Simulations of a G protein-coupled receptor homology model predict dynamic features and a ligand bin

更新时间:2023-08-31 16:06:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

Simulations of a G protein-coupled receptor homology model predict dynamic features and a ligand bin

FEBSLetters582(2008)3335–3342

SimulationsofaGprotein-coupledreceptorhomologymodel

predictdynamicfeaturesandaligandbindingsite

Ste enWolfa,MarcusBo¨ckmanna,b,UdoHo¨welerc,Ju¨rgenSchlittera,KlausGerwerta,*

ab

DepartmentofBiophysics,UniversityofBochum,ND04North,44780Bochum,Germany

DepartmentofTheoreticalChemistry,UniversityofBochum,44780Bochum,Germany

c

CHEOPSMolecularModelling,48341Altenberge,Germany

Received14March2008;revised7July2008;accepted24August2008

Availableonline5September2008EditedbyRobertB.Russell

AbstractAcomputationalapproachtopredictstructuresofrhodopsin-likeGprotein-coupledreceptors(GPCRs)ispre-sentedandevaluatedbycomparisontotheX-raystructuralmod-els.Bycombiningsequencealignment,therhodopsincrystalstructure,andpointmutationdataontheb2adrenoreceptor(b2ar),wepredicta(À)-epinephrine-boundcomputationalmodeloftheb2adrenoreceptor.ThemodelisevaluatedbymoleculardynamicssimulationsandbycomparisonwiththerecentX-raystructuresofb2ar.Theoverallcorrespondencebetweenthepre-dictedandtheX-raystructuralmodelishigh.Especiallythepre-dictionoftheligandbindingsiteisaccurate.Thisshowsthattheproposeddynamichomologymodellingapproachcanbeusedtocreatereasonablemodelsfortheunderstandingofstructureanddynamicsofotherrhodopsin-likeGPCRs.

Ó2008PublishedbyElsevierB.V.onbehalfoftheFederationofEuropeanBiochemicalSocieties.

Keywords:Moleculardynamicssimulation;GPCR;Homologymodel;Beta(2)adrenoreceptor;Epinephrine;Ligandbinding

Inthepresentedapproachwecombinebinaryandmultiplesequencealignment,structuralfeaturesofrhodopsinandpointmutationdataon(À)-epinephrine-b2arinteraction[20]tocre-ateahomologymodel,calledB2AR,whichissubjectedtofreeMDsimulationsinanexplicitmembrane/solventenvironment.Incontrasttodockingofligandsintostatichomologymodels[11–14]orstaticmodelsfromframesoutofMDsimulations[16–19],B2ARcontainsanepinephrinemoleculeinourap-proachduringthewholesimulationperiod.Insodoingwewanttoevaluatethequalityofpossiblebindingmodespro-posedbyexperimentaldata[20].Wethenevaluatestructural,functionalandepinephrinebindingfeaturesofthedynamicmodelbycomparisonwiththehumanb2arcrystalstructures.Asthetwostructuresavailablearerathersimilar,wefocusonthecomparisonwiththePDBstructure2RH1[6],whichistheonewiththehighestresolution.

2.Materialsandmethods

2.1.Sequencealignment

Ratb2ar(UniProtKBaccessionnumberP10608)wassubjectedtobinaryalignmentwithbovinerhodopsin(P02699)usingBLAST(BLO-SUM62matrix)[21].FortheadditionalmultiplesequencecomparisonwithClustalW[22],theclassAGPCRsequencesP34971,P30546,P08911,andQ9H205wereincludedinthealignment.Thebinaryalign-mentwasusedasthebasisformodelling.Themultiplealignmentwasusedtocross-checkifmotivesfoundtobeconservedinthebinaryalign-mentcouldberegardedasbeingmodular.Sequencepartswiththesameresultsinbothalignmentsandcontainingthehighestconservedhelicalresidues[23]werede nedas‘‘anchorgroups’’.Gapswithinhelicalre-gionsweremovedtoloopregionsbyshiftingthesequencetowardsthenextanchorgroup.Furthermoreintraproteinhydrogenbondsandsaltbridges,andthepositioningofpositivecharges(Arg,Lys,His)atthelevelofphosphategroupswithinthemembraneweretakenintoconsiderationasstructuralrestraints.Hydrophilicresidueswithintheheptahelicaltransmembranedomainwereplacedatpositionsinwhichtheywereorientedtowardstheproteincore.Thesequenceofextracellularloop2(el2)wasshiftedtoallowtheformationofadisul-phidebondbetweenCys106(helixIII)andCys184(el2),asseenintherhodopsincrystalstructures.DuetotheirstructuralimportancefortheC-terminalendofhelixVIandtheel2,substitutionofTrp175andArg177byanalogousresiduesTrp173andArg175wasensured.Assmallligandbindingandstructuralchangesduringactivationtakeplacewithinthe7TMdomain[24–26],N-/C-terminaldomainsandintracellularloop3(il3)wereleftoutformodelling.

