaarewiththeDepartmentofElectronics,Com-puterScience,andSystems,theUniversityofBologna,VialeRisorgimento2,40136Bologna,Italy(e-mail:{a.guidotti,giovanni.corazza}@unibo.it)mun.Conf.(ICC),Ottawa,Canada,June2012.
ThisworkwassupportedinpartbytheEuropeanCommissionundertheauspicesoftheFP7–PEOPLEMITN–CROSSFIREproject(grant317126)andtheFP7–ICTNoE–NEWCOM#project(grant318306).
DigitalObjectIdenti er10.1109/TCOMM.2013.050813.120883
c2013IEEE0090-6778/13$31.00
DIRENZOetal.:AVERAGERATEOFDOWNLINKHETEROGENEOUSCELLULARNETWORKSOVERGENERALIZEDFADINGCHANNELS...3051
[3],[18].Subsequently,asimilarshotgun–based,i.e.,PPP–based,abstractionmodelwasproposedin[19],anditwasshownthat,comparedwiththetraditionalhexagonalgridmodel,theshotgunapproachprovidesupperperformancebounds.Morerecently,thePPPmodelhasbeenusedfortheanalysisofspatialandopportunisticAlohaprotocols[20],andforthecharacterizationoftheSignal–to–Interference–Ratio(SIR)of(single–tier)cellularnetworks[21].InspiteoftheseinitialandpioneeringattemptsofapplyingthePPPmodelandstochasticgeometrytotheanalysisofcellularnetworks,onlyrecentlytherandom–basedabstractionmodelforthepositionsoftheBSshasreceivedtheattentionitdeserved.Inparticular,itsemergenceandwidespreadadoptionforcellularnetworksanalysisanddesignismostlydueto[22],whereacomprehensiveframeworktocomputecoverageandaveragerateofsingle–tierdeploymentsisprovided.In[22],itisshownthatthePPPmodelisasaccurateasregulargridmodels,butithasthemainadvantageofbeingmoreanalyticallytractable.AcomprehensivestudybasedonrealBSsdeploymentsobtainedfromtheopensourceprojectOpenCellID[23]hasrevealedthatthePPPmodelcanindeedbeusedforaccuratecoverageanalysisinmajorcitiesworldwide.RecentresultsaboutthevalidationofthePPPmodelforrealBSsdeploymentsareavailablein[24],wheredatacollectedfromOfcom,i.e.,theindependentregulatorandcompetitionauthorityintheUK,isused.Fueledbytheseencouragingresults,manyresearchersarecurrentlyusingthePPP–basedabstractionmodeltostudysingle–andmulti–tiercellularnetworks,e.g.,[25]–[47]andreferencestherein.ThePPP–basedapproachisalsowidelyadoptedfornetworkinterferencemodeling,e.g.,[48]–[65].C.AnalyticalComputationoftheAverageRate:State–of–the–ArtandPaperContribution
Inthispaper,wecapitalizeontheemergingPPP–basedabstractionmodelformulti–tiercellularnetworks,andproposeanewmathematicalmethodologytocomputethedownlinkaveragerateovergeneralfadingchannels.Recentpapershavedevelopedframeworkstocomputetheaveragerateforsingle–tierdownlink[22],[39],multi–tierdownlink[26],[43],downlinkmulti–cellcoordination[36],[44],andsingle–tieruplinkcellularnetworks[30].Allthesepapersusethesametwo–stepmethodologicalapproachtocomputetheaveragerate,whichwasoriginallyintroducedin[20]andexploitsthePlancherel–Parsevaltheorem:i) rst,theCoverageProbability(Pcov)iscomputed;andii)then,theaveragerateisobtainedbyintegratingPcovoverthepositiverealaxis[20,Eq.(2.12)].Throughoutthispaper,thismethodologyisdenotedbyPcov–basedapproach.Althoughthistechniqueavoidssystem–levelsimulations,itrequires,forgeneralfadingchannels,thecomputationofafour–foldintegral[22,AppendixC].Forthisreason,manyauthorsoftenlimittheanalysistoRayleighfad-ingchannelsand/ortointerference–limitednetworks,wheresimpli edframeworkscanbeobtained.FurtherdetailsaboutthecomputationalcomplexityofthePcov–basedapproachareavailableinSectionIII-G.
Toovercomethislimitation,weproposeanewanalyticalframeworkwhich,atthesametime,reducesthenumberofintegralstobecomputed,and,similartothePcov–based
approach,is exibleenoughforapplicationtoarbitraryfadingdistributions(includingcorrelatedcompositechannelmodels).Theframeworkleveragestheapplicationofrecentresultsonthecomputationoftheergodiccapacityinthepresenceofinterferenceandnoise[66].ItavoidsthecomputationofPcov,andneedsonlytheMomentGeneratingFunction(MGF)oftheaggregateinterferenceattheprobemobileterminal.Throughoutthispaper,thisframeworkisdenotedbyMGF–basedapproach.Weshowthatitisapplicabletomulti–tiercellularnetworkswithlong–termaveragedmaximumbiased–received–powertierassociation,andthateitherasingleoratwo–foldnumericalintegralneedtobecomputedforarbitraryfadingchannels.
D.PaperOrganization
Theremainderofthispaperisorganizedasfollows.InSectionII,thesystemmodelisdescribed.InSectionIII,theMGF–basedapproachisintroducedforsingle–tiercellularnetworks.InSectionIV,theproposedmethodologyisappliedtomulti–tiercellularnetworkswith exible(biased)tierasso-ciation.InSectionV,extensiveMonteCarlosimulationsareshowntosubstantiatetheproposedmathematicalframeworkforvariousfadingchannelmodelsandcellularnetworksdeployments.Finally,SectionVIconcludesthispaper.II.SYSTEMMODELANDPROBLEMSTATEMENT
Weconsideradownlinkheterogeneouscellularnetworksmodelsimilarto[31],[43],and[46].However,thefollowingdifferenceshold.In[31]and[46],thetierassociationpolicyisbasedontheinstantaneousSignal–to–Interference–plus–Noise–Ratio(SINR).Ontheotherhand,similarto[43],weconsiderabiasedlong–termaveragedtierassociationpolicy,paredwith[31],[43],and[46]theanalyticalmethodologytocomputetheaveragerateisnotbasedonthePcov–basedapproachbutontheMGF–basedapproach.
Notation:E{·}denotestheexpectationoperator.ME{exp( sX)}istheMGFofrandomvariableXX(s)=.fX(·)denotestheProbabilityvariableX.Γ(x)= Density+∞
Function(PDF)ofrandom
0exp( t)tx 1dtisthefunction.erfc(x)=(2/√π) +∞
gamma
xexp ξ2dξisthecom-plementaryGausserrorfunction.Sa,b(·) isthe functionde nedin[67,Sec.7.5.5].Gm,n Lommel(ap,q(·) p
)
(bq)
istheMeijerG–functionde nedin[68,Sec.2.24].Δ(n,x)=[x/n,(x+1)/n,...,,(x+n 1)/n],withnbeingapositiveintegerandxarealnumber.Thei–thentryofΔ(n,x)isde-notedbyΔi(n,x).2F1(·,·,·,·)istheGausshypergeometricfunctionde nedin[69,Ch.15].1F1(·,·,·)isthecon uenthypergeometricfunctionde nedtorialoperator.Γ(z,x)= +∞in[69,Ch.13].(·!)isthefac-xtz
1exp{ xt}dtistheupper–incompletegammafunction.γ(z,x)=0tz 1
exp{ t}dtisthelower–incompletegammafunction.δ(·)istheDiracdeltafunction.Iν(·)isthemodi edBesselfunctionofthe rstkindandorderνde nedin[69,Sec.9.6].H(·)istheHeavisidefunction,i.e.,H(x)=1ifx≥0andH(x)=0ifx<0.pFq(·,·,·)isthegeneralized√hypergeometricfunctionde nedin[70,Ch.IV].j= 1istheimaginaryunit.card{·}denotesthecardinalityofaset.
3052A.HeterogeneousCellularNetworksModel
LetusconsiderthePPP–basedabstractionmodelforthepositionsoftheBSsinabi–dimensionalplane.Then,aheterogeneouscellulardeploymentcanbemodeledasaT–tiernetworkwhereeachtiermodelstheBSsofaparticularclass.EachclassofBSsisdistinguishedbyitsspatialdensity(λtfort=1,2,...,T),transmitpower(Ptfort=1,2,...,T),path–lossexponent(αt>2fort=1,2,...,T),biasingfactor(Bt>0fort=1,2,...,T),andfadingparametersanddistribution.TheBSsofeachPPPareassumedtohavethesametransmitpower,thesamepath–lossexponent,thesamebiasingfactor,andtheirfadingchannelsareindependentandidenticallydistributed(i.i.d.).Theextensiontocorrelatedandidenticallydistributed(c.i.d.)fadingisdiscussedinSectionIII-F.However,formathematicalgenerality,weassumethatthefadingdistributionoftheserving(tagged)BSisdifferentfromthefadingdistributionoftheintra–tierinterferingBSs.TheBSsofeachtierareassumedtobespatiallydistributedaccordingtoahomogeneousPPP(Φtfort=1,2,...,T).TheTPPPsareassumedtobespatiallyindependent.Ouranalysisappliestoatypicalmobileterminal,aspermissibleinanyhomogeneousPPPaccordingtotheSlivnyak–Mecke’stheorem[17,vol.1,Theorem1.4.5].Withoutlossofgen-erality,thetypicalMobileTerminal(MT0)isassumedtobelocatedattheoriginofthebi–dimensionalplane.Theb–thBSofthet–thtierisdenotedbyBSt,b.ThedistancefromBSt,btoMT0isdenotedbydt,b.Thestandardpath–lossfunction
l(dt,b)=d t,bαt
isconsidered.Thepowerchannelgainofthe
BSt,b–to–MT0linkisdenotedbygt,b=|ht,b|2
,whereht,bistherelatedcomplexamplitudechannelgain.Forafaircom-parisonamongfadingchannelswithdifferentdistributions,normalizationconstraintE{g}=E
t,b|ht,b|2
the=Ω=1isassumedforeverybandfort=1,2,...,T.
Theframeworksdevelopedinthepresentpaperareap-plicabletosingle–input–single–outputtransmissionsystems.Inotherwords,BSsandMT0areequippedwithasingletransmitandreceiveantenna,respectively.Thegeneralizationoftheproposedanalyticalmethodologytomoreadvancedtransmissiontechnologiesiscurrentlyunderinvestigation,butitisbeyondthescopeofthepresentpaper.Theinterestedreadercan,however, ndpreliminaryresultstotheanalysisofmulti–antennareceiversanddual–hoprelayingin[71]and[72],respectively.Themainlimitationof[71]and[72]isthatcellassociationisnotconsideredandthatthedistancefromservingBStoprobemobileterminalisassumedtobe xed.Finally,wementionthattheaveragerateiscomputedunderthesameassumptionsasin[22,Sec.IV],i.e.,theinterferenceistreatedasnoiseandthetypicalmobileterminalusesadaptivemodulation/codingsuchthattheShannonbound,fortheoperatinginstantaneousSINR,canbeachieved.B.BiasedLong–TermAveragedTierandBSAssociationWeassumethattheBSsofeachtieroperateinopenaccessmodeforMT0[8].Asaconsequence,MT0isallowedtoaccesstoanytierswithoutanyrestrictions.Inamulti–tiercellularnetworksmodel,bothtierandBSassociationshavetobeproperlyde ned.Similarto[43,Sec.II–A],throughoutthis
IEEETRANSACTIONSONCOMMUNICATIONS,VOL.61,NO.7,JULY2013
paperweconsideralong–termaveragedmaximumbiased–received–powerassociationpolicy.Letdt=min{dt,b}fort=1,2,...,TbethedistancefromMT0tothenearestBSofthet–thtier.LetBStfort=1,2,...,TbetheTnearestBSs.Then,MT0isassociated(tagged)tothetiert de nedasfollows:
t =argmax Pαt
(1)t=1,2,...,T
td t
Btandthetagged(serving)BSisdenotedbyBSt =BS0.
Inotherwords,MT0isconnectedtotheBSthatoffersthehighestaveragereceivedpowertoit.Accordingly,theBS0–to–MT0linkistheusefulsignal,whilealltheotherBSsineverytieractasinterferers.SincethepositionsoftheBSsarerandom,theBS0–to–MT0distanceisarandomvariableaswell[22].
Thebiasingfactor,Bt>0fort=1,2,...,T,modi esthecoveragerangeofeachtierforabetterof oadingstrategy.Forexample,ifBt>1thecoveragerangeofthet–thtierisincreased.Throughoutthispaper,weassume,similarto[43],thatalltheBSsarefully–loaded(i.e.,theirqueuesarefulland,thus,theyhavealwaysdatatotransmit).Theanalysisofheterogeneouscellularnetworkswithpartially–loadedBSsispostponedtofutureresearch,forexampleeitherusingtheconditionallythinningapproachproposedin[35]ortherecentresultsin[45]and[47].
C.ProblemStatement
Themainobjectiveofthispaperistocomputetheaverage(ergodic)rateofaheterogeneouscellularnetwork,whichismodeledasthesuperpositionofTindependentPPPs.Accordingto[22]and[43],theaverageratecanbewrittenasfollows:
R=
TAtRt(2)t=1
where:i)AtistheprobabilitythatMT0isassociatedtothe
t–thtier;andii)RtistheaveragerateofMT0conditionedonitsassociationtothet–thtier.ForthetierassociationpolicyintroducedinSectionII-B,Atisavailablein[43,Lemma1].Ontheotherhand,Rtisde nedasfollows[22,Sec.IV],[43,Eq.(46)]:
+∞
Rt=Rt(ξ)fdt,0(ξ)dξ(3)
where:i)dt,0isthedistanceofMT0fromitsservingBSby
conditioningonMT0beingtaggedtothet–thtier;ii)fdisthePDFoftherandomdistancedt,0(·)t,0,whichisgivenin[43,Lemma3]:
f2πλ dt
2 t,0(ξ)=Aξexp π TλPqBq αqξ2ααqttqq=1
PtBt
(4)
andiii)Rt(ξ)istheaveragerateofMT0conditionedonthisterminalbeingtaggedtothet–thtierandondt,0beingequaltodt,0=ξ.From[22,Sec.IV]and[43,Eq.(14)],Rt(·)can
DIRENZOetal.:AVERAGERATEOFDOWNLINKHETEROGENEOUSCELLULARNETWORKSOVERGENERALIZEDFADINGCHANNELS...3053
t=2πλtR R=
+∞
ξexp π
T q=1
λq
PqBq
PtBt
2 α
q
ξ
2αt
αq
Ptgt,0ξ αt
Eln1+2dξ
σN+Iagg(ξ)
(6)
GI(y)
dyy0
+∞
α1αα y GI(y)= ξ2 1exp{ πλZI(SNRy)ξ}exp yξ2dξ
[1 M0(SNRy)]
+∞
(8)
ZI(SNRy)2ZI(SNRy)0
bewritten
asfollows:
Rt(ξ)=E{ln(1+SINRt(ξ))}
=Eln1+Ptgt,0ξ αt σ2
(5)
TN+I agg(ξ)
Iagg(ξ)=
Pq=1qgq,bd αqb∈Φq,bq{\BSt,0(ξ)}
where:i)σ2
Nisthenoisepower;ii)BSt,0(ξ)istheservingBSatdistancedt,0=ξandgt,0istheBSt,0–to–MT0powerchannelgain;andiii)Iagg(ξ)istheaggregateinterferenceconditionedondt,0=ξ,whichisgeneratedbyallBSsexcepttheservingBS1BSt,0.From(2)–(5),thetoR= Tmaint=1R twithR averageratereduces
tgivenin(6)atthetopofthispage.Theobjectiveofthenextsectionsistointroduce
anewMGF–basedapproachtoef cientlycomputeR
tin(6)forarbitraryfadingchannels.Themaincontributionistoavoidthecomputationalcomplexityofthestate–of–the–artPcov–basedapproach[20],[22],[43].Tothisend,weintroducethesimpli ednotationasfollows,whichoriginatesfromtheassumptionofidenticallydistributedfadingineachtier:i)ft,0(·)andMt,0(·)arePDFandMGFofgt,0in(6),respectively;ii)ft,I(·)andMt,I(·)arePDFandMGFofgt,bin(5),respectively;iii)MIagg(·;ξ)istheMGFofIagg(ξ)in(5);andiv)I Mq,Iagg(·;ξ)q,agg(ξ)= istheMGFof
α
b∈Φq{\BSt,0(ξ)}Pqgq,bdqq,b,i.e.,theper–tieraggregateMGFin(5).
