世界智能制造装备产业发展总体现状和趋势

更新时间:2024-07-11 21:14:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

世界智能制造装备产业发展总体现状和趋势

智能制造装备是《国务院关于加快培育和发展战略性新兴产业的

决定》和《中华人民共和国国民经济和社会发展第十二个五年规划纲要》中明确的高端装备制造业领域中的重点方向。什么是智能制造装备?智能制造装备的范围又包括哪些具体的产品和产业?本文在大量调研国内外文献的基础上,对国内外有关智能制造及装备的定义和产业范围进行了梳理,并对当前智能制造装备产业的发展现状和技术发展趋势,以及我国发展智能制造装备产业面临的机遇与挑战进行了简要的描述。

一、智能制造装备的定义和产业范围界定 (一)智能制造的提出及其背景

制造业的发展先后经历了手工制作、流水线制造、自动化制造、柔性自动化和集成化制造、并行规划设计及敏捷化制造等阶段。就自动化制造(也称工业自动化)阶段而言,大致每十年上一个台阶:20世纪50~60年代是单机数控;70年代以后则是数控(CNC)机床及由它们组成的自动化岛;80年代出现了世界性的柔性自动化热潮。与此同时,出现了计算机集成制造,但与实用化相距甚远。

2015/10/13

1 表1 自动化制造发展进程表 时间 20世纪60年代 20世纪70年代 内容 单机数控 CNC机床及组成的自动化“孤岛” 20世纪80年代 世界性的柔性自动化热潮 资料来源:韩权利,赵万华,丁玉成. 未来的制造模式――智能制造[J]. 机械工程师,2002.1. 20世纪80年代以来,先进的制造技术和计算机技术广泛应用于现代制造业,传统的设计方法和管理手段不能有效、迅速地解决现代制造系统中出现的新问题。于是,人们开始借助现代的工具和方法,利用各学科最新研究成果,通过将传统制造技术、人工智能科学、计算机技术与科学等有机集成,发展一种新型的制造技术与系统,这便是智能制造技术(Intelligent Manufacturing Technology,IMT)与智能制造系统(Intelligent Manufacturing System,IMS),它们总称智能制造(Intelligent Manufacturing,IM)。 (二)智能制造发展历程及政策推进概述 智能制造(IM)在国际上尚无公认的定义,目前通常认为它是智能制造技术(IMT)和智能制造系统(IMS)的总称。智能制造的概念始于20世纪80年代末,首先由美国提出。1988年,美国New York大学的P.K.Wright教授和Carnegie-Mellon大学的D.A.Bourne教授出版2015/10/13

2 了《Manufacturing Intelligence(智能制造)》一书,首次提出了智能制造的概念,并指出智能制造的目的是通过集成知识工程、制造软件系统、机器人视觉和机器控制对制造技工的技能和专家知识进行建模,以使智能机器人在没有人工干预的情况下进行小批量生产。1989年,D.A.Bournne组织完成了首台智能加工工作站(IMW)的样机,被认为是智能制造机器发展史的一个重要里程碑。

自美国提出智能制造(IM)的概念后,智能制造系统(IMS)一

直受到众多国家的重视和关注,纷纷将IMS列为国家级计划并着力发展。如,美国先进制造技术(Advanced Manufacturing Technology, AMT)发展战略(1991年)、美国先进制造技术计划(AMTP)(1993年)、美国敏捷制造使能技术战略发展计划(Technologies Enabling Agile Manufacturing Strategic plan, TEAM)(1995年)、韩国“高级先进技术国家计划”(简称G-7计划)(1991年)、德国“制造2000计划”、欧共体的“ESPRIT”计划和“BRITE—EURAM”计划、日本智能制造系统(IMS)国际合作计划等。其中,最具影响力和代表性的当属日本的IMS国际合作计划,它是迄今为止已启动的制造领域内最大的一项国际合作计划。1991年1月,日本、美国、加拿大、澳大利亚、瑞士、韩国和欧盟联合开展了IMS国际合作计划,总投资达40亿美元,计划的出台是为了克服柔性制造系统(FMS)、集成制造系统(CIMS)的局限性,把日本工厂和车间的专业技术与欧盟的精密工程技术、美国的系统技术充分地结合起来,开发出能使人和智能设备都不受生产操作和国界限制、彼此合作的高技术生产系统,该计划鼓