2.2.Homologymodelling

ChainAofrhodopsincrystalstructure1U19[4]wasusedasabasisstructure.Internalwatermoleculeswereignoredduringmodelbuild-ing.AspalmitylresiduesattheendofhelixVIIIarelocatedontheproteinsurface,formingtheproteindimerisationinterface[6],and

1.Introduction

GPCRsformthelargestgroupofmembranereceptorsandshareacommonstructuralmotifofseventransmembranea-helices(7TMdomain)[1].Membersofthisproteinfamilyarethetargetofmorethan50%ofdrugssoldworldwide[2].Milestonesinunderstandingoftheirmolecularreactionmech-anismsarethedeterminationsoftheX-raystructuresfortwoGPCRs:thevisualreceptorrhodopsin[3,4],andveryrecentlytheb2adrenoreceptor(b2ar)[5,6].TherhodopsinstructuresstimulatedtheoreticalstudiesinwhichitwasusedasthemajortemplatetoexplorestructuralfeaturesandmechanismsofclassAreceptors[1,7–10],includingb2ar[11–14]andotherGPCRs.OurgoalhereistosetupcomputationalmodelsofclassAGPCRsviahomologymodelling.Theyshouldprovideinsightintotheirstructureanddynamicpropertiesinbiologi-calmembranesviaunrestrained(free)moleculardynamics(MD)simulations.Sofar,thisgoalhasbeenapproachedinvariousways[15–19],butduetothelackofinformationonasecondGPCRstructure,theaccuracyofthestructurepredic-tionwasunabletobeassessed.Therecentpublicationofthe rstb2arcrystalstructurenowallowsustoevaluatesuchGPCRmodellingprocedures.

Correspondingauthor.Fax:+492343214626.E-mailaddress:gerwert@bph.rub.de(K.Gerwert).

*

0014-5793/$34.00Ó2008PublishedbyElsevierB.V.onbehalfoftheFederationofEuropeanBiochemicalSocieties.doi:10.1016/j.febslet.2008.08.022

Simulations of a G protein-coupled receptor homology model predict dynamic features and a ligand bin

3336

glycosylationsdonotin uencetheligandbindingofb2ar[27],post-translationalmodi cationswerenottakenintoaccountformodelling.SequencereplacementwasperformedwithSCWRL[28].RemainingstericalclasheswereremovedwithMOBY[29].Sequencegaps/insertsintheloopregionswereresolvedbyaddition/removalofaminoacids,followedbyshortperiodsofsimulatedannealing(5ps),energymini-misationoftherespectiveloopsandfullmodelminimisation.2.3.Additionofepinephrine

TheminimalenergystructureandatomicchargesofepinephrineweredeterminedbyGAUSSIAN03[30]vacuumDFTcalculationswithB3LYP/6-31++G(d,p)andRESPatomicchargescalculation[31].TheproteinmodelwascheckedforinternalcavitieswithMOBY.Epinephrineinitsvacuumminimalenergystructurewasplacedintotheonlycavitylargeenoughtocontaintheligandaccordingtohydro-genbondcontactsdeterminedinpointmutationanalysis[20].Thesecontactswere:Asp113/ammoniummoiety;Asn293/bhydroxylgroup;Ser203,Ser204/metahydroxylgroup;andSer207/parahydroxylgroup.Epinephrinewassubjectedtoamolecularmechanicssteepestdescentminimisationwithdistancerestraintsonpolarresiduesinproteinsidechainsandligandmentionedabove,followedbyminimisationofthe

.Theresultingprotein/li-ligandplussurroundingresidueswithin4A

gandmodelwasusedinthefollowingMDsimulations.

2.4.Molecularmechanicssimulationsanddataanalysis

SimulationswerecarriedoutwithGROMACS3.3[32]bymergingtheGROMOS96force eldandlipidparametersofBergeretal.[33,34]accordingtoSchlegeletal.[9].Allacidic/basicsidechainswerefullychargedexceptAsp79,whichisprotonatedinrhodopsin[35].Atopologyfor(À)-epinephrinewasobtainedfromthePRODRGserver[36]withtheatomicchargesmentionedabove.Theprotein/ligandmodelwasintroducedintoanequilibratedbilayerof256POPCmol-ecules,surroundedbya154mMNaClsolution,followingtheproce-dureofKandtetal.[37].Theresultingsystemcontains68770atoms.Aftersystemequilibration,trajectorieswithalengthof10nswererecorded.Ananalysisofthetrajectories(energies,rootmeansquaredisplacement(RMSD)and uctuations(RMSF)ofatomcoor-dinates)wasperformedusingGROMACS[29]andMOBY[32]anal-ysistools.Therootmeansquare(RMS)deviationofthecrystalstructure2RH1wascalculatedfromtheBfactorsgiveninthecrystalstructure leby

r Bi

ri¼

8p2

S.Wolfetal./FEBSLetters582(2008)3335–3342

withrbeingtherootmeansquaredeviationofthepositionofatomi,andBtherespectiveBfactor.

3.Results

3.1.Equilibrationofmodelstructure

AnalysisbyMOBYcon rmedthatthetotalsystemenergy(Etot)droppedtoits nalvalueduringunrestrainedMDsim-ulationafter6ns.Thetotalenergyoftheprotein(Eprot)reachedaminimumafter8ns.Theseventransmembraneheli- fromthecesremainedwithinanCaatomRMSDof2.3A

startingstructure.Incomparisonto2RH1,itrosetoanaver- within1ns,andclimbedonlyslightlytoanagevalueof2.5A

after7ns.BecauseoftheCa-RMSDaveragevalueof2.8A

comparisonwith2RH1,wetookthelast3nsofthetrajectoryintoaccountforfurtheranalysis.Duringthisperiod,theloopregionsshowedpronouncedmovementswitharesultingrootmeansquare uctuation(RMSF)ofCaatomcoordinatesof