Finally,wementionthattheaverageratein(6)providesanestimateofthemeandatarateoveracellthatisachievablebyatypicalmobileterminal[22,Sec.IV].ThisinterpretationimmediatelyfollowsfromthevalidationprocedureofthePPP–basedabstractionmodelagainstconventionalgrid–basedabstractionmodels,asdiscussedindetailin[22,Sec.V–A].
III.SINGLE–TIERCELLULARNETWORKS
TobetterintroducetheproposedMGF–basedanalyticalmethodologytocomputetheaverageratein(6),westartbyconsideringthesingle–tierreferencescenariowithT=1.Inthiscase,(6)simpli esasfollows:R= 2πλ
+∞
×ξexp πλξ2
Eln1+
Pg0ξ α
σ2N+Iagg(ξ)
dξ(7)
1Throughout
thispaper,theservingBSisdenotedbyBSinequations,andbyBSt,0(ξ)whenused
t,0whenusedinthetext.
withIagg(ξ)= inb∈(7)Φ{\theBSsubscriptξ)}Pgbd α
0(.SinceT=1,easeofnotation,tb
forthatdenotesthetierisdropped.Likewise,thesubscripttisdroppedinf0(·),M0(·),fI(·),andMI(·)aswell.
ByusingtheMGF–basedapproach,anintegralclosed–formexpressionof(7)isgiveninTheoremTheorem1:LetSNR=P σ2
1.(SNR),thentheaveragerate,NbetheSignal–to–Noise–RatioR,ofasingle–tiercellularnetworkovergeneralizedfadingchannelsisgivenin(8)atthetop
ofthispage,where: ZI(y)=M I(y)+2 T+ ∞I(y) TI(y)=Γ1 yk+1M(k) I(y)Γ2 2
1M(k)
α
k=0α+kI(y)=Egkb+1exp{ yg b}
(9)
Proof:SeeAppendixA. Theframeworkin(8)and(9)iscalledMGF–basedap-proachbecauseRcanbedirectlycomputedfromofusefulandinterferencelinks.Infact,M(k)
theMGFs
obtainedM(k)fromthe(kk+1
+1)–thderivativeofI(·)canbeMI(·),i.e.,I(y)=( d/dy)
MI(y)[73,Eq.(1.1.2.9)].Inthesequel,weshowthatM(k)
I(·)canbeexplicitlycomputedinclosed–formformanyfadingchannelmodels.Furthermore,closed–formexpressionsofM0(·)andMI(·)areavailablein[75,Sec.2.2],[76,TablesII–IV],and[77,TablesII–V]paredwiththePcov–basedapproachin,e.g.,[20],[22],and[43],theframeworkin(8)reducesthenumberoffoldintegralstobecomputedfromfourtotwo.
Bycarefullylookingat(9),someimportantconclusionsaboutthesystembehaviorasafunctionoftheBSsdensity,λ,canbedrawn,assummarizedinRemark1.
Remark1:SincetheintegrandfunctionofGI(·)in(8)isalwaysgreaterthanzero,itfollowsthatRisamonotonicallyincreasingfunctionofλ.Furthermore,Risupper–boundedasfollows:
+∞
R≤lim∞R(λ)=R(λ∞)1 M0(z)dz
λ→+=
MI(z)+TI(z)z(10)
Theanalyticalderivationof(10)isavailableinAppendixB.From(10), weobservethat:i)R(λ∞)theSNR=Pσ2
isindependentof
thetransmit–powerN.Thus,forverydenseBSsdeploymentsincreasingdoesnothelpinincreasingtheaveragerate;andii)theexistenceofa niteupper–boundforincreasingλcon rmsthatthedeploymentofmanyBSsisnotsuf cienttoachieveveryhighdataratesbutmoreadvancedinterferencemanagementtechniquesseemtobeneeded.
3054IEEETRANSACTIONSONCOMMUNICATIONS,VOL.61,NO.7,JULY2013
2(a)1 π(πλ)2ZI(SNRy)(πλ)ZI(SNRy) √GI(y)|α=4=4yexperfc 4y2y 3(SNRy)(b)1(πλ)3ZI(πλ)ZI(SNRy)
S0,1/32GI(y)|α=6=427y27y
να+1 √αNα2 (c)DΔ(α, ν) αDαNαNyNαy 1αD,αN GI(y)|α/2=α/α=Z(SNRGααDαN αN+αDαNαN,αDy) 2(πλ)να+1Zνα+2(SNRy)NDα(πλ)Z(SNRy)I 1Δ(αD,0)DII2(2π)
Intheremainderofthissection,weshowthatthetwo–foldintegralin(8)canoftenbereducedtoasingleintegral,sinceclosed–formexpressionsofGI(·)existformanypath–lossexponentsα.Also,weshowthatthein niteseriesin(9)canbecalculatedforcommonfadingdistributionsoftheinterferencechannels.
LetusconsiderthecomputationofGI(·)asafunctionofthepath–lossexponentα.ThemainresultissummarizedinCorollary1.
Corollary1:Letα=4,α=6,andα/2=αN/αDwithαNandαDbeingtwopositiveintegernumbers,thenGI(·)in(8)hasclosed–formexpressionshownin(11)atthetopofthispage,whereνα=α/2 1.
Proof:Equation(11)followsfromsomenotableintegrals.Morespeci cally:(a)from[73,Eq.(2.2.1.8)];(b)from[73,Eq.(2.2.1.13),Eq.(2.2.1.14)];(c)from[73,Eq.(2.2.1.22)].Thisconcludestheproof. Sincethecasestudyα/2=αN/αDencompassesmanyscenariosofpracticalinterest,whenreferringtoCorollary1,wewillimplicitlyassumetheclosed–formexpressionofGI(·)usingtheMeijerG–function.
Thesingle–integralexpressioninTheorem1canbeef -cientlycomputedbyusingtheGauss–Chebyshevquadraturerule,assummarizedinRemark2asfollows.
Remark2:ByusingGauss–Chebyshevintegration,RinTheorem1canbecomputedas[69,Eq.(25.4.39)]:
N GCQ
R≈
wn
[1 M0(SNRsn)]GI(sn)(12)
n=1
snwherewnandsnforn=1,2,...,NGCQareweightsand
abscissas,respectively,ofthequadraturerule[74,Eq.(22)andEq. (23)]:
π2sin 2n 1
w=2NGCQπn 4N GCQcos2π 4cos22Nn 1πGCQπ+4(13)
sπ2n n=tan
4cos 12Nπ+πGCQ4
putationofTI(·)in(9)forGeneralFadingChannelsTheorem1andCorollary1needthecomputationofTI(·),
whichdependsonthefadingdistributionoftheinterferencechannels.AsmentionedinTheorem1,TI(·)can,inprinciple,becomputedfromthederivativesofMI(·).However,closed–formexpressionscanbeobtainedformanyfadingchannelmodelsbyalsoavoidingthecomputationofthein niteseries
(11)
in(9).SomekeycasestudiesareanalyzedinPropositions1–4
forNakagami–m,Log–Normal,compositeNakagami–mandLog–Normal,andcompositeRiceandLog–Normalfading,respectively.
Proposition1:LettheinterferencelinksexperienceNakagami–mfading.Accordingly,gbfollowsaGammadistributionwithparameters(m,Ω),whichwedenoteasgb~Gamma(m,Ω)[75,Sec.2.2.1.4].Then,TI(·)in(9)hasclosed–formexpressionasfollows:
T=m
m m 2
1 m I(y)1 yy+ (m+1) ΩαΩ
(14)×2
m 1 2F1m+1,1,2 α,yy+
ΩProof:SeeAppendixC.
Proposition2:LettheinterferencelinksexperienceLog–Normalfading.Accordingly,gbfollowsbutionwith~LogN parameters(indB) μ,σ2 aLog–Normaldistri-,whichwedenoteasgbμ,σ2
[75,Sec.2.2.2].Then,TI(·)in(9)hasclosed–formexpressionasfollows:
T2 11N GHQ
√I(y)≈1 y√w n10(2σ s
n+μ)/10×exp απ√
n=1 10(2σs n+μ)/10y
(15)×2√1F11,2 2σs n
+μ)/10α,10(
ywherew nands nforn=1,2,...,NGHQareweightsandabscissas,respectively,oftheGauss–Hermitequadraturerule[69,Eq.(25.4.46)].
Proof:SeeAppendixD. Proposition3:Lettheinterferencelinksexperiencecom-positeNakagami–mandLog–Normalfading.Accordingly,gbfollowsaGammadistributionbyconditioningonitsmeanpower,which,inturn,followsaLog–Normaldistribution.denotethisdistributionasg
We b~Gamma/LogNm,μ,σ2[75,Sec.2.2.3.1].Then,TI(·)in(9)hasclosed–formexpres-sionasfollows:
T(y)≈mm+11 2
1
1Iαy√π
NGHQ
×
w nω mn(y+mω n)
(m+1)
(16)
n=1
×2 2
2F1m+1,1,α
,y(y+mω
n) 1withω n=10
(√
2σs n+μ)/10
.
DIRENZOetal.:AVERAGERATEOFDOWNLINKHETEROGENEOUSCELLULARNETWORKSOVERGENERALIZEDFADINGCHANNELS...3055
1NGHQ
21 2(n) y√w nω n[y+(1+K)ω n]TI(y) TI(y)≈(1+K)exp{ K}1 απn=1
l+∞ K(1+K)l+12(n) 1 ,y[y+(1+K)ω n] 2F1l+2,1,2 TI(y)=(17)
l=0
(l!)1+K+(y/ ωn)Proof:SeeAppendixE.
Proposition4:Lettheinterferencelinksexperiencecom-positeRiceandLog–Normalfading.Accordingly,gbfol-lowsanon–centralChi–Squaredistributionbycondition-ingonitsmeanpower,which,inturn,followsaLog–Normaldistribution.2thisdistributionasgb~/LogN Wedenote
ChiSquareK,μ,σ [78,Eq.(6)],withKbeingtheRicefactor.IfK=0,TI(·)in(9)hasclosed–formexpressiongivenin(17)atthetopofthispage.IfK=0,thecompositeRiceandLog–NormalfadingreducestothecompositeNakagami–mandLog–Normalfadingwithm=1(Suzukidistribution[75,Sec.2.2.3.2])andProposition3canbeused.
Proof:SeeAppendixF. From(17),weobservethat,unliketheotherfadingdistribu-tionsinPropositions1–3,forcompositeRiceandLog–Normalfadingwestillneedtocalculateanin niteseriestocomputeTI(·)in(9).ThecomputationoftheseriescanbeavoidedassuggestedinRemark3asfollows.
Remark3:UsingthemappingbetweenthemparameterofaNakagami–mdistributionandtheKfactorofaRicedistribution[75,Eq.withm=(1+K)2
(2.26)],(17)canbeapproximatedby(16)
(1+2K).
Finally,wewouldliketoemphasizethatthefadingdis-tributionsstudiedinPropositions1–4arejustsomeselectedexamples,whichhavebeenchosenbecausetheyareoftenusedintheoreticalanalysis.However,ouranalyticalmethodologytocomputeTI(·)in(9)isapplicabletoarbitraryfadingdistributionsasdescribedinRemark4.Remark4:From(9),weobserveTI(·computation +∞ofM(k) that)needsI(y)=Egkb
+1
exp{ yg theb}=xk+1
exp{ yx}fgb(x)dx.WiththeexceptionoftheLog–Normal0
distribution,whichisstudiedinProposition2,from[75,Sec.2.2],[76,TablesII–IV],and[77,TablesII–V]wenotethattwogeneralsituationscanarise:
1)f (x;y)=exp{ yx}fg(x)=Aexp{ B(y)x},whereAisaconstantb
Inotherwords,f
andB(·)isafunctionofy.
(·;·)isstillanexponentialfunctioninx.Inthiscase,closed–formexpressionsofTI(·)canbeobtainedbyusingthesamedevelopmentasinProposition1forNakagami– 2)f)=CxυGm,n mfading.(a)
gb(xp,qDx p(bυareconstants.Inotherwords,q),whereC,D,and
thedistributionofthepowerchannelgaingbcanbecastintermsofaG–function.Accordingly,M(k)
Meijer
closed–formasanotherMeijerI(·)canbecomputedinG–functionbyusingtheMellin–Barnestheoremandthenotableintegralin[68,Eq.(2.24.3.1)].Ingeneral,inthiscaseitisnotpossibletoavoidthecomputationofthein niteseriesin(9).
α
B.Ef cientComputationoftheMeijerG–Functionin(11)Thecomputationoftheaverageratein(7)byusingTheorem1andCorollary1needs,ingeneral,thecalculationoftheMeijerG–functionin(11).Thisspecialfunctioniscommonlyusedinwirelesscommunicationstheory,e.g.,[76],[77],[79]–[81],anditisavailableinseveralstandardmathematicalsoftwarepackages.Thus,ingeneral,itscomputationcanbeperformedveryef ciently.However,in(8)theMeijerG–functionmustbecalculatedforallpositiverealvalues,anditisknownthatthenumericalcomplexityandthenumericalaccuracyofcommonalgorithmstocomputetheMeijerG–functionincreasesanddecreases,respectively,forsmallvaluesofitsargument,i.e.,fory→0in(11),see,e.g.,[82]and[83].Inordertoprovideaframeworkthatisgeneralandaccuratebutalsosimpleandstabletocompute,Corollary2providesanumericallyef cientandstablesolutiontocomputeGI(·)in(11),whichexploitsanasymptoticexpansionoftheMeijerG–functionforlargevaluesofitsargument.
Corollary2:Letα/2=αN/αDwithαNandαDbeingtwopositiveintegernumbers,thenGI(·)in(8)canbeef -cientlycomputedasshownin(18)atthetopofthenextpage,whereεisasmallpositiveconstant.Proof:SeeAppendixG. TherationalebehindCorollary2istoavoidthecalculationoftheMeijerG–functionforsmallvaluesofitsargument,andtoreplacetheMeijerG–functionwithanaccurate,simpletocompute,andnumericallystableexpansionformula.Inotherwords,GI(·)iscomputedbyusingU(·),i.e.,theexactformulainCorollary2,aslongastheargumentoftheMeijerG–functionisnosmallerthanε.Ontheotherhand,whenthisoccurstheasymptoticalexpansionU(asymptote)(·)isused,whichissimpleandfasttobecomputed.This“adaptive”approachallowsustokeepthedesiredaccuracywithoutincreasingthenumericalcomplexityandwithoutincurringinnumericalinstabilities.Thekeyparameterfortheef cientcomputationofGI(·)in(18)isε,whichdependsonthemathematicalsoftwarepackagebeingusedtocomputetheMeijerG–function.Inpractice,εisthesmallestvalueoftheargumentoftheMeijerG–functionforwhichitcanbeef cientlycomputed.Ifε=0,Corollary2reducestoCorollary1.
