动量例题练习题及测试题大全(含解析答案)

更新时间:2023-04-23 22:28:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

定律成立的条件

⑴系统不受外力或者所受外力之和为零;

⑵系统受外力,但外力远小于内力,可以忽略不计;

⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。 ⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。 2.动量守恒定律的表达形式

(1) ,即p1 p2=p1/ p2/,

(2)Δp1 Δp2=0,Δp1= -Δp2 和

3.应用动量守恒定律解决问题的基本思路和一般方法 (1)分析题意,明确研究对象。

(2)对各阶段所选系统内的物体进行受力分析,判定能否应用动量守恒。 (3)确定过程的始、末状态,写出初动量和末动量表达式。

注重:在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系。 (4)建立动量守恒方程求解。

4.注重动量守恒定律的“五性”:①条件性;②整体性;③矢量性;④相对性;⑤同时性.

二、动量守恒定律的应用

1两个物体作用时间极短,满足内力远大于外力,可以认为动量守恒。 碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。

如:光滑水平面上,质量为m1的物体A以速度v1向质量为m2的静止物体B运动,B的左端连有轻弹簧

分析:在Ⅰ位置A、B刚好接触,弹簧开始被压缩,A开始减速,B开始加速;到Ⅱ位置A、B速度刚好相等(设为v),弹簧被压缩到最短;再往后A、B远离,到Ⅲ位位置恰好分开。

(1)弹簧是完全弹性的。压缩过程系统动能减少全部转化为弹性势能,Ⅱ状态系统动能最小而弹性势能最大;分开过程弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。这种碰撞叫做弹性碰撞。由动量守恒和能量守恒可以证实A、B的最终速度分别为:

。(这个结论最好背下来,以后经常要用到。)

(2)弹簧不是完全弹性的。压缩过程系统动能减少,一部分转化为弹性势能,一部分转化为内能,Ⅱ状态弹性势能仍最大,但比损失的动能小;分离过程弹性势能减少,部分转化为动能,部分转化为内能;因为全过程系统动能有损失。

(3)弹簧完全没有弹性。压缩过程系统动能减少全部转化为内能,Ⅱ状态没有弹性势能;由于没有弹性,A、B不再分开,而是共同运动,不再有分离过程。可以证实,A、B最

终的共同速度为 为:

。在完全非弹性碰撞过程中,系统的动能损失最大,

(这个结论最好背下来,以后经常要用到。)

【例1】

质量为M的楔形物块上有圆弧轨道,静止在水平面上。质量为m的小球以速度v1向物块运动。不计一切摩擦,圆弧小于90°且足够长。求小球能上升到的最大高度H 和物块的最终速度v。

2.子弹打木块类问题

【例3】 设质量为m的子弹以初速度v0射向静止在光滑水平面上的质量为M的木块,并留在木块中不再射出,子弹钻入木块深度为d。求木块对子弹的平均阻力的大小和该过程中木块前进的距离。

3.反冲问题

在某些情况下,原来系统内物体具有相同的速度,发生相互作用后各部分的末速度不再相同而分开。这类问题相互作用过程中系统的动能增大,有其它能向动能转化。可以把这类问题统称为反冲。

【例4】 质量为m的人站在质量为M,长为L的静止小船的右端,小船的左端靠在岸边。当他向左走到船的左端时,船左端离岸多远?

【例5】 总质量为M的火箭模型 从飞机上释放时的速度为v0,速度方向水平。火箭向后以相对于地面的速率u喷出质量为m的燃气后,火箭本身的速度变为多大?

4.爆炸类问题

【例6】 抛出的手雷在最高点时水平速度为10m/s,这时忽然炸成两块,其中大块质量300g仍按原方向飞行,其速度测得为50m/s,另一小块质量为200g,求它的速度的大小和方向。

5.某一方向上的动量守恒

【例7】 如图所示,AB为一光滑水平横杆,杆上套一质量为M的小圆环,环上系一长为L质量不计的细绳,绳的另一端拴一质量为m的小球,现将绳拉直,且与AB平行,由静止释放小球,则当线绳与A B成θ角时,圆环移动的距离是多少?