,whilethetransmembranehelicesremainedstable1.2–2.0A

).inposition(RMSFof0.5–0.8A

http://www.77cn.com.cnparisonofX-rayandmodelstructure

InFig.1theX-raystructureandthemean3-DstructureofourB2ARmodelduringthelast3nsofMDsimulationarecomparedwitheachother.TheRMSDresolvedforeachCaatomofthemodelledstructureisshown.Ahighcorrespon-denceisfoundforthepositionsoftheseventransmembranehelices(I-VII).Onehundredandthirtyeightof198(70%)Ca

oftheatomsofthetransmembranehelicesarewithin2.0A

crystalstructure.Thereof75(38%)arewithintheRMSdevia-tioncalculatedfromtheBfactorsofatomcoordinatesinthecrystalstructureandthuswithinthestatisticalsigni canceofthe2RH1coordinates(errorbaroftheB2ARmodelinFig.1containstheRMSdeviationcurveoftheb2arcrystalstructuralmodel).Theyaremostlylocatedinthemiddleofthehelicalbundle.Furthermore,theadditionalhelix

VIII

Fig.1.Rootmeansquaredisplacement(RMSD)ofthemodelledB2ARstructurefrom2RH1foreachCaatom(red)duringlast3nsofMDsimulationcomparedtotherespectiverootmeansquare(RMS)deviationof2RH1calculatedfromBfactorsofthecrystalstructure(black).Therootmeansquare uctuation(RMSF)oftherespectiveB2ARmodelatomcoordinates,equallingtheRMSdeviationofthecoordinatesduringsimulation,isshownasblueerrorbars.Positionsoftheheliceshighlightedingrey.LettersA–FrefertositesshowninFig.2.The7TMmotifcloselyresemblesthecrystalstructure.

Simulations of a G protein-coupled receptor homology model predict dynamic features and a ligand bin

S.Wolfetal./FEBSLetters582(2008)3335–33423337

oftheb2arcrystal[3,6]isidenti edandwithinmax.3.0A

structuralmodel.

AscanbeseeninFig.2A,theremaining30%oftheheliceswheretherewasnomatchbetweenthemodelandtheX-raystructuremostlycorrespondtoproteinpartswithinterproteincontacts,whicharti ciallystabilisetheproteininthecrystal.Suchpositions(denotedA–FinFigs.1and2)clusterattheextracellularendsofhelicesI(A)andVI(E),andtheintracel-lularendsofI(B),III(C),andVII(F).WhilecontactsBandFconnecttwoproteinsintheproposedb2ardimer[6],Aisformedbetweentwob2arproteinsnotengagedinadimer.CandEareformedbetweenb2arandneighbouringT4lysozymeportionsofthefusionprotein.Foramoredetailedcomparisonofthetertiarystructureofthetwoadrenergicreceptormodels,their3-DstructuresaresuperposedinFig.2B–D.Incompar-isonwiththecrystalstructure,helixIshowsatiltof33°attheextracellularand13°attheintracellularhalf,withIle43being

thecentreofrotation,leadingtoapositionaldeviationof10A

oftheintracellularend.Furtheroftheextracellularand5A

shiftsinpositionsawayfromtheircorresponding2RH1posi- out-tionscanbeobservedfortheextracellularendsofII(5A

inwardmovement),VI(4A inwardwardmovement),III(4A

outwardmovement)andtheintracel-movement)andVII(4A

inwardmovement)andVII(5A outwardlularendsofIII(4A

movement).ThetiltingmovementofhelixIisfollowedbyashiftoftheextracellularendofIIandtheintracellularendofhelixVII,leadingtotheirdeviationfromthecrystalstruc-ture.Althoughtheil3ismissing,theintracellularendsofheli- ofandthereforeclosetocesVandVIremainwithin4A

2RH1.

Asexpected,largerdeviationsareobservedfortheloopre-gions(extracellularloops(el)1–3andintracellularloops(il)1–3),butremainreasonablyclosetothecrystalstructure.One

(peakDinexceptionisel2,whichisdisplacedbyupto20A

Fig.1).Aswestartwithrhodopsinasthebasisstructuralinformation,theloopispresentasabhairpinwhichentersdeepintotheproteincore.Asaresult,thedisulphidebondob-servedinrhodopsinbetweenel2andhelixIIIisreproducedinthemodelbyconnectingCys106(helixIII)andCys184(el2).However,crystalstructure[6]andpointmutationanalysisofb2ar[38]pointtotwodisulphidebonds,onebetweenCys106/Cys191,andtheotherbetweenCys184/Cys190.Be-causethedisulphidebondsarenotcorrectlyrecognizedinthemodel,theel2seemsthusincorrectlypredicted,whichcausesthelargestdeviationbetweenmodelandX-raystruc-ture.In2RH1,theel2formsahelixontopofthebindingcre-viceinsteadofthebhairpindeepinsidetherhodopsinmolecule.However,theel2formsvariouscontactstotheT4lysozymeportionofneighbouringproteinswithin2RH1(con-tactDinFig.2),andthusmaynotrevealitsnativestructureinthecrystalstructure.Inaddition,theloopisnotobservedinthesecondcrystalstructureavailable[5]becauseoflocaldisor-der.Duetoitsdisulphidelinktotheel2,themodelledextracel-lulartopofhelixIIIshowsashiftinpositionrelativeto2RH1aswell.

