韦达定理及其应用
更新时间:2023-08-08 09:30:01 阅读量: 实用文档 文档下载
韦达定理及其应用
一、知识要点
1、若一元二次方程ax2 bx c 0 a 0 中,两根为x1,x2。则x1 x2
x1 x2
ca
ba
,
,;补充公式x1 x2
a
2、以x1,x2为两根的方程为x2 x1 x2 x x1 x2 0 3、用韦达定理分解因式ax bx c a x
2
2
ba
x
c
a x x1 x x2 a
二、例题
1、 不解方程说出下列方程的两根和与两根差:
2
(1)x 3x 10 0 (2)3x 5x 1 0 (3)2x 43x 22 0
2
2
2、 已知关于x的方程x (5k 1)x k 2 0,是否存在负数k,使方程的两个实
数根的倒数和等于4?若存在,求出满足条件的k的值;若不存在,说明理由。
3、 已知方程x 5x 2 0,作一个新的一元二次方程,使它的根分别是已知方程各
根的平方的倒数。
11 1
4、 解方程组 xy12
xy 2
2
22
5、 分解因式:
(1)3x 5x 2 (2)4x 8x 1
2
2
三、练习
1、 在关于x的方程4x2 m 1 x m 7 0中,(1)当两根互为相反数时m的值;
(2)当一根为零时m的值;(3)当两根互为倒数时m的值
2、 求出以一元二次方程x 3x 2 0的两根的和与两根的积为根的一元二次方程。
3、 解方程组
x
y 3
2
xy 2
4、 分解因式
(1)4x
四、聪明题
1、 已知一元二次方程ax2
2bx c 0的两个实数根满足x1 x2
2,a,b,
2
5x 6= (2)2x 2xy y
22
(1)证明方程的两个根都是正根;(2)c分别是 ABC的 A, B, C的对边。若a c,求 B的度数。
2、在 ABC中, C 90 ,斜边AB=10,直角边AC,BC的长是关于x的方程
x mx 3m 6 0的两个实数根,求m的值。
2
韦达定理的应用:
1.已知方程的一个根,求另一个根和未知系数 2.求与已知方程的两个根有关的代数式的值 3.已知方程两根满足某种关系,确定方程中 字母系数的值
4.已知两数的和与积,求这两个数
5.已知方程的两根x1,x2 ,求作一个新的一元二次
方程x2 –(x1+x2) x+ x1x2 =0
6.利用求根公式在实数范围内分解因式ax2+bx+c = a(x- x1)(x- x2) 题1:
(1)若关于x的一元二次方程2x2+5x+k=0 的一根是另一根的4倍,则k= ________
(2)已知:a,b是一元二次方程x2+2000x+1=0 的两个根,求:(1+2006a+a2)(1+2005b+b2) = __________ 解法一:(1+2006a+a2)(1+2005b+b2)
= (1+2000a+a2 +6a)(1+2000b+b2 +5b) = 6a 5b=30ab 解法二:由题意知
∵ a2 +2000a+1=0; b2 +2000b+1=0 ∴ a2 +1=- 2000a; b2 +1=- 2000b ∴ (1+2006a+a2)(1+2005b+b2)
=(2006a - 2000a)(2005b - 2000b) =6a 5b=30ab ∵ab=1, a+b=-200
∴(1+2006a+a2)(1+2005b+b2)
= ( ab +2006a+a2)( ab +2005b+b2) =a(b +2006+a) b( a +2005+b)
=a(2006-2000) b(2005-2000) =30ab 解法三:由题意知
∵ a2 +2000a+1=0; b2 +2000b+1=0 ∴ a2 +1=- 2000a; b2 +1=- 2000b ∴ (1+2006a+a2)(1+2005b+b2)
=(2006a - 2000a)(2005b - 2000b) =6a 5b=30ab 题2:
已知:等腰三角形的两条边a,b是方程 x2-(k+2)x+2 k =0的两个实数根,另 一条边c=1, 求:k的值。
浅谈韦达定理在解题中的应用
韦达定理是反映一元二次方程根与系数关系的重要定理.纵观近年各省、市的中考(竞赛)试题可以发现,关于涉及此定理的题目屡见不鲜,且条件隐蔽.在证(解)题时,学生往往因未看出题目中所隐含的韦达定理的条件而导致思路闭塞,或解法呆板,过程繁琐冗长.下面举例谈谈韦达定理在解题中的应用,供大家参考.
一、直接应用韦达定理
若已知条件或待证结论中含有a+b和a·b形式的式子,可考虑直接应用韦达定理.
例1 在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,D是AB边上一点,且BC=DC,设AD=d. 求证:
(1)c+d=2bcosA; (2)c·d=b2-a2.
分析:观察所要证明的结论,自然可联想到韦达定理,从而构造一元二次方程进行证明.
证明:如图,在△ABC和△ADC中,由余弦定理,有 a2=b2+c2-2bccosA;
a2=b2+d2-2bdcosA(CD=BC=a). ∴ c2-2bccosA+b2-a2=0, d2-2bdcosA+b2-a2=0.