2015/10/13

3 励工业界、学术界和政府在现代制造技术领域进行广泛地研究与合作。IMS的目标是要全面展望21世纪制造技术的发展趋势,先行开发下一代的制造技术,同时致力于全球制造信息、制造技术的体系化、标准化。进入21世纪以来,日、美、欧都将智能制造视为21世纪的制造技术和尖端科学,并认为是国际制造业科技竞争的制高点,且有着巨大的利益,所以他们在该领域的科技协作频繁,参与研究计划的各国制造业力量庞大,主宰未来智能制造的发展趋势。例如,美国2011年提出“先进制造业伙伴计划(Advanced Manufacturing Partnership, AMP)”;2012年发布“先进制造业国家战略计划(A National Strategic Plan for Advanced Manufacturing)”。

我国于上世纪80年代末也将“智能模拟”列入国家科技发展规

划的主要课题,已在专家系统、模式识别、机器人、汉语机器理解方面取得了一批成果。1993年起,国家自然科学基金委员会每年适度资助智能制造方面的有关研究项目;国家制定的“九五”计划也将先进制造技术(包括IMT和IMS)作为重点发展领域之一。在强调先进制造振兴战略的今天,我国非常重视智能制造的发展,特别是自2009年5月《装备制造业调整和振兴规划》出台以来,国家政策支持力度不断加大。2012年3月27日,我国科技部组织编制了《智能制造科技发展“十二五”专项规划》,规划认为:智能制造是面向产品全生命周期,实现泛在感知条件下的信息化制造;智能制造技术是世界制造业未来发展的重要方向之一,是推动我国传统制造产业的结构转型升级的重要途径,全面开展智能制造技术研究将是发展高端装备制造

2015/10/13

4 业的核心内容和促进我国从制造大国向制造强国转变的必然。专项规划将结合世界发展的趋势和未来前沿制高点,研究智能制造基础理论,攻克一批前沿核心技术和共性关键技术,研制一批智能化高端装备,并进行示范应用和产业化,为实现我国从制造大国向制造强国转变奠定技术基础。

(三)智能制造装备的定义和产业范围界定

目前,世界其他国家包括国际组织并没有提出“智能制造装备”

这个概念,“智能制造装备”的概念可以说是我国所独有。虽然欧美日等发达国家政府没有智能制造装备这一提法,但有相对应的产业归属范畴,其基本归属于2007版北美产业分类标准(NAICS)中的“金属加工机械制造(3335)”、“导航、测量、医学和控制仪器制造(3345)”、“电气设备及组成制造(335)”等,相当于欧盟2007版产业分类体系中的“测量、测试、导航仪器和设备制造(26.51)”、“光学仪器及摄影器材制造(26.70)”、“电气设备制造(27)”、“金属成型机械和机床制造(28.4)”、“医疗和牙科仪器及用品制造(32.50)”等,和日本2007版产业分类体系中的“金属加工机械及设备制造(266)”、“各种生产机器及机械零部件制造(269)(其中,机器人(2694))”、“测量仪器、分析仪器、检测机械、测量仪器、物理和化学仪器制造(273)”、“医学仪器及零部件制造(274)”、“光学仪器(275)”、“电气机械设备及用品制造(29)”等。