3.3.Dynamicfeatures

InFig.3featuresofthemodelledstructure,whichareeluci-datedbydynamics,areshownindetail.Themodelexhibitsasta-bleinterhelicalhydrogenbondbetweenthehighly

conserved

Fig.2.(A)Interproteincontactsinthecrystalstructuralmodel.PeakpositionsA–FinFig.1coincidewithcrystalcontactsin2RH1closetothe7TMmotif.(B–D)Comparisonofb2arcrystalstructureandmeanmodelstructureduringlast3nsofMDsimulation:side(B),extracellular(C)andintracellular(D)view.2RH1inblue,meanstructureofthedynamicmodelingreen.

Simulations of a G protein-coupled receptor homology model predict dynamic features and a ligand bin

3338S.Wolfetal./FEBSLetters582(2008)3335–3342

Fig.3.(A)InterhelicalcontactbetweenAsn51andSer319duringfreeMDsimulation.Right:Distanceofhydrogenbonddonor/acceptoratoms.Hydrogenbonddistanceshighlightedinyellow.Thebondremainsstableduringsimulation.(B)Comparisonofioniclockmotifs.Topleft:rhodopsincrystalstructure1U19.Topright:b2arcrystalstructure2RH1.Bottomleft:Modelafter1.5nsMDsimulation.Bottomright:DistanceplotofArg131andGlu268duringfreeMDsimulation.After0.5ns,theGlu/Argionpairlosesitsconnection.

Asn51inhelixIandSer319inhelixVII,ascanbeseeninFig.3A.Thisbondcreatesastablehydrophilicconnectionbetweenheli-cesIandVII.Theioniclock,involvingthehighlyconservedE/DRYmotifinhelixIII[5],opensduringfreeMDsimulationinniceagreementwiththeX-raystructure(Fig.3B):after0.5ns,Arg131(helixIII)losesitsconnectiontoGlu268(helixVI)be-causeofelectrostaticinteractionwithAsp130.

3.4.Ligandbindingsite

TheligandbindingsiteintheX-rayandthesimulatedmodelisshowninFig.4.TheB2ARmodelshowsonlyonecavity

withintheproteinlargeenoughtoaccommodatethenativeli-gandepinephrine.Residuesknowntobeinvolvedinligandbinding[20]arefoundatthesurfaceofthecavity.Itslocationandform twellthedemandsofepinephrine,andiscompara-bletotheonein2RH1.Deviationsinitsformareduetoadif-ferentboundaryformedbyel2inourmodelandthecrystalstructure,respectively:whileinthecrystalstructuralmodel2RH1,thenicheisopentotheextracellularmedium,itisclosedcompletelybytheloopinthesimulatedmodel.How-everthereisahighcorrespondenceinthepositionsoftheli-gands.Thesmalldi erencesobservedmayalsoberelated

to

Simulations of a G protein-coupled receptor homology model predict dynamic features and a ligand bin

S.Wolfetal./FEBSLetters582(2008)3335–33423339

Fig.4.ProteinsurfaceofthebindingpocketofB2ARinperpendicularview.Top:crystalstructure2RH1.Carazololshowninsticks.Bottom:dynamicmodelafter10ns.Epinephrineshowninsticks.Thebindingpocketinthemodeliscomparablebylocationandformtotheonein2RH1.

thee ectoftherespectiveligandonthereceptor:whileepi-nephrineusedinthemodelisanagonist,carazololinthecrys-talstructuralmodelisapartialinverseagonist,whichmightbindinaslightlydi erentmode.Wethereforefocusonade-tailedevaluationofthebindingmodeofepinephrineobservedinourB2ARmodel.Notethatdockingoftheagonistisopro-teronolinto2RH1[26]didnotresultinareasonablebindingmode,so2RH1mightbealesssuitedtargetforanalysisofagonistbindinginb2ar.Fig.5showsthecontactpatternbetweenepinephrineandB2ARduringfreeMDsimulationandarepresentativebindingstructureafter10nsofsimulation.Epinephrineformshydro-phobiccontactstoVal114,Phe289,andPhe290,andhydrogenbondstoAsp113,Asn293,Ser203,Ser204,andSer207.Allres-iduesareknownfrompointmutationanalysisandarepro-posedtointeractwithepinephrine[20,39,40].Concerningthepredicteddynamicsofthosecontacts:epinephrinelosesitsini-tialcontactstoSer207andAsn293duringthe rst0.1ns.

After

Simulations of a G protein-coupled receptor homology model predict dynamic features and a ligand bin

3340S.Wolfetal./FEBSLetters582(2008)3335–3342

Fig.5.Ligandbindingindynamichomologymodel.Left:Contactanalysisofreceptormodelandepinephrine.A:alkylgrouporacceptorcontact;B:proteinbackbonecontact;D:donorcontact;E:contactonedgeofring;H:heterogroup(epinephrine);R:contactonringplane;S:aminoacidsidechain.Epinephrineammoniummoietyandbhydroxylgroupcontactsremainstableduringsimulation.TheterminalmethylmoietyisintercalatedbetweenPhe289andPhe290.After5ns,thecatecholringformscontactstoVal114andPhe290.Thecatecholhydroxylgroupbondpatternchangesafter5ns.Right:representativebindingmodeofepinephrineat10nsoffreeMDsimulation.Epinephrineinorange.EpinephrineformshydrophobiccontactstoVal114,Phe290,andPhe290,andhydrophiliccontactstoAsp113,Asn293,Ser203,Ser204,andSer207.