6.物块与平板间的相对滑动

【例8】如图所示,一质量为M的平板车B放在光滑水平面上,在其右端放一质量为m的小木块A,m<M,A、B间动摩擦因数为μ,现给A和B以大小相等、方向相反的初速度v0,使A开始向左运动,B开始向右运动,最后A不会滑离B,求:

(1)A、B最后的速度大小和方向;

(2)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动的位移大小。

【例9】两块厚度相同的木块A和B,紧靠着放在光滑的水平面上,其质量分别为

,它们的下底面光滑,上表面粗糙;另有一质量

的速度恰好水平地滑到A的上表面,如图所示,

的滑块C(可视为质点),以

由于摩擦,滑块最后停在木块B上,B和C的共同速度为3.0m/s,求:

(1)木块A的最终速度 ; (2)滑块C离开A时的速度 。

三、针对练习 练习1

1.质量为M的小车在水平地面上以速度v0匀速向右运动。当车中的砂子从底部的漏斗中不断流下时,车子速度将( )

A.减小 B.不变 C.增大 D.无法确定

2.某人站在静浮于水面的船上,从某时刻开始人从船头走向船尾,设水的阻力不计,那么在这段时间内人和船的运动情况是( )

A.人匀速走动,船则匀速后退,且两者的速度大小与它们的质量成反比 B.人匀加速走动,船则匀加速后退,且两者的速度大小一定相等

C.不管人如何走动,在任意时刻两者的速度总是方向相反,大小与它们的质量成反比 D.人走到船尾不再走动,船则停下

3.如图所示,放在光滑水平桌面上的A、B木块中部夹一被压缩的弹簧,当弹簧被放开时,它们各安闲桌面上滑行一段距离后,飞离桌面落在地上。A的落地点与桌边水平距离0.5m,B的落地点距离桌边1m,那么( )

A.A、B离开弹簧时的速度比为1∶2 B.A、B质量比为2∶1

C.未离开弹簧时,A、B所受冲量比为1∶2 D.未离开弹簧时,A、B加速度之比1∶2

4.连同炮弹在内的车停放在水平地面上。炮车和弹质量为M,炮膛中炮弹质量为m,炮车与地面同时的动摩擦因数为μ,炮筒的仰角为α。设炮弹以速度 地面上后退的距离为_________________。

射出,那么炮车在

5.甲、乙两人在摩擦可略的冰面上以相同的速度相向滑行。甲手里拿着一只篮球,但总质量与乙相同。从某时刻起两人在行进中互相传球,当乙的速度恰好为零时,甲的速度为__________________,此时球在_______________位置。

6.如图所示,在沙堆表面放置一长方形木块A,其上面再放一个质量为m=0.10kg的爆

竹B,木块的质量为M=6.0kg。当爆竹爆炸时,因反冲作用使木块陷入沙中深度h=50cm,而木块所受的平均阻力为f=80N。若爆竹的火药质量以及空气阻力可忽略不计,g取

,求爆竹能上升的最大高度。

练习3

1.在光滑水平面上,两球沿球心连线以相等速率相向而行,并发生碰撞,下列现象可能的是( )

A.若两球质量相同,碰后以某一相等速率互相分开 B.若两球质量相同,碰后以某一相等速率同向而行 C.若两球质量不同,碰后以某一相等速率互相分开 D.若两球质量不同,碰后以某一相等速率同向而行

2.如图所示,用细线挂一质量为M的木块,有一质量为m的子弹自左向右水平射穿此木块,穿透前后子弹的速度分别为 块的速度大小为( )

和v(设子弹穿过木块的时间和空气阻力不计),木

A. B.

C. D.

3.载人气球原静止于高h的空中,气球质量为M,人的质量为m。若人要沿绳梯着地,则绳梯长至少是( )

A.(m M)h/M B.mh/M C.Mh/m D.h

4.质量为2kg的小车以2m/s的速度沿光滑的水平面向右运动,若将质量为2kg的砂袋以3m/s的速度迎面扔上小车,则砂袋与小车一起运动的速度的大小和方向是( )