Finally,weclosethissectionwithRemark5andRemark6.
Remark5:From(18),wenotethataverycomputation-allyef cientframework,whichisaccurateforsuf cientlysmallvaluesofε,canbeobtainedbysimplyneglectingU(asymptote)(·),asshownin(19)atthetopofthenextpage .
Remark6:TheintegralinGI(·)belongstotheso–called“Weibull–type”integrals,sinceitcoincideswiththeintegraltobecomputedtoobtaintheMGFoftheWeibulldistribution
3056IEEETRANSACTIONSONCOMMUNICATIONS,VOL.61,NO.7,JULY2013
να+1√α2ααNNyαD yDαN1α GI(y)≈ZI(SNRy) 2(πλ)να+1Zνα+2(SNRy)ΥHααD(πλ)αNZαN(SNRy) αN+αD 1DI I2(2π) (asymptote) Υ(z)=U(z)H (z)[1 H(z ε)] (z ε)+U H Δ(αN, να)D,αN U(z)=GαzαN,αD Δ(αD,0) ααα DDN (asymptote)Δq(αD,0) U(z)=limU(z)=Γ(Δr(αD,0) Δq(αD,0))Γ(1+Δq(αD,0) Δp(αN, να))z z→0+q=1 r=1p=1
r=q
(18)
D
ααD
αy1D,αN
GI(y)≈GααN+αDαN,αDν+1ν+2αα 1ZI(SNRy)2(πλ)ZI(SNRy)(2π)2
NαD
ααNy×H εαNαND
αα(πλ)Z(SNRy)DI
√να+1
αDαN2
NαD ααyΔ(α, ν)NαN αNαN
(πλ)ZI(SNRy) Δ(αD,0)
(19)
[84,Eq.(2)]and[85,Eq.(2)].SimilartoCorollary1,itcanbecomputedintermsofMeijerG–function[84]and[86]orintermsofgeneralizedhypergeometricfunction[85].Fur-thermore,variousclosed–formapproximationsareavailableintheliterature,suchas[87]–[90]andreferencestherein.TheinterestedreadercanconsultthesepapersandthereferencesthereintoidentifyalternativewaysofcomputingGI(·)thatavoidspecialfunctions,suchastheMeijerG–function.Ontheotherhand,tothebestoftheauthorsknowledge,theapproachproposedinCorollary2isnotavailableintheliterature. .C.Interference–LimitedScenario
Inmanypracticalsituationsofinterest,thebackgroundnoiseisoftennegligiblecomparedtotheaggregateinterfer-ence[22]and[43].Inthiscase,Theorem1simpli esasshowninCorollary3.
2
=0,thentheaveragerate,R,in(7)Corollary3:LetσN
simpli esasfollows:
+∞
1 M0(z)dz(SNR∞)
(20)R|σ2=0=R=
NMI(z)+TI(z)z0Proof:Byusing ofvariableSNRy=zin(8), thechange 1
itfollowsthatGISNRz=1/ZI(z)sinceSNR→∞if2
=0.Thisconcludestheproof. σN
From(20),interestingconsiderationsabouttheaverageratecanbemade,assummarizedinRemark7.
Remark7:Similarto[22,Eq.(8)],(20)con rmsthatforinterference–limitedcellularnetworkstheaveragerateisindependentofthedensityofBSsaswellasofthetransmit–power.Thus,increasingeithertheBSsdensityorthetransmit–powerarenoteffectivesolutionstoincreasetheaveragerate.Moreadvancedinterferencemanagementmechanismsareneeded.Furthermore,ourframeworkshowsthatthesetwotrendsholdregardlessofthefadingchannelmodel,andthattheyseemtobemainlyrelatedtothePPPspatialmodeloftheBSs.Finally,bycomparing(20)with(10)weobservethatR≤R(λ∞)=R(SNR∞).ThisimpliesthattheaveragerateofacellularsystemwithunboundedBSsdensityand nite
transmit–poweristhesameastheaveragerateofacellularsystemwithunboundedtransmit–powerand niteBSsdensity.
D.High–SNRScenario
InCorollary3,wehavestudiedtheaveragerateintheabsenceofbackgroundnoise.InCorollary4,westudythescenariowithsmallbutnon–zeronoise,i.e.,thehigh–SNRsetup.
Corollary4:AsafunctionoftheSNR,theaveragerate,R,in(7)isupper–andlower–boundedasfollows:
α 1 α/2(SNR 1)(SNR∞)
=R (πλ)Γ1+R
2SNR +∞
1 M0(z)(21)×dz1+(α/2)
0[MI(z)+TI(z)]≤R(SNR)≤R(SNR∞)Proof:Equation(21)immediatelyfollows,withthesameanalyticalsteps,from(39)inAppendixB,andbyusingtheidentity(α/2)Γ(α/2)=Γ(1+α/2)in(40).Thisconcludestheproof. From(21),interestingconsiderationsabouttheaverageratecanbemade,assummarizedinRemark8.
Remark8:Bydirectinspectionof(21),weobservethat:i)thelower–bound,R(SNR 1),isthehigh–SNRapproximationoftheaverageratesincelimSNR→+∞R(SNR 1)=R(SNR∞);ii)theaveragerateincreaseswiththeSNRbyapproachingtheupper–boundR(SNR∞)withlinearconvergencerate;iii)theaveragerateincreaseswiththeBSsdensitybyapproachingtheupper–boundR(SNR∞)=R(λ∞)with(α/2)–ordercon-vergencerate;andiv)thelargerthepath–lossexponent,α,thefastertheconvergencespeedtoR(SNR∞)=R(λ∞)asafunctionofλ. E.FrequencyReuse
Inthissection,westudytheimpactoffrequencyreuseontheaveragerate.Inparticular,weconsideracellularnetwork
DIRENZOetal.:AVERAGERATEOFDOWNLINKHETEROGENEOUSCELLULARNETWORKSOVERGENERALIZEDFADINGCHANNELS...3057
withFB≥1frequencybands.ThesetupwithFB=1correspondstotheuniversalfrequencyreusecasestudiedinTheorem1.Also,similarto[22],weassumethateachinterferingBSpicksatrandomoneoftheFBfrequencybandswhentransmitting.TheaveragerateisgiveninCorollary5.Corollary5:Theaveragerate,R(FB),ofasingle–tiercellularnetworkwithFB≥1availablefrequencybandsandrandomfrequencyreusecoincideswithRin(20),and(21)byreplacingZI(·)in(9)withZ(F(8),)
(10),
IB(z)=(FB 1)+ MI(z)+TI(z),andλ(whenavailable)withλ(FB)=λFB.Proof:TheprooffollowsbytakingintoaccountthatforFB≥1:i)theaverageratein(5)becomesR(FB)(ξ)=(1/FB)E{ln(1+SINR(ξ))};ii)onaverage,theinterferenceoriginatesfromaPPPwithBSsdensityequaltoλ(FB)=λ/FB;andiii)thetierandBSassociationPDFisindependentofFB[22,Sec.VI–A].Accordingly,theproofproceedsalongthesamelinesasTheorem1.Thisconcludestheproof. FromCorollary5,interestingconsiderationsabouttheav-erageratecanbemade,asgiveninRemark9.
Remark9:BydirectinspectionofR(FB)inCorollary5,itfollowsthattheaveragerateismaximizedforFB=1,i.e.,foruniversalfrequencyreuse.Also,fordenselydeployedBSs(10)andforinterference–limitedcellularnetworks(20),theaverageratelinearlydecreaseswiththenumberofavailablefrequencybandsFB.Thesetrendsareinagreementwith[22,Sec.VI–B]andholdforgeneralfadingchannelmodels. F.CorrelatedLog–NormalShadowing
TheMGF–basedapproachintroducedsofarcanbeappliedtoawidevarietyofchannelconditions,notablycompositefadingchannelsthataccountforLog–Normalshadowing(seeProposition3andProposition4).TheaveragerateinTheorem1isapplicable,however,onlytoi.i.d.fast–fadingandLog–Normalshadowing.Itiswell–known,ontheotherhand,thatshadowingcorrelationseverelyaffectstheperformanceofcellularnetworks[93]–[97].Inthissection,weprovideasimplemethodologytoextendtheframeworkinTheorem1toc.i.d.fadingchannels.Thereasonofrestrictingtheanal-ysistoequi–correlatedfadingoriginatesfromthestochasticgeometryapproachforother–cellinterferencemodelingusedinthepresentpaper,whichisapplicableonlytoidenticallydistributedfading.Themethodologyusedtoobtainequi–correlatedLog–NormalrandomvariablesexploitstheOwenandSteckmethodforthegenerationofequi–correlatedmul-tivariateNormaldistributions[98].
Asanillustrativeexample,letthegenericdownlinkchan-nelexperiencecompositeNakagami–mfast–fadingandLog–Normalshadowing,asdescribedinProposition3.Thepro-posedmethodologyisreadilyapplicabletootherfadingchannelmodelswithcorrelatedLog–Normalshadowing,aswellastomulti–tiercellularnetworksbyapplyingthesamemethodologytotheframeworkdiscussedinSectionIV.Morespeci cally,weassumei.i.d.fast–fadingandc.i.d.shadowing.Accordingly,card{Φ}channelpowergainsgbforb∈Φwithcorrelationcoef cientρandparameters(m,μ,σ2)canbeobtainedasfollows[98]:
Step1:Generatecard{Φ}equi–correlatedvariableswhereS
¯asXb=σ√ρS¯+σ√
Normalrandom
1 ρSb+μforb∈Φ,
andSbforb∈Φareasetofi.i.d.Normalrandomvariableswithzeromeanandunitvariance.Thecard{Φ}randomvariablesXbhavemeanμandvarianceσ2,forb∈Φ,regardlessofthecorrelationcoef cientρ.
Step2:Convertthesetofcard{Φ}equi–correlatedNor-malrandomvariablesintoasetofcard{Φ}equi–correlatedLog–NormalrandomvariablesasYb=10Xb/10forb∈Φ.
Step3:Generatecard{Φ}independentGammarandom
variablesgbwithfadingseveritymandmeanvalueYbforb∈Φ.
-positeNakagami–mandLog–Normalfading,itfollowsthatthecard{Φ}randomvariablesing upontherandomvariable¯gbare,bycondition-,i.i.d.withm,μ+σ√ρS,¯σ2
(1 ρ) Sparameters.Accordingly,weproposethefol-lowingapproachtocomputethedownlinkaveragerateofcellularnetworks:
Step1:TheframeworkinTheorem1isappliedditioningupontherandomvariableS¯bycon-andbysub-stitutingμ→μ+σ√ρS¯
andσ→σ√resultingaveragerateisdenotedbyR 1S
¯ ρ.The
.Step2:TheconditioninguponthestandardNormalrandom
variableS¯isremovedbyaveragingoveritsPDFf¯
√ S(x)=12πexp x2 2
.Informulas,thedownlinkaveragerateoverc.i.d.fadingchannelscanbecomputedasfollows:
+∞NR=R(x)f(a)¯(x)dx1
GHQ
w √ ∞S≈√
πηR2 sηη=1
(22)
where(a)isobtainedbyapplyingGauss–Hermitequadratures,andR(x)istheaveragerateinTheoremetersm(x)=m,μ(x)=μ+σ√
1withfadingρx,andσ(x)=σ√param-1 ρ.Insummary,therationalebehindtheproposedapproachtodealwithshadowingcorrelationconsistsin:i) rst,generatingasetofcorrelatedLog–Normalrandomvariablesthatareconditionallyindependentand,thus,applyingtheframeworkforindependentshadowing;andii)then,removingthecon-ditioningviaasinglenumericalintegration.Accordingly,shadowingcorrelationcanbetakenintoaccountwithonlyasingleextranumericalintegral,whichcanbeef cientlycomputedusingGauss–Hermitequadraturesasshownin(22).G.Pcov–vs.MGF–basedApproach:AComparisonInSectionI-C,wehavestatedthatbothPcov–andMGF–basedapproachescanbeappliedtogeneralfadingdistribu-tions.However,Pcov–andMGF–basedapproachesneed,ingeneral,thecomputationofafour–andatwo–foldnumericalintegral,respectively.Inbothcases,theintegralsmayinvolvethecomputationofspecialfunctions,which,however,areef cientlyimplementedincommerciallyavailablesoftwarepackages.Duetothereductionofthenumberoffoldintegralstobecomputed,theMGF–basedapproachisexpectedtobemorecomputationallyef cient.Theaimofthissectionis
3058IEEETRANSACTIONSONCOMMUNICATIONS,VOL.61,NO.7,JULY2013
+∞ +∞
(a) 2¯ =RT1(r,t)drdtrexp πλr2πλ 00 +∞ t 1 (b) 12 α¯1(r,t)=¯2(r,s)dsM0 2πre 1Texp 2πσNjs(2πjs)js 1T
∞ +∞ (c) 2/α ¯2(r,s)=expπλr2 2πλα 1(2πjs) Tx2/αΓ 2/α,2πjsr αx Γ( 2/α)fI(x)dx
(23)
tobettercomparestrengths,weaknesses,andcomputational
complexityofthesetwoapproaches.
Tobetterconductthiscomparison,wesummarizein(23),shownatthetopofthispage,thefour–foldintegralexpressionoftheaverageratethatisobtainedfromthePcov–basedapproach.Morespeci cally,(23)isobtainedfrom[22]asfollows:(a)originatesfrom[22,AppendixC];(b)originatesfrom[22,AppendixB];and(c)originatesfrom[22,Theorem4,Eq.(4)].Forconsistencyandeaseofcomparison,thesamenotationasfortheMGF–basedapproachisused.
BycomparingtheMGF–basedapproachin(8)withthePcov–basedapproachin(23)thefollowingcommentscanbemade:
Bothapproachesmayneedthecomputationofsomespecialfunctions.Morespeci cally,theMGF–basedapproachinvolvesthecomputationofhypergeometricfunctionsinTI(·),andthePcov–basedapproachinvolvestheT
¯computationoftheincompleteGammafunctionin2(·,·). BothapproachesmayneedtouseGauss–Hermitequadra-turestocomputef0(·),M0(·),fI(·),andMI(·)forcompositechannelmodels.ThisneedoriginatesfromtheanalyticalintractabilityofLog–NormalshadowinganditisindependentofeitherthePcov–ortheMGF–basedapproachbeingused.
ByusingCorollary1,thetwo–foldintegralin(8)maybereducedtoasingle–integralforsomepath–lossex-ponents.Likewise,byusingtheMellin–Barnestheoremin[68,Eq.(2.24.2.1)]andtheMeijerG–functionrep-resentationoftheupper–incompleteGammafunction[68,Ea.(8.4.16.2)],aclosed–formexpressionofT
¯in
2(·,·)in(23)maybeobtained.Asaconsequence,theMGF–basedapproachreducesthenumberoffoldintegralstobecomputedandavoidsthecomputationofcomplexintegrals.
Ininterference–limitedscenarios,theMGF–basedap-proachinCorollary3offersasigni cantreductionofthecomputationalcomplexityandtheaverageratecanbecalculatedfromthesimplesingleintegralin(20).Ontheotherhand,thecomputationalcomplexityofthePcov–basedapproachisnotsigni cantlyaffectedinthisexp scenario.In 2πσ2 fact,theNjs=1inT
¯onlysimpli cationin(23)is1(·,·),whichdoesnotleadtofurtherreductionofthenumberoffoldintegralstobecomputed.