5ns,thecatecholringofepinephrine ipstoapositionwhereitissandwichedbetweenVal114andPhe290.TheterminalmethylmoietyformsastablevanderWaalscontactwiththephenylringsofPhe289andPhe290.Unlikeinthestartingstructure,Asn293formsahydrogenbondtotheammoniummoietyinsteadofthebhydroxylgroupofepinephrine,whichengagesinahydrogenbondwithAsp113,attachingtheligandinaclamp-likemannertothecarboxylicresidue.Ser203andSer207formhydrogenbondcontactstothemetaandparahy-droxylgroupsofepinephrine,respectively,whileSer204bindsoccasionallytothemetahydroxylgroup.

4.Discussion

Whiledevelopingourmodellingtechniquebeforethepubli-cationoftheb2arcrystalstructures,weappreciatetheniceagreementbetweenourmodelandthecrystalstructureduringsimulation(seeFigs.1and2).Thedynamicmodelisparticu-larlyaccurateatreproducingthe7TMdomains,andtheligandbindingsite.The exibleloopsshowlargerdeviations,andel2,whichshowsthelargestdeviationbetweenrhodopsinandb2ar,togetherwiththeintramoleculardisulphidebondpatternisnotwellpredicted.However,thedeviationsbetweenthemodelledandtheX-raystructurearemostlyrelatedtointer-proteincontactsobservedinthecrystal.

Withrespecttodynamicproperties,amoredetailedcompar-isonshowsthatthecontactofAsn51andSer319connectinghelicesIandVIIiscontinuouslymaintained.Thiscontactcanalsobeobservedinthecrystalstructuralmodel[6].ItwasalreadyreportedtobestableinMDsimulationsonrho-dopsinandisbelievedtobeanimportantandconservedcon-nectionmotifofGPCRs[9].Asn51isthemostconservedresidueinHelixI[23].Pointmutationstudiesontheanalogousa1B-adrenergicreceptor[41]demonstratedthatamutationto

Alaresultsinaconstitutivelyactivereceptor,whilemutationtoAsp,whichcanexhibittheobservedhydrogenbondaswell,didnothaveanimpactonthereceptorfunction.Thehydrogenbondthereforeseemstobeimportantfordi erentiatingbe-tweenactiveandinactiveconformationofthereceptor.

ThesaltbridgeformedbetweenAsp130andArg131isimportantforkeepingthereceptorinaninactivestate.ItisrupturedviaaprotonationofAsp130uponreceptoractiva-tion.MutationofAsp130toAsnshowsanincreaseinbasalactivityofthereceptor[42],andArg131isakeyresidueforGproteinbinding[24].TheopeningofthesaltbridgebetweenArg131andGlu268,afeaturefoundintheX-raystructuresoftheb2adrenergicreceptor[5,6]butnotinrhodopsin,isaccu-ratelypredictedinthesimulatedmodel.Interestingly,pointmutationanalysisshowsthatmutationofGlu268toGlnorAlaresultsinaconstitutivelyactivereceptor,whichwasinter-pretedtoberelatedtoaninteractionbetweenAsp130/Arg131andGlu268[42].Crystalstructuresandsimulationalikepointtoaweakeningofthisinteractioninb2arcomparedtorhodop-sin.Itseemstoberelatedtothebasalactivityofb2ar,whilerhodopsindoesnotexhibitsuchactivityintheinactivestate[5].

AscanbeseeninFig.4,theligandbindingnicheisalsowellpredicted.Thebehaviourof(À)-epinephrineduringsimulation(showninFig.5)isremarkable:although(À)-epinephrinewasdockedintoamodelderivedfromrhodopsininaninactiveconformation,epinephrine tswellintothecavityappearingduringmodelbuildinginitslowest-energyconformation.Thereorientationafter5nspositionstheligandintoabindingmodewhichagreeswellwithpointmutationanalysisandli-gandbindingassays.EpinephrineestablishestheproposedhydrogenbondpatternwithSerines203,204and207men-tionedinRef.[43].Thesigni canceofhydrophobiccontactstoPhe289andPhe290foragonistbindingiscon rmedbypointmutationanalysis[40].Val114ishighlyconserved

in

Simulations of a G protein-coupled receptor homology model predict dynamic features and a ligand bin

S.Wolfetal./FEBSLetters582(2008)3335–3342theadrenergicreceptorfamily,andmutationtoAlaleadstoa300-foldlossofagonista nitycomparedtoa3-foldlossofantagonista nity[39].Theclamp-likeconnectionofammo-niumgroup,bhydroxylgroupandAsp113sidechainwithAsn293bondedtotheammoniumgroupexplainspointmuta-tiondataonAsn293[44]inawaynotyetreported.AswitchofenantiomerwouldinterferewiththeconnectiontobothAsp113andAsn293.MutationofAsn293toleucineandsub-sequentlossofaconnectinghydrogenbondwoulda ectbind-ingnegativelyaswell.Furthermore,mutationofAsn293toAspwouldputanegativelychargedresidueclosetoAsp113andperturbthebindingpatternnecessaryforreceptoractiva-tion,whicho ersanexplanationtothedatainRef.[45].Asimilarring-likemodecanbeseenin2RH1betweencarazololandAsp113(seeFig.4DinRef.[26]).Dockingofepinephrineintotheproteinmodelthereforeleadstoadynamicbindingmodewhichisinagreementwithdataonligandbindingdur-ingfreeMDsimulation.