2015/10/13

5

表2 国外有关“智能制造装备”相对应的产业范畴 北美2007版产业分类标欧盟2007版产业分类体日本2007版产业分类体系 准(NAICS) 金属加工机械制造(3335) 系 测量、测试、导航仪器和设备制造(26.51) 金属加工机械及设备制造(266) 导航、测量、医学和控光学仪器及摄影器材制各种生产机器及机械零部件制仪器制造(3345) 电气设备及组成制造(335) 等 。 造(26.70) 制造(269)(机器人(2694)) 电气设备制造(27) 测量仪器、分析仪器、检测机金属成型机械和机床制械、测量仪器、物理和化学仪造(28.4) 器制造(273) 医疗和牙科仪器及用品医学仪器及零部件制造(274) 制造(32.50) 等。 光学仪器(275) 电气机械设备及用品制造(29)等 资料来源:上海科学技术情报研究所(ISTIS)分析整理 在我国,智能制造装备的定义是:具有感知、决策、执行功能的各类制造装备的统称。它是先进制造技术、信息技术和智能技术的集成和深度融合。智能制造装备是传统产业升级改造、实现生产过程自动化、智能化、精密化、绿色化的基本工具,是培育和发展战略性新兴产业的支撑,是实现生产过程和产品使用过程节能减排的重要手段。智能制造装备的水平已成为当今衡量一个国家工业化水平的重要标志。 2015/10/13

6 智能制造装备是《国务院关于加快培育和发展战略性新兴产业的

决定》(2010年10月)和《中华人民共和国国民经济和社会发展第十二个五年规划纲要》(2011年3月)中明确的高端装备制造业领域中的重点方向,关系到国家的经济发展潜力和未来发展空间。考虑到智能制造装备的战略地位,以及在推动制造业产业结构调整和升级中的重要作用,“十二五”期间国家将持续加大对智能制造装备研发的财政支持力度。2012年5月,我国工业和信息化部印发了《高端装备制造业“十二五”发展规划》,作为子规划的《智能制造装备产业“十二五”发展规划》也同时发布,该子规划重点围绕关键智能基础共性技术、核心智能测控装臵与部件、重大智能制造成套装备等智能制造装备产业核心环节提出了重点发展方向。

根据我国工业和信息化部发布的相关规划,可以明确智能制造装备产业主要包括:高档数控机床与基础制造装备;智能控制系统;智能专用装备;自动化成套生产线;精密和智能仪器仪表与试验设备;关键基础零部件、元器件及通用部件等内容,详见表3。

2015/10/13

7 表3 我国智能制造装备产业范畴 重点发展:高速、精密、复合数控金切机床;重型数控金切机床;高档数控机床与 基础制造装备 数控特种加工机床;大型数控成形冲压设备;重型锻压设备;清洁高效铸造设备;新型焊接设备;大型清洁热处理与表面处理设备;非金属成型设备;新材料制备装备;高档数控系统;数控机床功能部件;数字化工具系统及量仪。 重点发展:集散控制系统(DCS);现场总线控制系统(FCS);智能控制系统 可编程控制系统(PLC);先进高效发动机及其智能控制系统;新能源、新材料、节能环保等新兴产业所需要的专用控制系统。 重点发展:机器人产业;矿山用智能自卸电铲、智能化全断面掘智 能 制 造 装 备 自动化成套生产线 智能专用装备 进机、快速集成柔性施工装备为代表的智能化大型施工机械;数字化、智能化、高速多功能印刷机械;大型先进高效智能化农业机械。 重点发展:大型煤化工自动化关键装备;大型液化天然气生产储能自动化关键装备、大型天然气长距离输送系统;高效棉纺、短流程染整自动化生产线;大型煤炭井下自动化综合采掘成套设备及大型露天矿自动化成套设备。 重点发展:高精度、高稳定性、智能化压力、流量、物位、成份精密和智能仪器 仪表与试验设备 仪表与高可靠执行器,智能电网先进量测仪器仪表(AMI),材料分析精密测试仪器与力学性能测试设备,新型无损检测及环境、安全检测仪器,国防特种测试仪器等各类试验设备。 重点发展:高可靠性力敏、磁敏等传感器,新型复合、光纤、关键基础零部件、元器件及通用部件 MEMS、生物传感器,仪表专用芯片,色谱、光谱、质谱检测器件;高参数、高精密和高可靠性轴承、液压/气动/密封元件、齿轮传动装臵及大型、精密、复杂、长寿命模具;电力电子器件及变频调速装臵。 资料来源:上海科学技术情报研究所(ISTIS)分析整理