ThedesiredformoftheaveragerateofferedbytheMGF–basedapproachleadstosimpleandintuitiveun-derstandingoftheperformanceofcellularnetworksforavarietyofspecialoperatingscenarios,suchasdensecellularnetworksdeployments(Remark1),interference–
dominatedenvironments(Remark7andRemark8),frequencyreusestrategies(Remark9).Ontheotherhand,littleinsightcanbegainedfrom(23)forgeneralfadingdistributions.However,(23)canbesigni cantlysimpli edforRayleighfadingchannelsandinterestingdesignguidelinescanbeinferredfromit[22].
Theconsiderationsaboveoriginatefromthedirectinspec-tionof(8)and(23),andprovideaqualitativecomparisonofthereductionofcomputationalcomplexitythatcanbeexpectedbyusingtheMGF–insteadofthePcov–basedapproach.TobetterunderstandtheadvantagesoftheMGF–basedapproach,wehavealsoconductedsomenumericaltestswiththegoalofprovidingamorequantitativeassessmentofthecomputationalcomplexity.Theconventionalapproachthatisoftenusedtoconductthesetestsittoconsideracasestudyforwhich,withfurtheranalyticalmanipulations,theintegralexpressionsin(8)and(23)canbesimpli edorevencomputedinclosed–form,andtocomparetheiraccuracyandcomputa-tionaltimewithoutapplyinganymathematicalmanipulations.Followingthislineofthought,wehaveconsideredRayleighfadingasabenchmarkandhaveimplementedinMathematicatheformulasin(8)and(23)astheyappearinthepresentpaper.Infact,simpleclosed–formexpressionsforRayleighfadingareavailablein[22].AsfarastheMGF–basedapproachisconcerned,theouterintegralin(8)iscomputedusing(12)withNGCQ=2000.ThehighvalueofNGCQischosenasaworstcasesetupfortheMGF–basedapproach.Variouscom-binationsofpath–lossexponents,={2.05,2.2,2.5,anddensitiesofBSs,λ= 10 α6,10 4,10 2,10
1
3,4,5},,havebeenconsidered.Thechosenpath–lossexponentscovertypicalpropagationenvironmentsforcellularapplications[99,Table2.2],[100,Ch.2,Sec.5],andthechosendensitiesofBSscoversparse,normal,anddensecellulardeployments[22],[42].Thetestshavebeenexecutedinalaptopcomputer.Inalltheanalyzedscenarios,theMGF–basedapproachin(8)hasbeenabletoprovideaccurateestimatesoftheaveragerateinlessthan ve/sixsecondsforeachSNRpointtobecomputed.Ontheotherhand,thePcov–basedapproachin(23)hasnotbeenabletoprovideanynumericalestimatesafter veminutesi.e.,σ2
ofcomputation.Ininterference–limitedscenarios,
=0,thecomputationalbasedN
complexityoftheMGF–approachisfurtherreduced,whilethecomputationalcomplexityofthePcov–basedapproachisnotaffected.Theseoutcomescon rmtheadvantagesoftheproposedMGF–basedapproachforanalysisanddesignofcellularnetworks.IV.MULTI–TIERCELLULARNETWORKS
Inthissection,weextendtheanalyticalframeworktogenericmulti–tiercellularnetworks.Theanalyticaldevelop-mentis,inmanyways,similartoSectionIII.Thus,onlythe
DIRENZOetal.:AVERAGERATEOFDOWNLINKHETEROGENEOUSCELLULARNETWORKSOVERGENERALIZEDFADINGCHANNELS...3059
+∞
(t)(y) G I t=2πλt Rdy[1 M(SNRy)]t,0t y0
+∞T αt (t)(y)= (t,q)(y)ξ2αqexp{ yξαt}dξ GZξexp πλ qII
q=1
(24)
t= R
(t)(y)G
dy[1 Mt,0(SNRty)]Iy0
+∞ αα αy1(t)(t) 1 22 GZ (y)=ξexp πλ(y)ξexp yξdξtI I(t)(t)+∞
(27)
Z I(y)2Z I(y)0
mostimportantanalyticaldetailsarereportedinwhatfollows.
Thedepartingpointis(6)andthemainresultissummarizedinTheorem2.
Theorem2: tfort=1,2,...,Tin(6).LetSNRt=P Lettσ2
RNbetheexpressionofR
SNRofthet–thtier,anexplicitclosed–form
tforarbitraryfadingchannelsisgivenin(24)atthetopofthispage,where:
Z (t,q) 2/αqPqBq
1
I
(y)=PqBqPtBMq,ISNRqy t 2/αq P tB t
+PqBqPqB1
PBtTq,IqPSNRtBt
qy
t(25)
T(y)=Γ1
2
q,Iαq
+× ∞yk+1M(k)
2 1(26)q,I(y)Γ2 k=0
α+k
q
andM(k)E g
q,I(s)=kq,b+1
exp{ sgq,b}.
Proof:TheprooffollowsbyusingthesamestepsasinAppendixAandbytakingintoaccountthat,thankstothespatialandchannelindependenceofthePPPs,theMGFoftheaggregate Tinterferenceforthegenerict–thtierisMIagg(s;ξ)=q=1Mq,Iagg(s;ξq)whereMq,Iagg(·;ξq)isgivenin(36)andcanbecomputedinclosed–formfromλq,
Mq,I(·),Tq,I(·),andξq=(Pq/Pt)1/αq(Bq/Bt)1/α
qξαt/αq[43,Eq.(42)].Thisconcludestheproof. Theorem2providesaverygeneralexpressionfortheaveragerateofmulti–tiercellularnetworksthat,ingeneral,needsthecomputationofatwo–foldnumericalintegralbutisapplicabletotiershavingdifferentpath–lossexponentsandfadingdistributions.Furthermore,closed–formexpressionsforTq,I(·)in(26)canbeobtainedfromPropositions1–4,similartothesingle–tiercase.TheextensiontocorrelatedLog–NormalshadowingfollowsimmediatelyfromSectionIII-F.Eventhoughgeneral,Theorem2providesaframeworkthatislessanalyticallytractablethanTheorem1andCorollary1.Asimplerandmoreinsightfulanalyticalframeworkcanbeobtainedbyassumingthatallthetiershavethesamepath–lossexponent,i.e.,αt=αfort=1,2,...,Twhilestillkeepingtheassumptionthattheper–tierfadingdistributionisdifferent.TherelatedframeworkisgiveninCorollary6.
Corollary6:Letαt=αfort=1,2,...,T,thenR
tin(6)canbeexplicitlycomputedasshownin(27)atthetopofthis page,where: Z (t)(y)= T λq (t,q) IZI(y)
q=1λt 2/α P qB 1 Z (t,q)I(y)=PqBq PtBtMq,Iq
PSNRtBtqy +PqBq 2/α 1 PTPq,IqBqSNRqyt
Bt
Pt
B
t
(28)
Proof:Theprooffollowsdirectlyfrom(24)andfromsomealgebraicmanipulationssimilartoAppendixA.Thisconcludestheproof. FromCorollary6,thefollowingimportantremarkcanbemade.
Remark10:BycomparingCorollary6andCorollary1,weobservethatthetwoformulashavethesamestructure.speci cally,R
More
tin(27)canbeobtainedfromRin(8)bysimplyreplacingZI(·)withZ (t)(·).Furthermore,Theorem1reducestoCorollary6,asexpected,I
forT=1. Remark10allowsustoeasilygeneralizemanyimportantresultsobtainedforthesingle–tiersetuptothemulti–tiercase.Inparticular,Corollary7generalizesCorollary5formulti–tiercellularnetworkswithrandomfrequencyreuse;Corollary8generalizesRemark1byinvestigatingtheimpactofdenseBSsdeployments;andCorollary9generalizesCorollary3andCorollary4bystudyinginterference–limitedmulti–tiercellularsystemsandhigh–SNRoperatingconditions.
Corollary7:Theaveragerateofthet–thtiercellularnetworkwithαt=αandwithF(tiert)
ofamulti–
frequencybandsandrandomfrequencyreuseB≥1availableforevery1,2,...,Tcanbeobtainedfrom(27)byreplacingZ tier(t,q)t=
(·)in(28)with:
I
2/Z (t,q)PqBqα (q) I(y)= PFtBt
B 1 +PqBq 2/αPqBq 1
P tBtMq,ISNRqy
PtBt
+PqBq 2/α PqB 1
PtBtTq,IqPSNRtBt
qy
(29)
3060IEEETRANSACTIONSONCOMMUNICATIONS,VOL.61,NO.7,JULY2013
t≤R
=
λ→+∞
+∞0
(λ∞) t(λ)=RlimRt
T q=1
(t)κqFB(q)κtFB
PqPt
1 Mt,0(z)
2/α
BqPqBq 1Pq(q)
FB 1+Mq,ISNRqz+Tq,I
BPBP
t
t
t
Bq
tBt
1
SNRqz
dzz
(30)
(SNR∞) (SNR 1)≈RRtt
×
0+∞
π
λtFB
(t)
α/2
α 1
Γ1+
2SNRt
Bq2/α(q)
FB 1+Mq,I
B
t
T
q=1
(t)
κqFB(q)κtFB
PqPt
1 Mt,0(z)
PqBq
PtBt
1
SNRqz
+Tq,I
PqBqPtBt
1
1+(α/2)
SNRqz
dz
(31)
fort,q=1,2,...,T,andλtwithλt=λt/FBfort=1,2,...,T.
Proof:ItfollowsfromCorollary5andRemark10.Thisconcludestheproof. Corollary8:Letusconsideramulti–tiercellularnetwork
(t)
withαt=αandwithFB≥1availablefrequencybandsandrandomfrequencyreuseforeverytiert=1,2,...,T.Also,letλt=κtλandSNRt=χtSNRfort=1,2,...,T.Ifλ→+∞,thentheaveragerateinCorollary7isupper–boundedasshownin(30)atthetopofthispage.
Proof:TheprooffollowsimmediatelyfromRemark1andRemark10.Thisconcludestheproof. Corollary9:Letusconsideramulti–tiercellularnetwork
(t)
withαt=αandwithFB≥1availablefrequencybandsandrandomfrequencyreuseforeverytiert=1,2,...,T.Also,letλt=κtλandSNRt=χtSNRfort=1,2,...,T.
2IfσN=0(i.e.,SNR→+∞),whichimpliesthatthesystemisinterference–limited,thentheaveragerateinCorollary7is
(SNR∞)=R (λ∞),whereR (λ∞) t≤Rupper–boundedasRttt
2
isgivenin(30).Furthermore,ifσNissmallbutnon–zero,i.e.,SNR 1,thentheaveragerateinCorollary7canbeapproximatedasshownin(31)atthetopofthispage.
Proof:TheprooffollowsfromCorollary3,Corollary4,andRemark10.Thisconcludestheproof. V.NUMERICALANDSIMULATIONRESULTS
Inthissection,weshowsomenumericalexamplesinordertoverifytheaccuracyoftheproposedanalyticalmethodol-ogyagainstMonteCarlosimulations,aswellastoshowtheimpactofdifferentfadingparametersanddistributionsontheaveragerate.Forafaircomparisonamongdifferentfadingdistributions,themeansquarevalueofeachfadingdistributionisnormalizedandsetequaltoone.ThisimpliesΩ=1forRayleighandNakagami–mdistributions,and 2
μ= ln(10)σ20forLog–Normal,compositeNakagami–mandLog–Normal,andcompositeRiceandLog–Normaldistributions.Furthermore,usefulandinterferencelinksareassumedtohavethesamefadingdistribution.Theanalyticalframeworkisimplementedasdescribedinthecaptionsofeach gure.AsfarasthecompositeRiceandLog–Normalfadingmodelisconcerned,bothframeworksinProposition4andRemark3areimplemented.Wehaveveri edthatboth
FB
(t)
(t)
frameworksprovidethesameaccuracy.Thus,theapplicationofRemark3isrecommendedsinceitissimplertocompute.
a)MonteCarloSimulations:AsfarasMonteCarlosim-ulationsareconcerned,wehaveusedthefollowingmethod-ology[46,AppendixF].
Step1:A nitecircularareaof(normalized)radiusRA
aroundtheorigin,i.e.,wheretheprobemobileter-minalislocated,isconsidered.Theradiusischosensuf cientlylargetominimizetheerrorcommit-tedinsimulatingthein nitebi–dimensionalplane.Intheconsideredsetup,theradiusRAischo-2
≥100,whereλmin=sensuchthatλminRA
min{λ1,λ2,...,λT}.Forexample,RA=100ifλmin=10 1andλmin=10 2,RA=1000ifλmin=10 4,andRA=10000ifλmin=10 6.Step2:Foreachtier,thenumberofBSsisgenerated
followingaPoissondistributionwithdensityλtand
2
areaπRA.
Step3:TheBSsofeachtieraredistributedfollowinga
uniformdistributionoverthecircularregionofarea2.πRA
Step4:Independentchannelgainsaregeneratedforeach
BSofeverytier.
Step5:ThetierandBSassociationpolicydescribedin
SectionII-Bisapplied,andusefulandinterferencelinksareidenti ed.
Step6:GiventheassociatedtieranditstaggedBS,the
SINRiscomputedasshownin(5).
Step7:Therateofthegeneric MonteCarlotrialiscom-(t)
putedasRmc=(1/FB)ln(1+SINRt ),wheret isthetaggedtier.
Step8:Finally,theaveragerateiscomputedbyrepeating
Step1–Step7forNmctimesandeventuallycalculat- NmcingR=(1/Nmc)mc=1Rmc.Inoursimulations,wehaveconsideredNmc=106.
InSectionIII-G,wehavecomparedthecomputationalcomplexityofPcov–andMGF–basedapproaches,andwehaveshownthattheproposedanalyticalmethodologyturnsouttobemorecomputationalef cientforgeneralfadingdis-tributions.AsfarasthecomputationalcomplexitycomparisonwithMonteCarlosimulationsisconcerned,ourexperimentshaverevealedthateachsimulationcurveshowninthissectioncanbeobtainedinacomputationtimeoftheorderofafew
DIRENZOetal.:AVERAGERATEOFDOWNLINKHETEROGENEOUSCELLULARNETWORKSOVERGENERALIZEDFADINGCHANNELS...3061
Fig.1.Averagerateofasingle–tiercellularnetworkoverRayleighfading(FanalyticalB=1).framework,MarkersshowwhichMonteiscomputedCarlosimulations.byusingTheoremSolidlines1,Corollaryshowthe2withε=0.05,Proposition1with(m=1,Ω=1),andRemark2withN(2.8)].
GCQ=2000.Furthermore,M0(·)=MI(·)areobtainedfrom[75,Eq.Fig.2.Averagerateofasingle–tiercellularnetworkoverNakagami–mfading(FtheanalyticalB=framework,1)ingTheoremSolid1,linesCorollaryshow2withε=0.05,Proposition1with(m=2.5,Ω=1),andRemark2withN(2.22)].
GCQ=2000.Furthermore,M0(·)=MI(·)areobtainedfrom[75,Eq.minutes( vetotenminutesdependingonthesetup)byusingtheMGF–basedapproach.Ontheotherhand,thesamecurvecanbeobtainedintensofhours(tentosixtydependingonthesetup)ofcomputationtimebyusingMonteCarlosimulations.Inadditiontothelongersimulationtimeandtothemoreresourcesforthecomputation,itisimportanttomentionthatMonteCarlosimulationstendtobelessaccuratefor:i)sparsecellularnetworks;ii)lowpath–lossexponents;andiii)high–SNR.ThereasonisthatintheseoperatingscenariosRAandNmcmustbeincreasedinordertoaccountfortheinterferingBSsthatarefarfromtheprobemobileterminal,andwhich,inthesecases,cannolongerbeneglected.
b)FrameworkValidationforSingle–TierCellularNet-works:InFigs.1–5,theaveragerateofRayleigh,Nakagami–
Fig.3.Averagerateofasingle–tiercellularnetworkoverLog–Normalfading(FtheanalyticalB=framework,1)ingTheoremSolid1,Corollarylinesshow2withε=0.05,Proposition2with(σ=6dB,μ= ln(10)σ2NM·)=are5obtained,andRemark/20dB)andGHQfrom2[75,withEq.N(2.54)]GCQ=with2000N.Furthermore,M0(·)=I(GHQ=5.