A.2.6m/s,向右 B.2.6m/s,向左 C.0.5m/s,向左 D.0.8m/s,向右

5.在质量为M的小车中挂有一单摆,摆球的质量为 ,小车(和单摆)以恒定的速

度V沿光滑水平地面运动,与位于正对面的质量为m的静止木块发生碰撞,碰撞的时间极短。在此碰撞过程中,下列哪个或哪些说法是可能发生的( )

A.小车、木块、摆球的速度都发生变化,分别变为

、 、 ,满足

B.摆球的速度不变,小车和木块的速度变为 和 ,满足

C.摆球的速度不变,小车和木块的速度都变为v,满足MV(M m)v

D.小车和摆球的速度都变为

,木块的速度变为 ,满足

6.车厢停在光滑的水平轨道上,车厢后面的人对前壁发射一颗子弹。设子弹质量为m,出口速度v,车厢和人的质量为M,则子弹陷入前车壁后,车厢的速度为( )

A.mv/M,向前 B.mv/M,向后 C.mv/(m M),向前 D.0

7.向空中发射一物体,不计空气阻力。当此物体的速度恰好沿水平方向时,物体炸裂成a、b两块,若质量较大的a块的速度方向仍沿原来的方向,则( )

A.b的速度方向一定与原速度方向相反

B.从炸裂到落地的这段时间里,a飞行的水平距离一定比b的大 C.a、b一定同时到达水平地面

D.在炸裂过程中,a、b受到的爆炸力的冲量大小一定相等

8.两质量均为M的冰船A、B静止在光滑冰面上,轴线在一条直线上,船头相对,质量为m的小球从A船跳入B船,又马上跳回,A、B两船最后的速度之比是_________________。

答案 【例

1】

解析:系统水平方向动量守恒,全过程机械能也守恒。

在小球上升过程中,由水平方向系

由系统机械能守恒得:

统动量守恒得:

解得

全过程系统水平动量守恒,机械能守恒,得

点评:本题和上面分析的弹性碰撞基本相同,唯一的不同点仅在于重力势能代替了弹性势能。

【例3】

解析:子弹和木块最后共同运动,相当于完全非弹性碰撞。 从动量的角度看,子弹射入木块过程中系统动量守恒:

从能量的角度看,该过程系统损失的动能全部转化为系统的内能。设平均阻力大小为f,设子弹、木块的位移大小分别为s1、s2,如图所示,显然有s1-s2=d

对子弹用动能定理: ……①

对木块用动能定理: ……②

①、②相减得: ……③

点评:这个式子的物理意义是:f d恰好等于系统动能的损失;根据能量守恒定律,系统动能的损失应该等于系统内能的增加;可见

,即两物体由于相对运动而摩擦产

生的热(机械能转化为内能),等于摩擦力大小与两物体相对滑动的路程的乘积(由于摩擦力是耗散力,摩擦生热跟路径有关,所以这里应该用路程,而不是用位移)。

若 ,则s2<<d。木块的位移很小。但这种运动物体与静止物体相互作用,最

后共同运动的类型,全过程动能的损失量均可用公式: …④

当子弹速度很大时,可能射穿木块,这时末状态子弹和木块的速度大小不再相等,但穿透过程中系统动量仍然守恒,系统动能损失仍然是ΔEK= f d(这里的d为木块的厚度),但由于末状态子弹和木块速度不相等,所以不能再用④式计算ΔEK的大小。

【例4】解析:先画出示意图。人、船系统动量守恒,总动量始终为零,所以人、船动量大小始终相等。从图中可以看出,人、船的位移大小之和等于L。设人、船位移大小分别为l1、l2,则:

mv1=Mv2,两边同乘时间t,ml1=Ml2,而l1 l2=L,

点评:应该注重到:此结论与人在船上行走的速度大小无关。不论是匀速行走还是变速行走,甚至往返行走,只要人最终到达船的左端,那么结论都是相同的。

做这类题目,首先要画好示意图,要非凡注重两个物体相对于地面的移动方向和两个物体位移大小之间的关系。

以上所列举的人、船模型的前提是系统初动量为零。假如发生相互作用前系统就具有一定的动量,那就不能再用m1v1=m2v2这种形式列方程,而要利用(m1 m2)v0= m1v1 m2v2列式。