由于国际上没有“智能制造装备产业”这一提法,无法获取该产

业的直接数据,所以难以描绘该产业发展的全貌。在此,我们通过对与之概念相关的核心行业如工业机器人、数控机床、智能控制系统、自动化仪器仪表和3D打印设备等行业进行观察分析世界智能制造装备产业的总体发展态势。

(一)发达国家智能制造装备产业优势明显

2015/10/13

8 目前,美国、德国、日本等工业发达国家虽然没有“智能制造装备产业”这个大产业的提法,但其在我国“智能制造装备产业”所包含的数控机床、工业机器人、智能控制系统、自动化仪器仪表和3D打印设备等子领域具有多年的技术积累,优势明显。

例如,在数控机床领域,美国、德国、日本三国是当前世界数控

机床生产、使用实力最强的国家,是世界数控机床技术发展、开拓的先驱。当前,世界四大国际机床展上数控机床技术方面的创新,主要来自美国、德国、日本;美、德、日等国的厂商在四大国际机床展上竞相展出高精、高速、复合化、直线电机、并联机床、五轴联动、智能化、网络化、环保化机床。美国政府高度重视数控机床的发展。美国国防部等部门不断提出机床的发展方向、科研任务并提供充足的经费,且网罗世界人才,特别讲究“效率”和“创新”,注重基础科研,因而在数控机床技术上不断有创新成果。美国以宇航尖端、汽车生产为重点,因此需求较多高性能、高档数控机床,几家著名机床公司如辛辛那提(Cincinnati,现为MAG下属企业)、Giddings & Lewis(MAG下属企业)、哈挺(Hardinge)、格里森(Gleason)、哈斯(Haas)等长期以来均生产高精、高效、高自动化数控机床供应美国市场需求。德国政府一贯重视机床工业的重要战略地位,认为机床工业是整个机器制造业中最重要、最活跃、最具创造力的部门,特别讲究“实际”与“实效”。德国的数控机床质量及性能良好,先进实用,出口遍及世界,尤其是大型、重型、精密数控机床;此外,德国还重视数控机床主机配套件的先进实用性,其机、电、液、气、光、刀具、测量、

2015/10/13

9 数控系统等各种功能部件在质量、性能上居世界前列。如西门子公司的数控系统,均为世界闻名,被竞相采用。日本十分重视数控机床技术的研究和开发。经过长达数十年的努力,日本已经成为世界上最大的数控机床生产和供应国。日本生产的数控机床部分满足本国汽车工业和机械工业各部门市场需求,绝大多数用于出口,占领广大世界市场,获取最大利润。目前日本的数控机床几乎已遍及世界各个国家和地区,成为不可缺少的机械加工工具。

在工业机器人领域,日本、美国、德国和韩国是工业机器人强国。

日本号称“机器人王国”,在工业机器人的生产、出口和使用方面都居世界榜首;日本工业机器人的装备量约占世界工业机器人装备量的60%。美国是机器人的发源地,早在1962年就研制出世界上第一台工业机器人,尽管美国在机器人发展史上走过一条重视理论研究、忽视应用开发研究的曲折道路,但是美国的机器人技术在国际上仍一直处于领先地位,其技术全面、先进,适应性也很强。德国工业机器人的总数占世界第三位,仅次于日本和美国;德国工业机器人的研究和应用在世界上处于领先地位。韩国是工业机器人的后起之秀,于20世纪80年代末开始大力发展工业机器人技术,在政府的资助和引导下,韩国近几年来已跻身机器人强国之列。与此同时,工业机器人领域的全球知名生产厂商也主要集中在以日、美、德等为代表的发达国家,如,瑞典ABB,日本的发那科(FANUC)、安川电机(YASKAWA),德国的库卡(KUKA)、美国American Robot和意大利柯马(COMAU)