Fig.4.Averagerateofasingle–tiercellularnetworkovercompositeNakagami–mandLog–Normalfading(Fsimulations.SolidlinesshowtheanalyticalB=framework,1).MarkerswhichshowisMontecomputedCarlobyusingTheorem1,Corollary2withε=0.05,Proposition3with(m=2.5,σN=6dB,μ= ln(10)σ2/20dB)andNGHQ=5(2.58)]with2000N.Furthermore,MM,andRemark2withGCQ=0(·)=I(·)areobtainedfrom[75,Eq.GHQ=5.
m,Log–Normal,compositeNakagami–mandLog–Normal,andcompositeRiceandLog–Normalfadingisshown,respec-tively,forasingle–tiercellularnetwork.Overall,weobserveaverygoodaccuracyoftheproposedMGF–basedapproach.Furthermore,weobserve,asexpected,thattheaveragerate:i)increaseswiththeBSsdensity;ii)dependsonthefadingdistribution;andiii)increaseswiththepath–lossexponent.InFigs.1–5,wehaveconsidereddensecellularnetworks(λ≥0.1)andlargepath–lossexponents(α≥4).ThereasonofthischoiceismainlyduetothelongtimeneededtoobtainedMonteCarlosimulationsforlessdensecellularnetworksandforsmallerpath–lossexponents.However,itisimportanttoverifytheaccuracyoftheproposedMGF–basedapproachformorepracticaldensitiesofBSsandforawider
3062Fig.5.Averagerateofasingle–tiercellularnetworkovercompositeRiceandLog–Normalfading(FlinesshowtheanalyticalB=framework,1)ingTheoremSolid1,Corollary2with2ε=0.05,Proposition4with(K=10,σ=6dB,μ2000= ln(10)σ/20dB)andNGHQ=5,andRemark2withNGCQ=Theapplication.InPropositionofRemark4,the3seriesprovidesin(17)theissametruncatedresultandtotheaccuracy, rst100butterms.withlesscomputationalcomplexity.Furthermore,Mfrom(46)withN0(·)=MI(·)areobtainedGHQ=5.
rangeofpath–lossexponents.Ingeneral,practicaldensitiesformacroBSsdeploymentsareoftheorderofλ≈10 6[22],[42],[43].Thus,totestnumericalaccuracyandstabilityoftheMGF–basedapproach,weconsiderinthesetλ= 10
6,10 4,10 2,10
1
densitiesofBSs,inordertostudysparse,medium,anddensedeployments.Asfarasthepath–lossexponentisconcerned,weconsidervaluesinthesetα={2.05,2.2,2.4,3,4,5}>2,whichcovertypicalprop-agationenvironmentsforcellularapplications[99,Table2.2],[100,Ch.2,Sec.5].TheresultsofthisstudyareshowninFigs.6–8.
InFigs.6and7,wecompareMonteCarlosimulationswiththeMGF–basedapproach.Inparticular,numericalresultsareobtainedbyusingboththe(exact)two–foldintegralinTheorem1andthe(approximated)single–integralinCorollary2inordertotestcomplexityandaccuracyofbothmethods.AsfarasMonteCarlosimulationsareconcerned,itisworthmentioningthatonlysomeSNRpoints(markers)areshowninthe gures.ThemissingSNRpointsarenotshownbecauseofthelongsimulationtimeandtheneedtoconsiderverylargesimulationareastogetaccurateestimatesoftheaveragerate.Thesimulationtimeincreases,ingeneral,formoresparsecellularnetworksandforsmallerpath–lossexponents.TheSNRpointsshowninthe guresarethoseforwhichaccurateestimatescanbeobtainedwiththesimulationsetupdescribedabove.Thenumericalexamplescon rmtheverygoodaccuracyandthenumericalstabilityoftheMGF–basedapproachforallcellularnetworksetups.BycomparingthecurvesobtainedusingTheorem1andCorollary2,wenoticethatthelatterisveryaccurateexceptinthetransition(corner)regionfromnoise–tointerference–limitedoperatingconditions,wheretheaverageratereachestheasymptotecalculatedinCorollary3(furthercommentsareavailablebelowwherethehigh–SNRscenarioisdiscussed).Thereason
IEEETRANSACTIONSONCOMMUNICATIONS,VOL.61,NO.7,JULY2013
Fig.6.Averagerateofasingle–tiercellularnetworkovercompositeNakagami–mandLog–Normalfading(Fsimulations.SolidlinesshowtheanalyticalB=framework,1).MarkerswhichshowisMontecomputedCarlobyusingTheorem1,Corollary2withε=0.05,Proposition3with(m=2.5,σN=6dB,(2.58)]with2000μ=N. Furthermore,ln(10)σ2/M20dB(·))and=MNGHQ=5,andRemark2withGCQ=0I(·)arecomputingthetwo–fold5integral.TheblackinTheoremdashed1lineswithoutareobtainedobtainedfromusingtheby[75,MeijerdirectlyEq.GHQ=G–functioninCorollary2.
Fig.7.Averagerateofasingle–tiercellularnetworkovercompositeNakagami–mandLog–Normalfading(Fsimulations.SolidlinesshowtheanalyticalB=framework,1).MarkerswhichshowisMontecomputedCarlobyusingTheorem1,Corollary2withε=0.05,Proposition3with(m=2.5,σN=6dB,μ=(2.58)]withN. Furthermore,ln(10)σ2/M20dB·))and=MNGHQ=5,andRemark2withGCQ=20000(I(·)areobtainedfrom[75,putingtheGHQtwo–fold=5integral.TheblackinTheoremdashed1lineswithoutareobtainedusingthebyMeijerdirectlyG–functioninCorollary2.
ofthis(inpracticenegligible)numericalinaccuracyoriginatesfromthenon–smoothtransitionintroducedbytheadoptionoftheHeavisidefunctioninCorollary3.
InFig.8,wecomparetheaveragerateasafunctionofthepath–lossexponent.OnlynumericalresultsobtainedfromtheMGF–basedapproachareshowninthis gure.Thecurvesareobtainedbyusingthetwo–foldintegralinTheorem1.AsfarastheapplicationofCorollary2isconcerned,itsaccuracyforα≥2.4isshowninFigs.6and7.Forα<2.4,itislesspracticaltousetheMeijerG–functioninCorollary2since
DIRENZOetal.:AVERAGERATEOFDOWNLINKHETEROGENEOUSCELLULARNETWORKSOVERGENERALIZEDFADINGCHANNELS...3063
Fig.8.Averagerateofasingle–tiercellularnetworkovercompositeNakagami–mandLog–Normalfading(FbyusingtheanalyticalframeworkandBMonte=1).CarloThecurvessimulationsareobtainedarenotshown.Morespeci cally,thecurvesareobtainedbycomputingthetwo–foldintegralinTheorem1,Proposition3with(m=2.5,σ=6dB,μ= Furthermore,ln(10)σ2/M20dB)andNGHQ=5,andRemark2withNGCQ=2000.N0(·)=MI(·)areobtainedfrom[75,Eq.(2.58)]withGHQ=5.
forsuchvaluesofαwewouldhaveαN 1andαD 1,and,thus,computationtimeandnumericalaccuracywouldhighlydependonthespeci cimplementationoftheMeijerG–function.Ontheotherhand,Theorem1providesveryaccurateestimatesinafewseconds(foreachSNRpoint),asdiscussedinSectionIII-G.Figure8clearlyshowsthatTheorem1providesreliablenumericalestimatesfortheconsideredsetofpath–lossexponents,includingα≈2.Asfarastheperformancetrendisconcerned,Fig.8showsaverydifferentbehaviorfordense(λ=10 2)andmedium/sparse(λ=10 4)cellularnetworks.Indensecellularnetworks,thehigherthepath–lossexponentthebettertheaveragerateregardlessoftheoperatingSNR.Ontheotherhand,inmedium/sparsecellularnetworkstwoSNRregionscanbeidenti ed:i)forlow–SNR(noise–limitedregime),thelowerthepath–lossexponentthehighertheaveragerate.Thisisduetothatfactthattheusefulsignalundergoesalowerattenuationandthattheaggregateinterferenceisnegligiblecomparedtotheadditivenoise;andii)forhigh–SNR(interference–limitedregime),thehigherthepath–lossexponentthehighertheaveragerate.ThisisduetothefactthattheadditivenoiseisnegligiblecomparedtotheaggregateinterferenceandthattheinterferingBSsundergoalargerattenuation,whichhasamorepronouncedeffectontheaverageratethanthelargerattenuationundergonebytheusefulsignal.Theseresultsareinagreementwithintuitionandcon rmtheusefulnessoftheproposedMGF–basedapproachforcellularnetworksanalysisanddesign.
ForeaseofcomparisonwithMonteCarlosimulations,inthefollowingonlylargepath–lossexponentsanddensecellularnetworksdeploymentsareconsidered.
c)ImpactofFadingModelandFadingParameters:InFigs.9–12,theaveragerateofNakagami–m,Log–Normal,compositeNakagami–mandLog–Normal,andcompositeRiceandLog–Normalfadingisshown,respectively,forasingle–tiercellularnetworkandfordifferentchoicesofthefading
Fig.9.Averagerateofasingle–tiercellularnetworkoverNakagami–mfading(FSolidlinesBshow=1,SNRtheanalytical=10dB).framework,MarkersshowwhichMonteiscomputedCarlosimulations.byusingTheorem1,Corollary2withε=0.05,Proposition1withΩ=1,andRemark2withNfrom[75,Eq.(2.22)].
GCQ=2000.Furthermore,M0(·)=MI(·)areobtainedFig.10.Averagerateofasingle–tiercellularnetworkoverLog–Normalfad-ing(FlinesshowB=the1,SNRanalytical=10framework,dB)ingTheoremSolid1,Corollary2withε=0.05,Proposition2withμ= ln(10)σ2andN/20dBMGHQ=·)5,areandobtainedRemarkfrom2with[75,Eq.NGCQ(2.54)]=with2000N.Furthermore,0(·)=MI(GHQ=5.
parameters.Alsointhiscase,theframeworkprovidesveryaccurateestimates.Morespeci cally,weobservethat:i)theaveragerateisslightlysensitivetomandKfadingparametersofNakagami–m,compositeNakagami–mandLog–Normal,andcompositeRiceandLog–Normaldistributions,aswellasthatitincreasesforlessseverefading(mincreases)andinthepresenceofastrongerline–of–sightcomponent(Kincreases);andii)theaverageratestronglydependsontheshadowingstandarddeviationσofLog–Normal,compositeNakagami–mandLog–Normal,andcompositeRiceandLog–Normaldistributions,aswellasthatitdecreasessigni cantlyformoresevereshadowing(σincreases).
d)CorrelatedLog–NormalShadowing:InFigs.13and14,numericalexamplesinthepresenceofshadowingcorre-
3064Fig.11.Averagerateofasingle–tiercellularnetworkovercompositeNakagami–mandLog–Normalfading(Fλalytical=0.25framework,).MarkerswhichshowMonteiscomputedCarlobysimulations.B=1usingTheoremSolid,SNR=10dB,and1,linesCorollaryshowthe2withan-εand=Remark0.05,Proposition2withN3withμ= ln(10)σ2/20dBandNGHQ=5,obtainedfrom[75,Eq.GCQ(2.58)]=with2000N.Furthermore,M0(·)=MI(·)areGHQ=5.
Fig.12.Averagerateofasingle–tiercellularnetworkovercompositeRiceandLog–Normalfading(FshowMonteCarlosimulations.B=Solid1,SNRlines=10showdB,theandanalyticalλ=0.25framework,).MarkerswhichiscomputedbyusingTheorem21,Corollary2withε=0.05,Proposition4withμ= ln(10)σ2withN/20dBandNGHQ=5,andRemarktothe rstGCQ100=terms.2000.TheInPropositionapplication4,oftheRemarkseries3inprovides(17)isthetruncatedsameresultandaccuracy,butwithlesscomputationalcomplexity.Furthermore,M0(·)=MI(·)areobtainedfrom(46)withNGHQ=5.
lationoveracompositeNakagami–mandLog–Normalfadingchannelareshown.WeobservethattheproposedapproachforcorrelatedLog–Normalshadowingisveryaccuratefordifferentchoicesofthecorrelationcoef cient.Furthermore,bycomparingFigs.13and14withFig.4,wenotethattheframeworkinSectionIII-Freducestotheindependentcaseforρ=0.Morespeci cally,the guresshowthefollowingperformancetrends:i)forhigh–SNR,theaveragerateisindependentofthedensityofBSsregardlessoftheshad-owingcorrelationcoef cient;ii)forlow–SNR,theaveragerateslightlydecreasesiftheshadowingcorrelationcoef cient
IEEETRANSACTIONSONCOMMUNICATIONS,VOL.61,NO.7,JULY2013
Fig.13.Averagerateofasingle–tiercellularnetworkovercorrelatedcompositeNakagami–mandLog–Normalfading(FMonteCarlosimulations.SolidlinesshowtheanalyticalB=framework,1).Markerswhichshowiscomputedbyusing(22)withN0α.05,Proposition3with(m=GHQ2.5,=σ5=,Theorem6dB,μ1,=Corollary2withε=M=(4·))and=MN,andRemark2withN ln(10)σ2/20dB,GHQ=5GCQ=1000.Furthermore,0I(·)areobtainedfrom[75,Eq.(2.58)]withNGHQ=5.
Fig.14.Averagerateofasingle–tiercellularnetworkovercorrelatedcompositeNakagami–mandLog–Normalfading(FMonteCarlosimulations.SolidlinesshowtheanalyticalB=framework,1).Markerswhichshowiscomputedbyusing(22)withN0α.05M=,5Proposition)and=MN3with5,(andm=GHQRemark2.5,=σ5,Theorem1,Corollary2withε=[75,2=with6dBEq.N,μ= ln(10)σ2/20dB,GHQ=(2.58)]GCQ=with1000N.Furthermore,0(·)I(·)areobtainedfromGHQ=5.
increases;andiii)forhigh–SNR,theaveragerateincreasesiftheshadowingcorrelationcoef cientincreases.Eventhoughitmayseemcounterintuitivethattheaveragerateincreaseswithshadowingcorrelation,thisresultseemstooriginatefromtheBSsassociationpolicyadoptedinthepresentpaper(theprobemobileterminalisassociatedwiththeclosestBS).Finally,weemphasizethat(apparently)counterintuitivetrendsinthepresenceofLog–Normalshadowinghavebeenobservedinotherpapers,e.g.,[22]and[97]whereitisshownthatthecov-erageprobabilityincreasesandthattheblockingprobabilityisnotalwaysincreasingwiththeshadowingstandarddeviation,respectively.Thiscon rms,onceagain,theimportanceoftakingintoaccountcorrelatedLog–Normalshadowingfor
DIRENZOetal.:AVERAGERATEOFDOWNLINKHETEROGENEOUSCELLULARNETWORKSOVERGENERALIZEDFADINGCHANNELS...3065
Fig.15.Averagerateofasingle–tiercellularnetworkwithfrequencyreuseovercompositeNakagami–mandLog–Normalfading(λ=0.25).MarkersshowMonteCarlosimulations.Solidlinesshowtheanalyticalframework,whichiscomputedbyusingTheorem1,Corollary2withε=0.05,Proposition3with(m=2.5,σ=6dB,μ= ln(10)σ2andN/20dB)M(·)GHQ=M=5,andRemark2withNGCQ=2000.Furthermore,0I(·)areobtainedfrom[75,Eq.(2.58)]withNGHQ=5.