【例5】解析:火箭喷出燃气前后系统动量守恒。喷出燃气后火箭剩余质量变为M-m,

以v0方向为正方向,

【例6】分析:手雷在空中爆炸时所受合外力应是它受到的重力G=( m1 m2 )g,可见系统的动量并不守恒。但在爆炸瞬间,内力远大于外力时,外力可以不计,系统的动量近似守恒。

设手雷原飞行方向为正方向,则整体初速度

m/s、m2=0.2kg的小块速度为 由动量守恒定律:

;m1=0.3kg的大块速度为

,方向不清,暂设为正方向。

m/s

此结果表明,质量为200克的部分以50m/s的速度向反方向运动,其中负号表示与所设正方向相反

【例7】

解析:虽然小球、细绳及圆环在运动过程中合外力不为零(杆的支持力与两圆环及小球的重力之和不相等)系统动量不守恒,但是系统在水平方向不受外力,因而水平动量守恒。设细绳与AB成θ角时小球的水平速度为v,圆环的水平速度为V,则由水平动量守恒有:

MV=mv

且在任意时刻或位置V与v均满足这一关系,加之时间相同,公式中的V和v可分别用其水平位移替代,则上式可写为:

Md=m[(L-Lcosθ)-d] 解得圆环移动的距离:

d=

mL(1-cosθ)/(M m)

点评:以动量守恒定律等知识为依托,考查动量守恒条件的理解与灵活运用能力 易出现的错误:(1)对动量守恒条件理解不深刻,对系统水平方向动量守恒感到怀疑,无法列出守恒方程.(2)找不出圆环与小球位移之和(L-Lcosθ)。

【例8】

解析:(1)由A、B系统动量守恒定律得: Mv0-mv0=(M m)v ①

所以v= v0

方向向右

(2)A向左运动速度减为零时,到达最远处,此时板车移动位移为s,速度为v′,则由动量守恒定律得:Mv0-mv0=Mv′ ①

对板车应用动能定理得:

-μmgs= mv′2- mv02 ②

联立①②解得:s= 【例9】

v02

解析:这是一个由A、B、C三个物体组成的系统,以这系统为研究对象,当C在A、B上滑动时,A、B、C三个物体间存在相互作用,但在水平方向不存在其他外力作用,因此系统的动量守恒。

(1)当C滑上A后,由于有摩擦力作用,将带动A和B一起运动,直至C滑上B后,A、B两木块分离,分离时木块A的速度为

运动,由动量守恒定律有

。最后C相对静止在B上,与B以共同速度

(2)为计算

,我们以B、C为系统,C滑上B后与A分离,C、B系统水平方向动

,B与A的速度同为

,由动量守恒定律有

量守恒。C离开A时的速度为

三、针对练习 练习1 参考答案

1.

B砂子和小车组成的系统动量守恒,由动量守恒定律,在初状态,砂子落下前,砂子和车都以 为v′,由

向前运动;在末状态,砂子落下时具有与车相同的水平速度

,车速不变。

,车的速度

此题易错选C,认为总质量减小,车速增大。这种想法错在研究对象的选取,应保持初末状态研究对象是同系统,质量不变。

2.A、C、D人和船组成的系统动量守恒,总动量为0,∴不管人如何走动,在任意时刻两者的动量大小相等,方向相反。若人停止运动而船也停止运动,∴选A、C、D。B项错在两者速度大小一定相等,人和船的质量不一定相等。

3.A、B、D A、B组成的系统在水平不受外力,动量守恒,从两物落地点到桌边的距离

,∵两物体落地时间相等,∴

与x成正比,∴

,即A、B离

,未离开弹簧时,A、B受

开弹簧的速度比。由 ,可知

到的弹力相同,作用时间相同,冲量I=F·t也相同,∴C错。未离开弹簧时,F相同,m不

同,加速度 ,与质量成反比,∴ 。

4.