2015/10/13

10

到2020年,我国将建立完善的智能制造装备产业体系,产业销售收入超过30000亿元,实现装备的智能化及制造过程的自动化。“十二五”期间,我国国民经济重点产业的发展、重大工程建设、传统产业的升级改造、战略性新兴产业的培育壮大和能源资源环境的约束,对智能制造装备产业提出了更高的要求,并提供了巨大的市场空间。未来5-10年,我国智能制造装备产业将迎来发展的重要战略机遇期。

当前,世界智能制造装备技术总体呈现出高性能化、智能化、集

成化、绿色化的发展趋势。 (一)高性能化

智能制造装备性能将不断提高,即表现为高速度、高精度、高功能性,并便于操作和维修。

以数控机床为例,随着国民经济飞速发展和工业自动化水平的不

断提高,制造业向着高、精、尖方向发展,特别是汽车、船舶、纺织、电子技术、航空航天的迅猛发展,对加工中心的速度和生产效率要求也越来越高,高效、高精、高速化加工中心已经是数控机床行业流行的趋势。例如,2013年4月22日-27日在北京举行的第十三届中国国际机床展(CIMT 2013)上,瑞士阿奇?夏米尔公司的HSM4 00ULP五轴五联动高速加工中心主轴转速高达42000r/min;日本牧野(MAKINO)的F8大型精密立式加工中心,定位精度0.15μm,重复定位精度1.0μm;美国哈挺公司的T42超精密车削中心,主轴跳动小于0.5μm,重复定位精度小于2μm,工件圆度0.25μm,轮廓精度5μm

2015/10/13

16 和连续加工精度5μm;瑞士Rollomatic公司的GrindSmart Nano6数控微型刀具磨床,磨削直径?0.03mm – ?2mm,磨削工件的同轴度、表面粗糙度以及尺寸精度都进入了纳米级。

再看工业机器人,全球领先的工业机器人供应商之一德国库卡公

司(KUKA)于2012年11月6-10日在上海新国际博览中心举办的“第十四届中国国际工业博览会”上,展示了其一款全能型高负荷机器人KR 210 R2700 extra,这款高负荷六轴机器人可谓 “KR QUANTEC extra”家族中的全能型机器人,拥有210公斤的负载能力和50公斤的附加负载,最大作用范围达2700毫米,较长的作用范围和高度的灵活性使其成为不可或缺的好帮手,尤其在点焊、搬运和装卸领域颇受市场欢迎。与其它型号相比,KR 210 R2700 extra在 210 公斤/2700 毫米的应用级别里,更精致、更紧凑、更稳定。其通过降低运动部件的重量,在精度、性能、能耗以及可用性方面树立了全新标杆,能以最小投资成本实现多样性和灵活性的最大化。在2012年6月4日至7日在北京中国国际博览中心(新馆)举办的第十七届北京?埃森焊接与切割展览会上,日本FANUC公司向全球首次展出了其2012新品机器人FANUC R-0iA,FANUC R-0iA是一款具有智能化功能的六轴机器人,其机身设计紧凑、细巧,整体结构超轻量,占地面积小,特别适用于在狭小空间内的弧焊作业。与同系列机器人相比较,R-0iA机器人的本体重量进一步降低,仅110kg,运动半径却进一步扩大,达1437mm,并拥有高速动作和高定位精度等优越的工作性能,在同系列中具有最高性能的动作能力。

2015/10/13

17 (二)智能化

智能化是智能制造装备的重要发展趋势,主要表现在装备能根据

用户要求完成制造过程的自动化,并对制造对象和制造环境具有高度适应性,实现制造过程的优化。

以工业机器人为例,随着系统化生产的发展,模糊控制、人工神

经网络等技术的进一步应用,工业机器人控制系统向基于PC机的开放型控制器方向发展,便于标准化、网络化;器件集成度提高,且采用模块化结构;人机界面更加友好,大大提高了系统的可靠性、易操作性和可维修性。