Fig.16.Averagerateofatwo–tiercellularnetworkovercomposite
Nakagami–mandLog–Normalfading(FSNR=SNRB(t)
=1fort=lines1,2,showandtheanalyticalframework,1).MarkersshowMonteCarlosimulations.SolidwhichiscomputedbyusingCorollary6,Corollary2withε=0.05,Proposition3with(m=2.5,σ=6dB,μ= Furthermore,ln(10)σ2/M20dB)andNGHQ=5,andRemark2withNGCQ=2000.(2.58)]withNt,0(·)=5.
Mt,I(·)fort=1,2areobtainedfrom[75,Eq.GHQ=accurateperformanceprediction.
e)ImpactofFrequencyReuse:InFig.15,theimpactoffrequencyreuseontheaveragerateofasingle–tiercellularnetworkovercompositeNakagami–mandLog–Normalfadingisstudied.Ournumericalanalysiscon rmsthe ndingsinSectionIII-E,andthatfrequencyreuseisdetrimentalfortheaveragerate.Assuggestedin[22],frequencyreusesignif-icantlyimprovesthecoverageprobability.Theanalysisofthistrade–offisoutofthescopeofthepresentpaperbutiscurrentlybeinginvestigatedbytheauthors.
f)FrameworkValidationforMulti–TierCellularNet-works:InFig.16andFig.17,theaveragerateofatwo–
Fig.17.Averagerateofatwo–tiercellularnetworkovercompositeRiceLog–Normalfading(FB(t)
and
=1fort=1,2,andSNR=SNR1).MarkersshowMonteCarlosimulations.Solidlinesshowtheanalyticalframework,whichiscomputedbyusingCorollary6,Corollary2withε=0.05,Proposition4with(K=10,σ=6dB,μ= ln(10)σ2N/20dB)andseriesGHQin=(17)5,isandtruncatedRemarkto2thewith rstN100GCQterms.=2000Theapplication.InPropositionofRemark4,the3providesthesameresultandaccuracy,butwithlesscomputationalcomplexity.M5.
t,0(·)=Mt,I(·)fort=1,2areobtainedfrom(46)with=cellularnetworkovercompositeNakagami–mandLog–andcompositeRiceandLog–Normalfadingisana-respectively.Asanillustrativeexample,weconsiderthewheretheBSsofeverytiertransmitwithapowerisinverselyproportionaltotheirspatialdensity.Thisisreasonablechoiceif,e.g.,the rsttierisusedtomodelBSsandthesecondtierisusedtomodelfemtoBSs.observe,asexpected,thattheaverageratesigni cantlywhentheBSsdensityofthelowertierincreases.frameworkprovidesaverygoodaccuracy.Furthermore,noteanegligibledifferencebetweenthetwofadingmodelsthechosensetofparameters.
g)High–SNRScenario:Finally,weobservethat,inall gures,theaveragerateincreaseswiththeSNRtendingtowardsahorizontalasymptoteforhigh–SNR.Bydirectinspection,thereadercanverifythatthehorizontalasymptotecoincideswiththeaverageratethatcanbecomputedusingCorollary3andCorollary8withR (SNR∞)=R (λby
∞)inCorollary9.Inotherwords,theSNRtregionwheret
theaveragerateis atcorrespondstotheinterference–limitedoperatingregime.Asaconsequence,weconcludethatthesimpleformulasgiveninthesecorollariesarequiteaccurateforSNR≥SNR ,whereSNR isthecornerpointwheretheaverageratestartsapproachingthehorizontalasymptote.Forexample,SNR ≈20dBforα=4inFig.1.Ingeneral,SNR dependsonthedensityofBSs,thepath–lossexponent,andthefadingchannelmodel.ThereadercanidentifySNR fordifferentcellularsetupsbydirectinspectionofallthe guresshowninthepaper.Figure8showsmanycellularnetworksdeploymentsofinterest.
Byobservingtheasymptoticbehavioroftheaveragerateforhigh–SNR,aninterestingproblemtoinvestigateiswhetherSNR islowerorgreaterthanthetypicaloperatingSNRof
3066currentcellularnetworksdeployments.Thisquestionisinter-estingbecausemanypapersassume,foranalyticaltractability,thattheadditivenoiseisalwaysnegligibleandthat,asaconsequence,cellularnetworksareinterference–limited.Allthe guresshowninourpapercon rmthattheinterference–limitedassumptionisaccurateonlyiftheoperatingSNRisgreaterthanSNR .InordertoassesswhethertheoperatingconditionSNR≥SNR isusuallyveri ed,weinvestigate,asanexample,thesamesetupasin[43],whichholdsfortypicalcellularMorespeci cally,SNR=P σ2networks.N;ii)σ2
weconsider:i)N=W/L 104dBm=4·10 140;iii)W=kBT0B0=Wattisthenoisepower,wherekB=1.38·10 23Joule/KelvinistheBoltzmann’sconstant,T0=290Kelvinisthenoisetemperature,B0=10MHzisthereceiverbandwidth;andiv)L0= 38.5dB=1.41·10 4isthepath–lossatareferencehaveSNR=P σ2distanceofonemeter.Accord-ingly,weN=(L0/W)P=3.52·109P.ByassumingtypicaltransmitpowersequaltoPMacro=40Watt,PMicro=6.3Watt,PPico=0.13Watt,andPFemto=0.05Wattformacro,micro,pico,andfemtoBSs[42],[101],weobtainSNRMacro=111.50dB,SNRMicro=103.45dB,SNRPico=86.60dB,andSNRFemto=82.45dB,respec-tively. BycomparingthesetypicaloperatingSNRswiththeSNRshowninour gures,weconcludethattheconditionSNR≥SNR iswellsatis edformanysystemsetupsanalyzedinthepaper.Forexample,letusconsider thesetupsshowninFig.8.WeobservethatSNR≥SNRisalwaysveri edindense(λ=10 2)cellularnetworksforeverypath–lossexponents,andinmedium/sparse(λ=10 4)cellularnetworksforlowpath–lossexponents(α<4inthe gure).Ontheotherhand,forlargerpath–lossexponentstheconditionmaynotbeveri edforsometypesofBSs.Thiscon rmsthattypicalcellularnetworksdeploymentscanbeapproximated,inmostcases,tobeinterference–limited,andthatthesimpleframeworksinCorollary3andCorollary8canbeusedfor rst–orderperformanceanalysis,design,andoptimization.
VI.CONCLUSION
Inthispaper,wehaveintroducedacomprehensivemath-ematicalframeworkfortheanalysisoftheaveragerateof
multi–tiercellularnetworkswhoseBSsareassumedtoberandomlydistributedaccordingtoaPPPspatialdistribution.Theframeworkisapplicabletogeneralfadingchannelmodelswitharbitraryfadingparameters.Numericallyef cientandstablealgorithmstocomputesometranscendentalfunctions,suchastheMeijerG–function,havebeenproposed.Theframeworkneedsthecomputationofeithersingle–ortwo–foldintegralsforgeneralfadingdistributionsandarbitrarypath–lossexponents.Furthermore,shadowingcorrelationcanbetakenintoaccountwithanotherextranumericalinte-gral.Theframeworkcanhandlerandomfrequencyreuse,anditsimpli essigni cantlyforinterference–limitedcellularnetworksandforhigh–SNRsetups.ExtensiveMonteCarlosimulationshavecon rmedtheaccuracyoftheproposedanalyticalmethodologyforvariousfadingdistributionsandcellulardeployments.
IEEETRANSACTIONSONCOMMUNICATIONS,VOL.61,NO.7,JULY2013
APPENDIXAPROOFOFTheorem1
By using [66,Lemma
1]withN=M=1,wehave:Eln1+
X
Y+1+∞
=
MY(z) MX,Y(z)
exp{ z}dz(32) 0z
(=a)+∞MY(z)[1 MX(z)]exp{ z}dz
0zwhere:i)XandYarearbitraryables;ii)M X,Y(z)=Ee z(X+non–negativeY)
randomvari-istheMGFofrandomvariableX+Y;andiii)(a)holdsifXFrom(32)withX=(Pg0ξ α) andσ2
Yareindependent. 2
,bytakingintoaccountthat,conditioningN,Y=Iagg(ξ)σanduponξ,XandN
Yareindependent,theexpectationin(7)canbere–writtenasfollows: Eln1+Pg0ξ α
σ2
N+Iagg(ξ)
+∞
=
exp{ z}
M(z;ξ) 1 M0 SNRξ αz Iaggdz0
z(33)Wenotethattheidentityin(33)avoidstheneedofcomputingPcovandmakesouranalyticaldevelopmenttotallydifferentfromcurrentpractice[20],[22],and[43].
From(33),itisapparentthataclosed–formexpressionofMIagg(·;ξ)isneeded.ThisistheMGFoftheaggregateinterference,whichisgeneratedbyalltheinterferersthatlieoutsideadiskofradiusξ.Inotherwords,duetothetierandBSassociationpolicy,MT0hasanexclusionzonearounditwherenointerferingBSsarelocatedandareallowedtotransmit.Thisiscalledexclusionregion[5].TheMGFofIagg(·)hasbeenstudiedin[91]foragenericannularregionwithradiiAandB.Inparticular,MIagg(·;ξ)canbeobtainedfrom[91,Eq.(6)]bylettingA→ξandB→+∞,asfollows:
M)=exp
Iagg(s;ξ πλξ2exp πλξ2M I×exp πλs2/α
Γ1 2E sξ α
g2/α α
b
×expπλs2/αEg2/α2
bΓ1 α
,sgbξ
α
(34)In[91],theexpectationoverthefadingdistributionoftheinterferencechannelsisnotcomputedinclosed–formandonlyboundsforRayleighfadingareprovided.Tothebestofourknowledge,thereisnoanalyticalframeworkthatprovidesanexactandclosed–formexpressionoftheMGFin(34)forgeneralfadingchannels.Inwhatfollows,weprovideageneralmethodologytothisend.Thisisacontributionofthispaper.Byusing[69,Eq.(6.5.3)],[69,Eq.(6.5.4)],and[69,Eq.(6.5.29)],wehave:
Γ(z,x)=Γ(z) γ(z,x)
+=Γ(z) Γ(z)xz
exp{ x}
∞xk
k=0
Γ(z+k+1)
(35)
DIRENZOetal.:AVERAGERATEOFDOWNLINKHETEROGENEOUSCELLULARNETWORKSOVERGENERALIZEDFADINGCHANNELS...3067
+∞ 1ααz 1¯22R(z;λ)=dξξξexp{ πλZI(z)ξ}exp SNR0SNR
+∞ α (a)α(b)α11 12Γ[πλZI(z)] 2≤ξexp{ πλZI(z)ξ}dξ=(38)
SNR0Bysubstituting(35)in(34),MIagg(·;ξ)simpli esM
2 exp πλξ2M to:Iagg(s;ξ)=expπλξIsξ×exp πλξ2T α
Isξ α(36)whereTI(·)isgivenin(9).Closed–formexpressionsofTI(·)areavailableinPropositions1–4.
Finally,bysubstituting(36)in(33),theaverageratein(7)simpli esto(8)byusingthechangeofvariabley=zξ αandbyapplyingtheintegrationbypartstotheintegralinξ.Thisconcludestheproof. APPENDIXB
PROOFOFRemark1
From(8),byusingthechangeofvariableSNRy=z,wehave:
+∞
R=
1 M0(z)dzα +∞1 M0(z0
ZI(z)z )20ZI(z)R¯
(z;λ)dz(37)
whereR¯(·;·)isgivenin(38)atthetopofthis
page, and(a)follows bytakingintoaccountthat0≤exp (z/SNR)ξα/2≤1foreverychoiceoftheparame-ters,while(b)followsfrom[73,Eq.(2.1.1.1)].
Asaconsequence,theaverageratein(37)isupper–andlower–bound asfollows:+∞1 M0(z)dz +∞
1 M0(z)dz0ZI(z)z R¯(λ)≤R≤0
ZI(z)(39)
zwhere:
R
¯(λ)=1αΓ α (πλ) α
2 SNR+∞
22×[1 M0(z)]Z (40)I(α2+1)(z)dz
Equation(10)thatlimλ→+∞R
¯immediatelyfollowsfrom(40)byobserving
(λ)=0foreveryα>2.Thisconcludestheproof.
APPENDIXC
PROOFOFProposition1
Byusing[75,Eq.(2.21)]and[73,Eq.(2.2.1.2)],M(k)
follows:I(·)in(9)canbecomputedasM(k)
1 m m m (m+k+1)I(s)=Γ(m)Ωs+Ω
Γ(m+k+1)(41)
Bysubstituting(41)inTI(·)in(9)andbyusingtheidentity[69,Eq.(15.1.1)]:+ ∞Γ(k+A)sx+k
+C)z+k
k=0Γ(k+B)(sx=sΓ(A) (42)(s+C)z
Γ(B)
2F1A,1,B,s
s+CSNR2
withA,B,C,x,andsbeingpositiveconstants,weeventually
obtain(14)withsomealgebraicmanipulationsandusingtheidentityΓ(z+1)=zΓ(z).Thisconcludestheproof.
APPENDIXD
PROOFOFProposition2
ByusingtheapproximateexpressionofthePDFofLog–Normal(1/√π) randomvariablesin[77,TableIV],NGHQ √n=1w
nδx 10(2σ sn+μ)/10
i.e.,f,M(k)gb(x)≈I(·)in(9)canbecomputedasfollows:
(k)(s)≈√1N GHQ
MI
(k+1)(√2σs n+μ)/10
πw n10
n=1√
(43)
×exp 10(2σs n+μ)/10s
Bysubstituting(43)inTI(·)in(9)andbyusingtheidentity
[69,Eq.(13.1.2)]:
+ ∞sx+k
Γ(k+B)=sxΓ(B)
1F1(1,B,s)
(44)
k=0
withBandzbeingpositiveconstants,weobtain(15)after
somealgebra.Thisconcludestheproof.
APPENDIXE
PROOFOFProposition3
SimilartoAppendixD,inordertohaveananalyti-callytractableexpressionofPDFandMGFofcompositeNakagami–mandLog–Normalfading,weusetheapproxi-mationoftheLog–NormaldistributionthatisbasedontheGauss–Hermitequadraturein[75,Eq.(2.58)]and[76,V].Accordingly,M(k)
Table
I(·)in(9)canbecomputedasfollows:
M(k)(s)≈√
1mm
I
πΓ(m)
N
GHQ
×
w nω mn(s+mω n) (m+k+1)Γ(m+k+1)
n=1
(45)
Bysubstituting(45)inTI(·)in(9),from(42)weeventually
get(16).Thisconcludestheproof.