5.Conclusions

DuringfreeMDsimulation,ourdynamichomologymodelofB2ARreproducesstructuralanddynamicpropertieswhicharereportedfortheX-raystructuralmodel.Themodelexhib-itsacavitywhichmeetsthestericalandelectrostaticdemandsofthenativeagonistepinephrine,whichbindstotheproteininastablebindingmodeduringsimulation.Therefore,GPCRmodelscreatedthiswaycanbeusedtogaininsightintopro-teinstructure,andreceptor/ligandbindingdynamicswhicharenotaccessiblebystatichomologymodels.

Acknowledgements:TheauthorswouldliketothanktheNICJu¨lich(ProjectNo.hbo26)andtheRRZKKo¨lnforprovidingcomputingtime,andtheRuhr-UniversityResearchSchoolforadditionalfunding.TheyarealsogratefultoUlrikeKru¨gerandKeithHeysmondforimprovingtheEnglishofthemanuscript.AllmolecularimageswereproducedwithPyMOL[46].

AppendixA.Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,intheonlineversion,atdoi:10.1016/j.febslet.2008.08.022.References

[1]Pierce,K.L.,Premont,R.T.andLefkowitz,R.J.(2002)Seven-transmembranereceptors.NatureRev.3,639–650.

[2]Lundstrom,K.(2006)LatestdevelopmentindrugdiscoveryonG

protein-coupledreceptors.Curr.ProteinPept.Sci.7,465–470.[3]Palczweski,K.,Kumasaka,T.,Hori,T.,Behnke,C.A.,Moto-shima,H.,Fox,B.A.,LeTrong,L.,Teller,D.C.,Okada,T.,Stenkamp,R.E.,Yamamoto,M.andMiyano,M.(2000)Crystalstructureofrhodopsin:aG-proteincoupledreceptor.Science289,739–745.

[4]Okada,T.,Sugihara,M.,Bondar,A.N.,Elstner,M.,Entel,P.and

Buss,V.(2004)Theretinalconformationrhodopsininlightofanew2.2A

anditsenvironmentin

crystalstructure.J.Mol.Biol.342,571–583.

[5]Rasmussen,S.G.,Choi,H.J.,Rosenbaum,D.M.,Kobilka,T.S.,

Thian,F.S.,Edwards,P.C.,Burghammer,M.,Ratnala,V.R.,Sanishvili,R.,Fischetti,R.F.,Schertler,G.F.,Weis,W.I.and

3341

Kobilka,B.K.(2007)Crystalstructureofthehumanbeta(2)adrenergicG-protein-coupledreceptor.Nature450,383–387.[6]

Cherezov,V.,Rosenbaum,D.M.,Hanson,M.A.,Rasmussen,S.G.,Thian,F.S.,Kobilka,T.S.,Choi,H.J.,Kuhn,P.,Weis,W.I.,Kobilka,B.K.andStevens,R.C.(2007)High-resolutioncrystalstructureofanengineeredhumanbeta(2)-adrenergicGproteincoupledreceptor.Science318,1258–1265.

[7]Ballesteros,J.andPalczewski,K.(2001)Gprotein-coupledreceptordrugdiscovery:Implicationsfromthecrystalstructureofrhodopsin.Curr.Opin.DrugDiscov.Dev.4,561–574.

[8]

Ballesteros,J.A.,Shi,L.andJavitch,J.A.(2001)StructuralmimicryinGprotein-coupledreceptors:implicationsofthehigh-resolutionstructureofrhodopsinforstructure-functionanalysisofrhodopsin-likereceptors.Mol.Pharmacol.60,1–19.[9]

Schlegel,B.,Sippl,W.andHo¨ltje,H.D.(2005)Moleculardynamicssimulationsofbovinerhodopsin:in uenceofproton-ationstatesanddi erentmembrane-mimickingenvironments.J.Mol.Model.12,49–64.

[10]

Huber,T.,Botelho,A.V.,Beyer,K.andBrown,M.F.(2004)MembranemodelfortheG-protein-coupledreceptorrhodopsin:hydrophobicinterfaceanddynamicalstructure.Biophys.J.86,2078–2100.

[11]

Bissantz,C.,Bernard,P.,Hilbert,M.andRognan,D.(2003)Protein-basedvirtualscreeningofchemicaldatabases.II.ArehomologymodelsofGprotein-coupledreceptorssuitabletargets?Proteins:Struct.Funct.Genet.50,5–25.

[12]

Furse,K.E.andLybrand,T.P.(2003)Three-dimensionalmodelsforb-adrenergicreceptorcomplexeswithagonistsandantago-nists.J.Med.Chem.46,4450–4462.

[13]

Freddolino,P.L.,Kalani,M.Y.S.,Vaidehi,N.,Floriano,W.B.,Hall,S.E.,Trabanino,R.J.,Kam,V.W.T.K.andGoddardIII,W.A.(2004)http://www.77cn.com.cnA101,2736–2741.

[14]

Gouldson,P.R.,Kidley,N.J.,Bywater,R.P.,Psaroudakis,G.,Brooks,H.D.,Diaz,C.,Shire,D.andReynolds,C.A.(2004)Towardtheactiveconformationsofrhodopsinandtheb2-adrenergicreceptor.Proteins:Struct.Funct.Bioinform.56,67–84.