2011年11月1-5日在上海新国际博览中心举办的中国国际工业

博览会上,日本FANUC公司首次亮相的“真空袋装药剂整列”的FANUC机器人系统,演示机器人在食品医药行业快速拾取,视觉定位,准确抓取,进而进行装配整列的工序,该系统通过两台机器人吸盘装臵不停的吸取工件,为客户演示在包装、装配、搬运、拣选等现代工厂生产中柔性化、高速、智能化的应用趋势。另外,有4台FANUC M-1iA小型高速拳头型机器人展示了巧克力豆的拣选、高速搬运钢珠、密封垫的插取,以及贴标签等操作。

在2012年“第十四届中国国际工业博览会”上,ABB公司重点展

出了四个机器人解决方案,它们可满足客户在不同工作场合和环境下的需求。其中,“机器人车身擦净及内喷自动工作站”是ABB针对汽车制造业最新推出的工业机器人解决方案,它取代了传统往复机龙

2015/10/13

18 门擦净系统,在喷涂前有效去除车身表面灰尘颗粒,帮助客户实现高效完美的车身洁净和内部喷涂,其全自动化生产流程还能确保生产连贯性,实现更高效的自动化生产;“冰淇淋自动装箱工作站”广泛应用于冰淇淋、饼干等袋装或盒装产品装箱,能让生产流程更加高效、快速;“鼠标装配工作站”主要应用于电子消费产品生产流程中小工件的取放和装配工序,可有效的提高生产效率和产品质量并降低工程设计难度;而应用于汽车零部件点焊工艺的“机器人点焊工作站”,其焊枪的同一枪体设计可大大减少备件的使用和更换,同时还有运行速度快和节省生产空间等特点。 (三)集成化

智能制造装备正向技术集成、系统集成的方向发展,主要体现在

生产工艺技术、硬件、软件与应用技术的集成及设备的成套,同时还体现在生物、纳米、新能源、新材料等跨学科高技术的集成,从而使装备得到不断提高和升级,甚至发生深刻变化。

以智能控制系统为例,集散控制系统(DCS)的集成化体现在两

个方面:功能的集成和产品的集成。过去的DCS厂商基本上是以自主开发为主,提供的系统也是自己的系统。受信息技术(网络通信技术、计算机硬件技术、嵌入式系统技术、现场总线技术、各种组态软件技术、数据库技术等)发展的影响,以及用户对先进的控制功能与管理功能需求的增加,各DCS厂商(以艾默生、霍尼韦尔、福克斯波罗、横河电机、ABB为代表)纷纷提升DCS系统的技术水平,并

2015/10/13

19 不断地丰富其内容,目前集散控制系统(DCS)已经进入第四代。第四代DCS更强调系统集成性和方案能力,DCS中除保留传统DCS所实现的过程控制功能之外,还集成了可编程控制器(PLC)、采集发送器(RTU)、现场总线控制系统(FCS)、各种多回路调节器、各种智能采集或控制单元等。

此外,各DCS厂商不再把开发组态软件或制造各种硬件单元视为

核心技术,而是纷纷把DCS的各个组成部分采用第三方集成方式或OEM方式。例如,多数DCS厂商自己不再开发组态软件平台,而转入采用兄弟公司(如Foxboro用Wonderware软件为基础)的通用组态软件平台,或其它公司提供的软件平台(Emerson用Intellution的软件平台做基础)。此外,许多DCS厂家甚至I/O组件也采用OEM方式,如Foxboro采用Eurothem的I/O模块,横河的R3采用富士电机的Processio作为I/O单元基础,Honeywell公司的PKS系统则采用Rockweell公司的PLC单元作为现场控制站。 (四)绿色化

资源、能源的压力,使装备必须考虑从设计、制造、包装、运输、

使用到报废处理的全生命周期中,对环境负面影响极小,资源利用率极高,并使企业经济效益和社会效益协调优化。绿色制造是提高智能制造装备资源循环利用效率和降低环境排放的关键途径。

从近几年举行的国际机床展看,数控机床除了向高速、高精度、

多轴联动、复合加工和智能化方向发展外,也更重视环保化,绿色生

2015/10/13

20

本文来源:https://www.bwwdw.com/article/p2o.html

Top