APPENDIXFPROOFOFProposition4SimilartoAppendixD,inordertohaveananalyticallytractableexpressionofPDFandMGFofcompositeRice
andLog–Normalfading,weusetheapproximationoftheLog–NormaldistributionthatisbasedontheGauss–Hermitequadraturein[77,TableIV].Inparticular,from[78,Eq.(6)]weobtain(46)shownatthetopofthenextpage,obtainedbyusing[75,Eq.(2.17)].Thus,M(k)where(a)isI(·)in(9)can
3068IEEETRANSACTIONSONCOMMUNICATIONS,VOL.61,NO.7,JULY2013
NGHQ 1 f(x)≈(1+K)exp{ K}√w nω nexp{ (1+K)ω nx}I02K(1+K)ω nx gbπ NGHQ (a)K/ ω1+K1 n exp sw n Mgb(s)≈√π1+K+(s/ ωn)1+K+(s/ ωn)n=1
n=1
(46)
(k)
MI
NGHQ +∞ 1
(s)≈(1+K)exp{ K}√ nxk+1exp{ [s+(1+K)ω n]x}I02K(1+K)ω nxdxw nω
πn=10
NGHQ
(a)K(1+K)1 (k+2)=(1+K)exp{ K}√w nω nΓ(k+2)[s+(1+K)ω n]1F1k+2,1,
πn=11+K+(s/ ωn)
(47)
12
√TI(s)≈(1+K)exp{ K}Γ1 απ
NGHQ+∞k+1 Γ(2+k)sK(1+K)
× nFw nωk+2,1,1121+K+(s/ ωn)Γ2 α+k[s+(1+K)ω n]2+kn=1k=0
(48)
becomputedasshownin(47)atthetopofthispage,where
(a)isobtainedbyusing[69,Eq.(6.631)].Bysubstituting(47)inTI(·)in(9),weobtain(48)shownatthetopofthispage.Sincethein niteseriesin(48)isnotfastconverging,weelaboratefurtherTI(·)inordertoobtainabetterexpressionforsimplenumericalcomputation.ForK=0,thiscanbeobtainedby rstreplacing1F1(·,·,·)withitsseriesexpansionin[69,Eq.(13.1.2)],andthencomputingthein niteseriesinkbyusing(42).Eventually,weobtain(17)withsomealgebraicmanipulationsandusingtheidentityΓ(z+1)=zΓ(z).ThecaseK=0canbeobtainedbynotingthat1F1(A,1,0)=1foreveryA,andbyapplyingthesameprocedureasinAppendixEwithm=1.Thisconcludestheproof.
REFERENCES
[1]K.S.Gilhousen,I.Jacobs,R.Padovani,A.J.Viterbi,L.Weaver,andC.
Wheatley,“OnthecapacityofacellularCDMAsystem,”IEEETrans.Veh.Technol.,vol.40,no.2,pp.303–12,May1991.
[2]J.G.Andrews,R.K.Ganti,M.Haenggi,N.Jindal,andS.Weber,“A
primeronspatialmodelingandanalysisinwirelessnetworks,”IEEECommun.Mag.,vol.48,no.11,pp.156–163,Nov.2010.
[3]F.Baccelli,M.Klein,M.Lebourges,andS.Zuyev,“Stochasticgeometry
andarchitectureofcommunicationnetworks,”J.Telecommun.Syst.,vol.7,no.1,pp.209–227,1997.
[4]V.Chandrasekhar,J.G.Andrews,andA.Gatherer,“Femtocellnetworks:
asurvey,”IEEECommun.Mag.,vol.46,no.9,pp.59–67,Sep.2008.[5]A.Rabbachin,T.Q.S.Quek,S.Hyundong,andM.Z.Win,“Cognitive
networkinterference,”IEEEJ.Sel.AreasCommun.,vol.29,no.2,pp.480–493,Feb.2011.
[6]ndstrom,A.Furuskar,K.Johansson,L.Falconetti,
andF.Kronestedt,“Heterogeneousnetworks–increasingcellularcapacity,”EricssonReview,2011.Available:/res/thecompany/docs/publications/ericssonreview/2011/heterogeneousnetworks.pdf.
[7]R.W.HeathJr.andM.Kountouris,“Modelingheterogeneousnetwork
interference,”IEEEInf.TheoryAppl.Workshop,pp.17–22,Feb.2012.[8]J.G.Andrews,H.Claussen,M.Dohler,S.Rangan,andM.C.Reed,
“Femtocells:past,present,andfuture,”IEEEJ.Sel.AreasCommun.,vol.30,no.3,pp.497–508,Apr.2012.
[9]A.Ghosh,J.G.Andrews,N.Mangalvedhe,R.Ratasuk,B.Mondal,M.
Cudak,E.Visotsky,T.A.Thomas,P.Xia,H.S.Jo,H.S.Dhillon,andT.D.Novlan,“Heterogeneouscellularnetworks:fromtheorytopractice,”IEEECommun.Mag.,vol.50,no.6,pp54–64,July2012.
[10]J.G.Andrews,“SevenwaysthatHetNetsareacellularparadigmshift,”
IEEECommun.Mag.,vol.51,no.3,pp136–144,Mar.2013.
[11]A.D.Wyner,“Shannon-theoreticapproachtoaGaussiancellular
multiple-accesschannel,”IEEETrans.Inf.Theory,vol.40,no.11,pp.1713–1727,Nov.1994.
[12]C.B.Chae,I.Hwang,R.W.Heath,andV.Tarokh,“Inter-ferenceawarecoordinatedbeamformsysteminatwo–cellenvi-ronment,”TechnicalReport,HarvardUniversity,2009.Available:http://dash.harvard.edu/handle/1/3293263.
[13]V.H.Macdonald,“Thecellularconcept,”BellSyst.Tech.J.,vol.58,
no.1,pp.15–41,Jan.1979.
[14]J.Xu,J.Zhang,andJ.G.Andrews,“OntheaccuracyoftheWyner
modelincellularnetworks,”IEEETrans.WirelessCommun.,vol.10,no.9,pp.3098–3109,Sep.2011.
[15]M.HaenggiandR.K.Ganti,InterferenceinLargeWirelessNetworks,
FoundationsandTrendsinNetworking,vol.3,no.2,pp127–248,2009.
APPENDIXGPROOFOFCorollary2
LetU(asymptote)(z)=limz→0+U(z)in(18).Thislimitcanbecomputedasfollows:
Δ(α, ν)NαD,αN U(asymptote)(z)=lim+GααN,αDz Δ(αD,0)z→0
(a)1 Δ(α,0)DN,αD
=limGαζ αD,αN 1 Δ(αN, να)ζ→+∞
(49)whereζ=1/zand(a)isobtainedbyusing[68,Eq.(8.2.2.14)].
From(49),(18)canbeobtainedbyusing[92,Theorem1.8.3],andmoreexplicitlybyusing[92,Eq.1.8.8]whoseparametersarede nedin[92,Eq.1.4.2]and[92,Eq.1.4.7],aswellasbytakingintoaccountthatlimz→0+pFq(a,b,z)=1,and,thus,thegeneralizedhypergeometricfunctionpFq(·,·,·)canbeneglected.Thisconcludestheproof.
DIRENZOetal.:AVERAGERATEOFDOWNLINKHETEROGENEOUSCELLULARNETWORKSOVERGENERALIZEDFADINGCHANNELS...3069
[16]M.Haenggi,J.G.Andrews,F.Baccelli,O.Dousse,andM.
Franceschetti,“Stochasticgeometryandrandomgraphsfortheanalysisanddesignofwirelessnetworks,”IEEEJ.Sel.AreasCommun.,vol.27,vol.9,pp.1029–1046,Sep.2009.
[17]F.BaccelliandB.Blaszczyszyn,StochasticGeometryandWireless
Networks,PartI:Theory,PartII:Applications.NowPublishers,2009.[18]P.Fleming,A.L.Stolyar,andB.Simon,“Closed-formex-pressionsforother-cellinterferenceincellularCDMA,”Techni-calReport,UniversityofColoradoatBoulder,Dec.1997.Avail-able:http://ccm.ucdenver.edu/reports/rep116.pdf.
[19]T.X.Brown,“Cellularperformanceboundsviashotguncellularsys-tems,”IEEEJ.Sel.AreasCommun.,vol.18,no.11,pp.2443–2455,Nov.2000.
[20]F.Baccelli,B.Blaszczyszyn,andP.Muhlethaler,“Stochasticanalysis
ofspatialandopportunisticAloha,”IEEEJ.Sel.AreasCommun.,vol.27,no.7,pp.1105–1119,Sep.2009.
[21]P.Madhusudhanan,J.G.Restrepo,Y.E.Liu,andT.X.Brown,“Carrier
tointerferenceratioanalysisfortheshotguncellularsystem,”inProc.2009IEEEGlobalCommun.Conf.,pp.1–6.
[22]J.G.Andrews,F.Baccelli,andR.K.Ganti,“Atractableapproachto
coverageandrateincellularnetworks,”mun.,vol.59,no.11,pp.3122–3134,Nov.2011.
[23]C.-H.Lee,C.-Y.Shihet,andY.-S.Chen,“Stochasticgeometrybased
modelsformodelingcellularnetworksinurbanareas,”SpringerWirelessNetw.,10pages,Oct.2012.
[24]A.GuoandM.Haenggi,“Spatialstochasticmodelsand
metricsforthestructureofbasestationsincellularnetworks,”IEEETrans.WirelessCommun.,submitted,2013.Available:http://www3.nd.edu/ mhaenggi/pubs/twc13b.pdf.
[25]L.Decreusefond,P.Martins,andT.T.Vu,“Ananalyticalmodelforeval-uatingoutageandhandoverprobabilityofcellularwirelessnetworks,”arXiv,Sep.2010.Available:/pdf/1009.0193.pdf.
[26]H.S.Dhillon,R.K.Ganti,F.Baccelli,andJ.G.Andrews,“Coverage
andergodicrateinK-tierdownlinkheterogeneouscellularnetworks,”m.,Control,Computing,pp.1627–1632.[27]P.Madhusudhanan,J.G.Restrepo,Y.Liu,T.X.Brown,andK.
Baker,“Multi-tiernetworkperformanceanalysisusingashotguncellularsystem,”inProc.2011IEEEGlobalCommun.Conf.,pp.1–6.
[28]H.WangandM.C.Reed,“Anoveltractableframeworktoanalyse
heterogeneouscellularnetworks,”inProc.2011IEEEGlobalCommun.Conf.,pp.1–6.
[29]H.WangandM.C.Reed,“Tractablemodelforheterogeneouscellular
networkswithdirectionalantennas,”inProc.2012IEEEAustralianCommun.TheoryWorkshop,pp.61–65.
[30]T.D.Novlan,H.S.Dhillon,andJ.G.Andrews,“Analyticalmod-elingofuplinkcellularnetworks,”arXiv,Mar.2012.Available:/pdf/1203.1304v1.pdf.
[31]H.S.Dhillon,R.K.Ganti,F.Baccelli,andJ.G.Andrews,“Modeling
andanalysisofK-tierdownlinkheterogeneouscellularnetworks,”IEEEJ.Sel.AreasCommun.,vol.30,no.3,pp.550–560,Apr.2012.
[32]S.Mukherjee,“DistributionofdownlinkSINRinheterogeneouscellular
networks,”IEEEJ.Sel.AreasCommun.,vol.30,no.3,pp.575–585,Apr.2012.
[33]W.C.Cheung,T.Q.S.Quek,andM.Kountouris,“Throughputopti-mization,spectrumallocation,andaccesscontrolintwo-tierfemtocellnetworks,”IEEEJ.Sel.AreasCommun.,vol.30,no.3,pp.561–574,Apr.2012.
[34]S.M.YuandS.-L.Kim,“Downlinkcapacityandbasesta-tiondensityincellularnetworks,”arXiv,Apr.2012.Available:/pdf/1109.2992v2.pdf.
[35]H.S.Dhillon,R.K.Ganti,andJ.G.Andrews,“Load-awaremodeling
andanalysisofheterogeneouscellularnetworks,”arXiv,Apr.2012.Available:/pdf/1204.1091v1.pdf.
[36]S.AkoumandR.W.HeathJr.,“Multi-cellcoordination:astochastic
geometryapproach,”inProc.2012IEEEInt.WorkshopSign.Process.Adv.WirelessCommun.,pp.16–20.
[37]D.Cao,S.Zhou,andZ.Niu,“Optimalbasestationdensityforenergy-ef cientheterogeneouscellularnetworks,”mun.,pp.1–5.
[38]P.Xia,H.-S.Jo,andJ.G.Andrews,“Fundamentalsofinter-cell
overheadsignalinginheterogeneouscellularnetworks,”IEEEJ.Sel.TopicsSignalProcess.,vol.6,no.3,pp.257–269,June2012.
[39]N.MiyoshiandT.Shirai,“AcellularnetworkmodelwithGini-brecon guratedbasestations,”ResearchReportsonMathematicalandComputingSciences,B–467,12pages,June2012.Available:http://www.is.titech.ac.jp/research/research-report/B/B-467.pdf.[40]S.LeeandK.Huang,“Coverageandeconomyofcellularnetworkswith
manybasestations,”IEEECommun.Lett.,vol.16,no.7,pp.1038–1040,July2012.
[41]T.Bai,R.Vaze,andR.W.HeathJr.,“Usingrandomshapetheoryto
modelblockageinrandomcellularnetworks,”mun.,pp.1–5.
[42]R.W.HeathJr.andM.Kountouris,“Modelingheterogeneousnetwork
interferencewithusingPoissonpointprocesses,”arXiv,July2012.Available:/pdf/1207.2041v1.pdf.
[43]H.-S.Jo,Y.J.Sang,P.Xia,andJ.G.Andrews,“Heterogeneouscellular
networkswith exiblecellassociation:acomprehensivedownlinkSINRanalysis,”IEEETrans.WirelessCommun.,vol.11,no.10,pp.3484–3495,Oct.2012.
[44]S.AkoumandR.W.HeathJr.,“Interferencecoordination:random
clusteringandadaptivelimitedfeedback,”arXiv,Oct.2012.Available:/pdf/1210.6095v1.pdf.
[45]X.Lin,J.G.Andrews,andA.Ghosh,“Modeling,analysisanddesign
forcarrieraggregationinheterogeneouscellularnetworks,”arXiv,Nov.2012.Available:/pdf/1211.4041.pdf.
[46]P.Madhusudhanan,J.G.Restrepo,Y.Liu,andT.X.Brown,“Downlink
coverageanalysisinaheterogeneouscellularnetwork,”inProc.2012IEEEGlobalCommun.Conf.,pp.1–6.
[47]S.Singh,H.S.Dhillon,andJ.G.Andrews,“Of oadingin
heterogeneousnetworks:modeling,analysis,anddesigninsights,”IEEETrans.WirelessCommun.,toappear,2013.Available:/pdf/1208.1977.pdf.
[48]E.S.Sousa,“Performanceofaspreadspectrumpacketradionetwork
linkinaPoisson eldofinterferers,”IEEETrans.Inf.Theory,vol.38,no.6,pp.1743–1754,Nov.1992.
[49]J.Ilow,D.Hatzinakos,andA.N.Venetsanopoulos,“PerformanceofFH
SSradionetworkswithinterferencemodeledasamixtureofgaussianandalpha-stablenoise,”mun.,vol.46,no.4,pp.509–520,Apr.1998.
[50]J.IlowandD.Hatzinakos,“Analyticalpha-stablenoisemodelingina
Poisson eldofinterferersorscatterers,”IEEETrans.SignalProcess.,vol.46,no.6,pp.1601–1611,June1998.
[51]K.F.McDonaldandR.S.Blum,“Astatisticalandphysicalmechanisms-basedinterferenceandnoisemodelforarrayobservations,”IEEETrans.SignalProcess.,vol.48,no.7,pp.2044–2056,July2000.
[52]X.YangandA.Petropulu,“Co-channelinterferencemodellingand
analysisinaPoisson eldofinterferersinwirelesscommunications,”IEEETrans.SignalProcess.,vol.51,no.1,pp.64–76,Jan.2003.[53]J.Ilow,D.Hatzinakos,andA.N.Venetsanopoulos,“Performancestudy
ofasynchronousFFH/MFSKcommunicationsusingvariousdiversitycombiningtechniqueswithMAImodeledasalpha–stableprocess,”IEEETrans.WirelessCommun.,vol.6,no.5,pp.1615–1618,May2007.