提示:在发炮瞬间,炮车与炮弹组成的系统在水平方向上动量守恒

发炮后,炮车受地面阻力作用而做匀减速运动,利用运动学公式,

,其中 ,

5.0 甲

提示:甲、乙和篮球组成的系统动量守恒,根据题设条件,可知甲与篮球的初动量与乙的初动量大小相等,方向相反,∴总动量为零。由动量守恒定律得,系统末动量也为零。因乙速度恰好为零,∴甲和球一起速度为零。

6.解:爆竹爆炸瞬间,木块获得的瞬时速度v可由牛顿第二定律和运动学公式求得

, ,

爆竹爆炸过程中,爆竹木块系统动量守恒

练习3 参考答案

1.A、D A为弹性碰撞模型,即有mv-mv=mv′-mv′,等式两侧分别为始末状态系统动量和。B如用数学表达式表示,则违反了动量守恒定律。对于C,令两球的质量分别是M和m,且M>m,碰前两球速率相同,合动量方向与大球的动量方向相同,碰后两球速率相等但方向相反,合动量方向仍与质量大者方向相同,由动量守恒定律可知,碰撞前后合动量不变(包括大小和方向);而C项,碰后合动量反向,∴C项错。D答案的数学表达式为

,v′方向和质量大的物体初速方向相同,此结论是动量守恒定律

中“合二为一”类问题。物理模型为“完全非弹性碰撞”。

2.B 取向右为正方向,由动量守恒定律, ,

3.A 气球和人组成系统所受合外力为零,系统动量守恒,人相对地的速度是

v,气球相对地的速度是

V,有mv-MV=0

人相对地的位移是h,设气球相对地的位移是x,

梯子总长度

4.C取向右为正方向,由动量守恒定律

。其中

得2×2-2×3=4v,v=-0.5m/s

, , ,

5.B、C碰撞从发生到结束是在极短时间内完成的,由于时间极短,摆球又是由摆线连接的,它完全不受碰撞的影响,仍保持原来的速度大小和方向。A、D两项违反上述分析,均不正确。

6.D 在车厢、人、子弹组成的系统中,合外力等于零,动量守恒。子弹与人的作用及子弹与车壁的作用,都是系统内力,不能使系统总动量发生变化。发射子弹前系统总动量为零,子弹打入前车壁后,系统的总动量也为零,∴车厢的速度为零。

7.C、D根据题设物理过程,其动量守恒

设 为较在原一块,则从这表达式可知,若 与 均为正向,那么 可能为

为正向也可能为负向,即 反向,则 等于

可能为正向(原方向),也可能为负向(反方向)。若

的可能都有;若

为正向,因题设没有

大于、等于、小于 一定大于或

的条件,则 大于、等于、小于 的可能也都有。∴A、B均不对。由于各自速

度为水平方向,即平抛,所以不论速度大小如何,二者一定以

同时落地。炸裂过

间的相互作用,从动量守恒角度看是内力作用,其冲量定是等值反向。

∴C、D正确。

8.

提示:根据 ,

“动量、能量”测试题

一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有

的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不答的得0分.

1.从同一高度落下的玻璃杯掉在水泥地上易碎,掉在沙地上不易碎,这是因为玻璃杯落到水泥地上时( )

A.受到的冲量大 B.动量变化率大 C.动量改变量大 D.动量大 2.物体在恒定的合力F作用下做直线运动,在时间△t1内速度由0增大到v,在时间△t2

内速度由v增大到2v.F在△t1做的功为W1,冲量为I1;在△t2做的功为W2,冲量为I2.那么( )

A. I1< I2 , W1= W2 B. I1< I2 ,W1< W2 C. I1=I2 , W1= W2 D. I1=I2 ,W1<W2

3.如图所示,一根轻弹簧下端固定,竖立在水平面上.其正上方A位置有一只小球.小球从静止开始下落,在B位置接触弹簧的上端,在C位置小球所受弹力大小等于重力,在D位置小球速度减小到零,小球下降阶段下列说法中正确的是