于是,c、d是方程x2-2bxcosA+b2-a2=0的两个根. 由韦达定理,有
c+d=2bcosA,c·d=b2-a2.
例2 已知a+a2-1=0,b+b2-1=0,a≠b,求ab+a+b的值.
分析:显然已知二式具有共同的形式:x2+x-1=0.于是a和b可视为该一元二次方程的两个根.再观察待求式的结构,容易想到直接应用韦达定理求解. 解:由已知可构造一个一元二次方程x2+x-1=0,其二根为a、b. 由韦达定理,得a+b=-1,a·b=-1.
故ab+a+b=-2.
二、先恒等变形,再应用韦达定理
若已知条件或待证结论,经过恒等变形或换元等方法,构造出形如a+b、a·b形式的式子,则可考虑应用韦达定理.
例3 若实数x、y、z满足x=6-y,z2=xy-9.求证:x=y. 证明:将已知二式变形为x+y=6,xy=z2+9.
由韦达定理知x、y是方程u2-6u+(z2+9)=0的两个根. ∵ x、y是实数,∴△=36-4z2-36≥0. 则z2≤0,又∵z为实数, ∴z2=0,即△=0.
于是,方程u2-6u+(z2+9)=0有等根,故x=y.
由已知二式,易知x、y是t2+3t-8=0
的两个根,由韦达定理
三、已知一元二次方程两根的关系(或系数关系)求系数关系(或求两根的关系),可考虑用韦达定理
例5 已知方程x2+px+q=0的二根之比为1∶2,方程的判别式的值为1.求p与q之值,解此方程.
解:设x2+px+q=0的两根为a、2a,则由韦达定理,有 a+2a=-P, ①
a·2a=q, ② P2-4q=1. ③
把①、②代入③,得(-3a)2-4×2a2=1,即9a2-8a2=1,于是a=±1.
∴ 方程为x2-3x+2=0或x2+3x+2=0. 解得x1=1,x2=2,或x1=-1,x2=-2.
例6 设方程x2+px+q=0的两根之差等于方程x2+qx+p=0的两根之差,求证:p=q或p+q=-4.
证明:设方程x2+px+q=0的两根为α、β,x2+qx+P=0的两根为α'、β'. 由题意知α-β=α'-β',
故有α2-2αβ+β2=α'2-2α'β'+β'2. 从而有(α+β)2-4αβ=(α'+β')2-4α'β'.①
把②代入①,有p2-4q=q2-4p,即p2-q2+4p-4q=0,即(p+q)(p-q)+4(p-q)=0,即(p-q)(p+q+4)=0. 故p-q=0或p+q+4=0, 即p=q或p+q=-4.
四、关于两个一元二次方程有公共根的题目,可考虑用韦达定理
例7 m为问值时,方程x2+mx-3=0与方程x2-4x-(m-1)=0有一个公共根?并求出这个公共根.
解:设公共根为α,易知,原方程x2+mx-3=0的两根为α、-m-α;x2-4x-(m-1)=0的两根为α、4-α. 由韦达定理,得α(m+α)=3, ① α(4-α)=-(m-1). ② 由②得m=1-4α+α2, ③ 把③代入①得α3-3α2+α-3=0, 即(α-3)(α2+1)=0.
∵α2+1>0,∴α-3=0即α=3. 把α=3代入③,得m=-2.
故当m=-2时,两个已知方程有一个公共根,这个公共根为3.
正在阅读:
韦达定理及其应用08-08
大学军事理论论文05-26
期中考试表彰大会流程09-13
小学语文四年级后进生辅导讲解03-08
八年级思品下册(全)教案 - 图文05-13
6933 - 2605 - 1612 - 阜阳师范学院学生社团成立申请表(1) - 图文11-18
动漫社入团申请书05-11
学游泳真不容易作文800字07-04
增员面试流程12-11
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- 韦达
- 定理
- 及其
- 应用
- 招商局集团2020年数字化工作报告解读
- 2013烟台大学文经学院毕业论文(学生)写作规范细则
- 高考百日誓师演讲稿
- XX包装纸业有限公司安全风险评估报告
- 北京建筑大学2016招聘要求
- 利用Windwos7电脑的无线网卡作WI-FI AP热点与PPC WM6.5手机进行连接的方法
- 皖西学院数字电路期末考试
- 2016年最新版湘少版三年级下册英语教案
- 打架斗殴害处多(教案_万大红)
- 中国神话故事读后感300字三篇
- 箱式电阻炉安全操作规程
- 黑龙江省教师资格证考试中小学必背古诗词文言文(一)
- 通用电气对中国的借鉴意义
- 公因数和最大公因数 0
- 2019届高考数学一轮复习 第二章 函数、导数及其应用 第三节 函数的奇偶性与周期性课时作业
- 组建优秀的创业团队
- 浅谈亚里士多德的德性幸福观及其当代启示
- 二年级语文下册《画风》教学设计及教学反思
- M4735A-SHANGHAI除颤仪
- 用双脚弹钢琴的人