[15]

Spijker,P.,Vaidehi,N.,Freddolino,P.L.,Hilbers,P.A.J.andGoddardIII,W.A.(2006)Dynamicbehavioroffullysolvatedb2-adrenergicreceptor,http://www.77cn.com.cnA103,4882–4887.

[16]

Ivanov,A.A.,Fricks,I.,Harden,T.K.andJacobson,K.A.(2006)MoleculardynamicssimulationoftheP2Y14receptorliganddockingandidenti cationofaputativebindingsiteofthedistalhexosemoiety.Bioorg.Med.Chem.Lett.17,761–766.

[17]

Hallmen,C.andWiese,M.(2006)Moleculardynamicssimula-tionofthehumanadenosineA(3)receptor:http://www.77cn.com.cnput.AidedMol.Des.20,673–684.

[18]

Rivail,L.,Chipot,C.,Maigret,B.,Bestel,I.,Sicsic,S.andTarek,M.(2007)Large-scalemoleculardynamicsofaGprotein-coupledreceptor,thehuman5-HT4serotoninreceptor,inalipidbilayer.Theochem817,19–26.

[19]

Espinoza-Fonseca,L.M.,Pedretti,A.andVistoni,G.(2008)Structureanddynamicsofthefull-lengthM1muscarinicacetyl-cholinereceptorstudiedbymoleculardynamicssimulations.Arch.Biochem.Biophys.469,142–150.

[20]Swaminanth,G.,Xiang,Y.,Lee,T.W.,Steenhuis,J.,Parnot,C.andKobilka,B.K.(2004)Sequentialbindingofagoniststotheb2adrenoreceptor.J.Biol.Chem.279,686–691.[21]

Altschul,S.F.,Madden,T.L.,Scha¨ er,A.A.,Zhang,J.,Zhang,Z.,Miller,W.andLipman,D.J.(1997)GappedBLASTandPSI-BLAST:anewgenerationofproteindatabasesearchprograms.NucleicAcidsRes.25,3389–3402.

[22]

Higgis,D.,Thompson,J.,Gibson,T.,Thompson,J.D.,Higgis,D.G.andGibson,T.J.(1994)CLUSTALW:improvingthesensitivityofprogressivemultiplesequencealignmentthroughsequenceweighting,position-speci cgappenaltiesandweightmatrixchoice.NucleicAcidsRes.22,4673–4680.

[23]

Ballesteros,J.A.andWeinstein,H.(1995)Integratedmethodsfortheconstructionofthree-dimensionalmodelsandcomputational

Simulations of a G protein-coupled receptor homology model predict dynamic features and a ligand bin

3342

probingofstructure–functionrelationsinGproteincoupledreceptors.Meth.Neurosci.25,366–428.

[24]Gether,U.(2000)UncoveringmolecularmechanismsinvolvedinactivationofGprotein-coupledreceptors.Endocr.Rev.21,90–113.

[25]

Kim,J.-M.,Hwa,J.,Garriga,P.,Reeves,P.J.,RajBhandary,U.L.andKhorana,H.G.(2005)Light-drivenactivationofb2-adrenergicreceptorsignalingbyachimericrhodopsincontainingtheb2-adrenergicreceptorcytoplasmicloops.Biochemistry44,2284–2292.

[26]

Rosenbaum,D.M.,Cherezov,V.,Hanson,M.A.,Rasmussen,S.G.F.,Thian,F.S.,Kobilka,T.S.,Choi,H.-J.,Yao,X.-J.,Weis,W.I.,Stevens,R.C.andKobilka,B.K.(2007)GPCRengineeringyieldshigh-resolutionstructuralinsightsintob2-adrenergicrecep-torfunction.Science318,1266–1273.

[27]

Rands,E.,Candelore,M.R.,Cheung,A.H.,Hill,W.S.,Strader,C.D.andDixon,R.A.F.(1990)Mutationalanalysisofb-adrenergicreceptorglycosylation.J.Biol.Chem.265,10759–10764.

[28]Canutescu,A.A.,Shelenkov,A.A.andDunbrackJr.,R.L.(2003)Agraph-theoryalgorithmforrapidproteinside-chainprediction.ProteinSci.12,2001–2014.[29]Ho¨weler,U.(2007)MAXIMOBY8.1andMOBY3.0,CHEOPS,Altenberge,Germany.

[30]