A ( )

A.在B位置小球动能最大 B

C B.在C位置小球动能最大

D C.从A→C位置小球重力势能的减少大于小球动能的增加

D.从A→D位置小球重力势能的减少等于弹簧弹性势能的增加

4.如图所示,质量相同的A、B两质点从同一点O分别以相同的水平速度v0沿x轴正方向抛出,A在竖直平面内运动,落地点为P1 ,B沿光滑斜面运动,落地点为P2 .P1和P2

A. A、B的运动时间相同 B.A、B沿x轴方向的位移相同 C.A、B落地时的动量相同 D.A、B落地时的动能相同

P2

5.汽车保持额定功率在水平路面上匀速行驶,汽车受到的阻力大小恒定,则下列说法正确的是( )

A.若汽车的速度突然增大,汽车将做一段时间的加速度增大的减速运动 B.若汽车的速度突然增大,汽车将做一段时间的加速度减小的减速运动 C.若汽车的速度突然减小,汽车将做一段时间的加速度增大的加速运动 D.若汽车的速度突然减小,汽车将做一段时间的匀加速运动 6.物体在地面附近以2 m/s2的加速度匀减速竖直上升,则在上升过程中,物体的机械能的变化是( )

A.不变 B.减小 C.增大 D.无法判断

7.如图所示,材料不同,但是质量相等的A、B两个球,原来在光滑水平面上沿同一直线相向做匀速直线运动,A球的速度是6m/s,B球的速度是-2m/s,不久A、B两球发生了对心碰撞.对于该碰撞之后的A、B两球的速度可能值,某实验小组的同学们做了很多种猜测,下面的哪一种猜测结果一定无法实现( )

A.vA/= -2m/s,vB/=6m/s B.vA/=2m/s,vB/=2m/s

C.vA/=1m/s,vB/=3m/s D.vA/= -3m/s,vB/=7m/s

8.如图所示,光滑水平面上停着一辆小车,小车的固定支架左端用不计质量的细线系一个小铁球.开始将小铁球提起到图示位置,然后无初速释放.在小铁球来回摆动的过程中,下列说法中正确的是( ) A.小车和小球系统动量守恒

B.小球向右摆动过程小车一直向左加速运动

C.小球摆到右方最高点时刻,由于惯性,小车仍在向左运动 D.小球摆到最低点时,小车的速度最大 9.如图所示,木块静止在光滑水平面上,子弹A、B从木块两侧同时水平射入木块,最终都停在木块中,这一过程中木块始终保持静止.现知道子弹A射入的深度dA大于子弹B射入的深度dB.若用tA、tB表示它们在木块中运动的时间,用EkA、EkB表示它们的初动能,用vA、vB表示它们的初速度大小,用mA、mB表示它们的质量,则可判断

( )

A. tA>tB B. EkA>EkB C. vA>vB D. mA >mB

10.如图甲所示,一轻质弹簧的两端与质量分别为m1和m2的两物块A、B相连接,并静止在光滑的水平面上.现使A瞬时获得水平向右的速度3m/s,以此刻为计时起点,两物块的速度随时间变化的规律如图乙所示,从图象信息可得( ) A.在t1、t3时刻两物块达到共同速度1m/s,且弹簧都是处于压缩状态 B.从t3到t4时刻弹簧由压缩状态恢复到原长 C.两物体的质量之比为m1:m2=1:2

D.在t2时刻A和B的动能之比为Ek1: Ek2=1:8

-甲

三、计算题:本题6小题,共66分.解答写出必要的文字说明、方程式和重要的演算

步骤.只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位.

11、(13).(12分)质量为M的火箭以速度v0飞行在太空中,现在突然向后喷出一份质量为Δm的气体,喷出的气体相对于火箭的速度是v,喷气后火箭的速度是多少? ........

本文来源:https://www.bwwdw.com/article/p15q.html

Top