[54]M.Z.Win,P.C.Pinto,andL.A.Shepp,“Amathematicaltheoryof
networkinterferenceanditsapplications,”Proc.IEEE,vol.97,no.2,pp.205–230,Feb.2009.
[55]E.SalbaroliandA.Zanella,“InterferenceanalysisinaPoisson eldof
nodesof nitearea,”IEEETrans.Veh.Technol.,vol.58,pp.1776–1783,May2009.
[56]Y.M.ShobowaleandK.A.Hamdi,“Auni edmodelforinterference
analysisinunlicensedfrequencybands,”IEEETrans.WirelessCom-mun.,vol.8,no.8,pp.4004–4013,Aug.2009.
[57]P.C.PintoandM.Z.Win,“CommunicationinaPoisson eldof
interferers—partI:interferencedistributionanderrorprobability,”IEEETrans.WirelessCommun.,vol.9,no.7,pp.2176–2186,July2010.[58]P.C.PintoandM.Z.Win,“CommunicationinaPoisson eldof
interferers—PaprtII:channelcapacityandinterferencespectrum,”IEEETrans.WirelessCommun.,vol.9,no.7,pp.2187–2195,July2010.[59]O.B.S.Ali,C.Cardinal,andF.Gagnon,“Performanceofoptimum
combininginaPoisson eldofinterferersandRayleighfading,”IEEETrans.WirelessCommun.,vol.9,no.8,pp.2461–2467,Aug.2010.[60]P.Cardieri,“Modelinginterferenceinwirelessadhocnetworks,”IEEE
Commun.SurveyTuts.,vol.12,no.4,pp.551–572,4thquarter2010.[61]K.Gulati,B.Evans,J.Andrews,andK.Tinsley,“Statisticsofcochannel
interferenceina eldofPoissonandPoisson-Poissonclusteredinter-ferers,”IEEETrans.SignalProcess.,vol.58,no.12,pp.6207–6222,Dec.2010.
[62]K.Gulati,“Radiofrequencyinterferencemodelingandmitigationin
wirelessreceivers,”Ph.D.thesis,TheUniversityofTexasatAustin,Aug.2011.
[63]A.Chopra,“Modelingandmitigationofinterferenceinwirelessre-ceiverswithmultipleantennae,”Ph.D.thesis,TheUniversityofTexasatAustin,Dec.2011.
3070[64]C.Merola,A.Guidotti,M.DiRenzo,F.Santucci,andG.E.Corazza,
“Averagesymbolerrorprobabilityinthepresenceofnetworkinterfer-enceandnoise,”mun.,pp.1–6.[65]A.ChopraandB.Evans,“Jointstatisticsofradiofrequencyinterference
inmulti–antennareceivers,”IEEETrans.SignalProcess.,vol.60,no.7,pp.3588–3603,July2012.
[66]K.Hamdi,“Ausefullemmaforcapacityanalysisoffadinginterference
channels,”mun.,vol.58,no.2,pp.411–416,Feb.2010.
[67]A.Erdelyi,W.Magnus,F.Oberhettinger,andF.G.Tricomi,Higher
TranscendentalFunctions–VolII.McGraw–HillBookCompany,Inc.,1953.
[68]A.P.Prudnikov,Y.A.Brychkov,andO.I.Marichev,Integralsand
Series–Vol.3:MoreSpecialFunctions,ISBN5–9221–0325–3,2003.[69]M.AbramowitzandI.A.Stegun,HandbookofMathematicalFunctions
withFormulas,Graphs,andMathematicalTables,9thedition.DoverPublications,1972.
[70]A.Erdelyi,W.Magnus,F.Oberhettinger,andF.G.Tricomi,Higher
TranscendentalFunctions–VolI.McGraw–HillBookCompany,Inc.,1953.
[71]M.DiRenzo,C.Merola,A.Guidotti,F.Santucci,andG.
E.Corazza,“Errorperformanceofmulti-antennareceiversinaPoisson eldofinterferers:astochasticgeometryapproach,”mun.,toappear.Available:/stamp/stamp.jsp?tp=&arnumber=6468995.[72]A.Guidotti,V.Buccigrossi,M.DiRenzo,G.E.Corazza,andF.San-tucci,“Outageandsymbolerrorprobabilitiesofdual-hopAFrelayinginaPoisson eldofinterferers,”w.Conf.,pp.1–6.
[73]A.P.Prudnikov,Y.A.Brychkov,andO.I.Marichev,Integralsand
Series–Vol.4:DirectLaplaceTransform.GordonandBreachSciencePublishers,1992.
[74]F.YilmazandM.-S.Alouini,“AnMGF-basedcapacityanalysisofequal
gaincombiningoverfadingchannels,”inProc.2010IEEEInt.Symp.PersonalIndoorMobileRadioCommun.,pp.945–950.
[75]M.K.SimonandM.-S.Alouini,DigitalCommunicationoverFading
Channels,2ndedition.JohnWiley&Sons,Inc.,2005.
[76]F.YilmazandM.-S.Alouini,“Auni edMGF-basedcapacityanalysis
ofdiversitycombinersovergeneralizedfadingchannels,”mun.,vol.60,no.3,pp.862–875,Mar.2012.
[77]F.YilmazandM.-S.Alouini,“Anoveluni edexpressionforthe
capacityandbiterrorprobabilityofwirelesscommunicationsystemsovergeneralizedfadingchannels,”mun.,vol.60,no.7,pp.1862–1876,July2012.
[78]C.Loo,“Astatisticalmodelforaland-mobilesatellitelink,”IEEETrans.
Veh.Technol.,vol.34,no.3,pp.122–127,Aug.1985.
[79]M.DiRenzo,F.Graziosi,andF.Santucci,“Auni edframeworkfor
performanceanalysisofCSI-assistedcooperativecommunicationsoverfadingchannels,”mun.,vol.57,vol.9,pp.2552–2557,Sep.2009.
[80]M.DiRenzo,F.Graziosi,andF.Santucci,“Acomprehensiveframework
forperformanceanalysisofdual-hopcooperativewirelesssystemswith xed-gainrelaysovergeneralizedfadingchannels,”IEEETrans.WirelessCommun.,vol.8,no.10,pp.5060–5074,Oct.2009.
[81]M.DiRenzo,F.Graziosi,andF.Santucci,“Channelcapacityovergen-eralizedfadingchannels:anovelMGF-basedapproachforperformanceanalysisanddesignofwirelesscommunicationsystems,”IEEETrans.Veh.Technol.,vol.59,no.1,pp.127–149,Jan.2010.[82]/CMS/index.php/technical-notes/67.
[83]http://fredrik–j.blogspot.fr/2009/06/meijer–g–more–hypergeometric–
functions.html.
[84]J.Cheng,C.Tellambura,andN.C.Beaulieu,“Performanceofdigital
linearmodulationsonWeibullslow-fadingchannels,”mun.,vol.52,no.8,pp.1265–1268,Aug.2004.
[85]S.NadarajahandS.Kotz,“OntheWeibullMGF,”-mun.,vol.55,no.7,p.1287,July2007.
[86]N.C.Sagias,G.K.Karagiannidis,andG.S.Tombras,“Errorrateanal-ysisofswitcheddiversityreceiversinWeibullfading,”IEEEElectron.Lett.,vol.40,no.11,pp.681–682,May2004.
[87]M.H.IsmailandM.M.Matalgah,“Performanceofdualmaximalratio
combiningdiversityinnonidenticalcorrelatedWeibullfadingchannelsusingPad´eapproximation,”mun.,vol.54,no.3,pp.397–402,2006.
[88]M.H.IsmailandM.M.Matalgah,“OntheuseofPad´eapproximation
forperformanceevaluationofmaximalratiocombiningdiversityoverWeibullfadingchannels,”w.,vol.2006,ArticleID58501,7pages,2006.
IEEETRANSACTIONSONCOMMUNICATIONS,VOL.61,NO.7,JULY2013
[89]T.JinandL.Gonigunta,“ExponentialapproximationtoWeibullrenewal
withdecreasingfailurerate,”putat.,vol.80,no.3,pp.pp.273–285,Mar.2010.
[90]R.S.Anderssen,M.P.Edwards,S.A.Husain,andR.J.Loyd,“Sums
ofexponentialsapproximationsfortheKohlrauschfunction,”inProc.Int.CongressonModellingandSimulation,pp.263–269.
[91]J.Venkataraman,M.Haenggi,andO.Collins,“Shotnoisemodelsfor
outageandthroughputanalysesinwirelessadhocnetworks,”inProc.2006IEEEMilitaryCommun.Conf.,pp.1–7.
[92]A.M.MathaiandR.K.Saxena,GeneralizedHypergeometricFunctions
withApplicationsinStatisticsandPhysicalSciences,LectureNotesinMathematics,vol.348.Springer–Verlang,1973.
[93]C.Newport,D.Kotz,Y.Yuan,R.S.Gray,J.Liu,andC.Elliott,“Ex-perimentalevaluationofwirelesssimulationassumptions,”Simulation,vol.83,no.9,pp.643–661,Sep.2007.
[94]M.DiRenzo,L.Imbriglio,F.Graziosi,andF.Santucci,“Distributed
datafusionovercorrelatedlog-normalsensingandreportingchannels:applicationtocognitiveradionetworks,”IEEETrans.WirelessCom-mun.,vol.8,no.12,pp.5813–5821,Dec.2009.
[95]M.DiRenzo,F.Graziosi,andF.Santucci,“Acomprehensiveframework
forperformanceanalysisofcooperativemulti-hopwirelesssystemsoverlog-normalfadingchannels,”mun.,vol.58,no.2,pp.531–544,Feb.2010.
[96]S.S.Szyszkowicz,H.Yanikomeroglu,andJ.S.Thompson,“Onthe
feasibilityofwirelessshadowingcorrelationmodels,”IEEETrans.Veh.Technol.,vol.55,no.9,pp.4222–4236,Nov.2010.
[97]B.BaszczyszynandM.K.Karray,“Qualityofserviceinwirelesscellu-larnetworkssubjecttolog-normalshadowing,”mun.,vol.61,no.2,pp.781–791,Feb.2013.
[98]D.B.OwenandG.P.Steck,“Momentsoforderstatisticsfromthe
equicorrelatedmultivariatenormaldistribution,”TheAnnalsofMathe-maticalStatistics,vol.33,no.4,pp.1286–1291,Dec.1962.
[99]A.Goldsmith,WirelessCommunications.CambridgeUniversityPress,
2005.
[100]G.L.Stuber,PrinciplesofMobileCommunication,2ndedition.Kluwer
AcademicPublishers,1996.
[101]G.Auer,V.Giannini,I.Godor,P.Skillermark,M.Olsson,M.Imran,
D.Sabella,M.Gonzalez,C.Desset,andO.Blume,“Cellularenergyef ciencyevaluationframework,”inProc.2011IEEEVeh.Technol.Conf.–Spring,pp.
1–6.MarcoDiRenzo(S’05–AM’07–M’09)wasborninL’Aquila,Italy,in1978.HereceivedtheLaurea(cumlaude)andthePh.D.degreesinElectricalandInformationEngineeringfromtheDepartmentofElectricalandInformationEngineering,UniversityofL’Aquila,Italy,inApril2003andinJanuary2007,respectively.
FromAugust2002toJanuary2008,hewaswiththeCenterofExcellenceforResearchDEWS,UniversityofL’Aquila,Italy.FromFebruary2008toApril2009,hewasaResearchAssociatewiththe
TelecommunicationsTechnologicalCenterofCatalonia(CTTC),Barcelona,Spain.FromMay2009toDecember2009,hewasanEPSRCResearchFellowwiththeInstituteforDigitalCommunications(IDCOM),TheUniversityofEdinburgh,Edinburgh,UnitedKingdom(UK).
SinceJanuary2010,hehasbeenaTenuredResearcher(“Charg´edeRechercheTitulaire”)withtheFrenchNationalCenterforScienti cResearch(CNRS),aswellasafacultymemberoftheLaboratoryofSignalsand
Systems(L2S),ajointresearch´d’Electricit´´e(SUPELEC),´laboratoryoftheCNRS,theEcoleSup´erieure
andtheUniversityofParis–SudXI,Paris,France.Hismainresearchinterestsareintheareaofwirelesscommunicationstheory.HeisaPrincipalInvestigatorofthreeEuropean–fundedresearchprojects(MarieCurieITN–GREENET,MarieCurieIAPP–WSN4QoL,andMarieCurieITN–CROSSFIRE).
Dr.DiRenzoistherecipientofthespecialmentionfortheoutstanding ve–year(1997–2003)academiccareer,UniversityofL’Aquila,Italy;theTHALESCommunicationsfellowshipfordoctoralstudies(2003–2006),UniversityofL’Aquila,Italy;theBestSpin–OffCompanyAward(2004),AbruzzoRegion,Italy;theTorresQuevedoawardforresearchonultrawidebandsystemsandcooperativelocalizationforwirelessnetworks(2008–2009),MinistryofScienceandInnovation,Spain;the“D´erogationpourl’EncadrementdeTh`ese”(2010),UniversityofParis–SudXI,France;the2012IEEECAMADBestPaperAwardfromtheIEEECommunicationsSociety;andthe2012ExemplaryReviewerAwardfromtheIEEEWIRELESSCOMMUNICATIONSLETTERSoftheIEEECommunicationsSociety.HecurrentlyservesasanEditoroftheIEEECOMMUNICATIONSLETTERS.
正在阅读:
Average Rate of Downlink Heterogeneous Cellular Networks07-21
本科毕业论文-沟谷网络分析 - 图文11-04
月度优秀员工评选方案(1)03-20
敬业与乐业 教学设计04-16
《中央银行学》第一阶段导学重点12-09
材料作文素材02-05
防尘盖-设计说明书(毕业设计)10-18
现代控制理论实验310-03
绿豆发芽记作文400字07-02
- 1Application of Neural Networks in Power System Security Assessment
- 210 Understanding the difficulty of training deep feedforward neural networks
- 3Cloud RAN for Mobile Networks - a Technology Overview
- 4Packet Loss in Mobile Ad Hoc Networks
- 5MACD基本介绍MACD的全名为 Moving Average Convergence
- 6MACD基本介绍MACD的全名为 Moving Average Convergence
- 7An event-driven framework for the simulation of networks of spiking neurons
- 8Lifetime-aware multicast routing in wireless ad hoc networks
- 9Application of Neural Networks in Power System Security Assessment
- 10Spark Plasma Sintered Hydroxyapatite Graphite Nanosheet Composite Mechanical and Cellular Properties
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Heterogeneous
- Downlink
- Cellular
- Networks
- Average
- Rate
- Auto CAD 2010下载、注册及安装预览
- 2015~2016年最新北师大版六年级数学下册全册教案(新)
- 2012年主管护师外科护理学《专业实践能力1》精选试题及答案(1)
- 模拟电子电路基础(清华大学出版社) 第5讲 基本共射放大电路的工作原理
- 第12课_反激式变压器的设计
- 物理3-质点、参考系、坐标系 时间和位移(习题)
- quiz 英语 浙江农林
- 充分发挥反映社情民意的民主监督功能研究
- 第1章——数据库系统基础知识
- 28和30谈谈对环境保护的认识和购物的感受
- 2021上半学期英语测试卷————杭州市三小期末测验卷
- 铸铁管安装技术交底
- 会计学原理_06_会计凭证
- 2015秋季保教计划
- 原创 纯手打 超级搞笑 校园双簧剧本
- (0685)《土地资源学》复习思考题答案
- 备考2016写作素材十则
- 内蒙古地区观赏果树栽培的发展现状及前景
- 【绩效】涵盖183个岗位的职务说明书,不用发愁
- 略述印度佛教史文库