Frisch,M.J.,Trucks,G.W.,Schlegel,H.B.,Scuseria,G.E.,Robb,M.A.,Cheeseman,J.R.,Montgomery,Jr.,J.A.,Vreven,T.,Kudin,K.N.,Burant,J.C.,Millam,J.M.,Iyengar,S.S.,Tomasi,J.,Barone,V.,Mennucci,B.,Cossi,M.,Scalmani,G.,Rega,N.,Petersson,G.A.,Nakatsuji,H.,Hada,M.,Ehara,M.,Toyota,K.,Fukuda,R.,Hasegawa,J.,Ishida,M.,Nakajima,T.,Honda,Y.,Kitao,O.,Nakai,H.,Klene,M.,Li,X.,Knox,J.E.,Hratchian,H.P.,Cross,J.B.,Bakken,V.,Adamo,C.,Jaramillo,J.,Gomperts,R.,Stratmann,R.E.,Yazyev,O.,Austin,A.J.,Cammi,R.,Pomelli,C.,Ochterski,J.W.,Ayala,P.Y.,Moro-kuma,K.,Voth,G.A.,Salvador,P.,Dannenberg,J.J.,Zakrzew-ski,V.G.,Dapprich,S.,Daniels,A.D.,Strain,M.C.,Farkas,O.,Malick,D.K.,Rabuck,A.D.,Raghavachari,K.,Foresman,J.B.,Ortiz,J.V.,Cui,Q.,Baboul,A.G.,Cli ord,S.,Cioslowski,J.,Stefanov,B.B.,Liu,G.,Liashenko,A.,Piskorz,P.,Komaromi,I.,Martin,R.L.,Fox,D.J.,Keith,T.,Al-Laham,M.A.,Peng,C.Y.,Nanayakkara,A.,Challacombe,M.,Gill,P.M.W.,John-son,B.,Chen,W.,Wong,M.W.,Gonzalez,C.andPople,J.A.(2004).Gaussian03,RevisionC.02.GaussianInc.,WallingfordCT,USA.

[31]

Burisch,C.,Wildner,G.F.andSchlitter,J.(2007)BioinformatictoolsuncovertheC-terminalstrandofRubiscoÕslargesubunitashot-spotforspeci city-enhancingmutations.FEBSLett.581,741–748.

[32]

VanderSpoel,D.,Lindahl,E.,Hess,B.,Groenhof,G.,Mark,A.E.andBerendsen,H.J.C.(2005)GROMACS:fast, exible,http://www.77cn.com.cnput.Chem.26,1701–1718.

S.Wolfetal./FEBSLetters582(2008)3335–3342

[33]Berger,O.,Edholm,O.andJahnig,F.(1997)Moleculardynamics

simulationsofa uidbilayerofdipalmitoylphosphatidylcholineatfullhydration,constantpressure,andconstanttemperature.Biophys.J.72,2002–2013.

[34]Tieleman,D.P.,Sansom,M.S.P.andBerendsen,H.J.C.(1999)

Alamethicinhelicesinabilayerandinsolution:moleculardynamicssimulations.Biophys.J.73,2376–2392.[35]Fahmy,K.,Ja¨ger,F.,Beck,M.,Zvyaga,T.A.,Sakmar,T.P.and

Siebert,F.(1993)Protonationstatesofmembrane-embeddedcarboxylicacidgroupsinrhodopsinandmetarhodopsinII:http://www.77cn.com.cnA90,10206–10210.

[36]Schuettelkopf,A.W.andvanAalten,D.M.F.(2004)PRODRG—

atoolforhigh-throughputcrystallographyofprotein-ligandcomplexes.ActaCrystallogr.D60,1355–1363.

[37]Kandt,C.,Schlitter,J.andGerwert,K.(2004)Dynamicsofwater

moleculesinthebacteriorhodopsintrimerinexplicitlipid/waterenvironment.Biophys.J.86,705–714.

[38]Dohlman,H.G.,Caron,M.G.,DeBlasi,A.,Frielle,T.and

Lefkowitz,R.J.(1990)Roleofextracellulardisulphide-bondedcysteinesintheligandbindingfunctionoftheb2-adrenergicreceptor.Biochemistry29,2335–2342.

[39]Chelikani,P.,Hornak,V.,Eilers,M.,Reeves,P.J.,Smith,S.O.,

RajBhandary,U.L.andKhorana,H.G.(2007)http://www.77cn.com.cnA104,7027–7032.

[40]Strader,C.D.,Sigal,I.S.andDixon,R.A.F.(1989)Structural

basisofb-adrenergicreceptorfunction.FASEBJ.3,1825–1832.[41]Scheer,A.,Fanelli,F.,Costa,T.,DeBenedetti,P.G.and

Cotecchita,S.(1996)Constitutivelyactivemutantsofthea1B-adrenergicreceptor:roleofhighlyconservedpolaraminoacidsinreceptoractivation.EMBOJ.15,3566–3578.

[42]Ballesteros,J.A.,Jensen,A.D.,Liapakis,G.,Rasmussen,S.G.F.,

Shi,L.,Gether,U.andJavitch,J.A.(2001)Activationofthebreceptorinvolvesdisruptionofanioniclockbetween2-adrenergicthecytoplasmicendsoftransmembranesegments3and6.J.Biol.Chem.276,29171–29177.

[43]Liapakis,G.,Ballesteros,J.A.,Papachristou,S.,Chan,W.C.,

Chen,X.andJavitch,J.A.(2000)Theforgottenserine.J.Biol.Chem.275,37779–37788.

[44]Wieland,K.,Zuurmond,H.M.,Andexinger,S.,IJzerman,A.P.

andLohse,M.J.(1996)InvolvementofAsn-293instereospeci http://www.77cn.com.cnA93,9276–9281.

[45]Hannawacker,A.,Krasel,C.andLohse,M.(2002)Mutationof

Asn293toAspintransmembranehelixVIabolishesagonist-inducedbutnotconstitutiveactivityoftheb2-adrenergicrecep-tor.Mol.Pharmacol.62,1431–1437.

[46]DeLano,W.L.(2002)ThePyMOLMolecularGraphicsSystem,

DeLanoScienti c,PaloAlto,CA,USA.

本文来源:https://www.bwwdw.com/article/p2xi.html

Top