专题18函数与方程思想(教学案)-2017年高考文数二轮复习精品资料
更新时间:2023-03-08 04:59:32 阅读量: 教学研究 文档下载
函数与方程思想在高考中也是必考内容,特别是在函数、解析几何、三角函数等处都可能考到,几乎大多数年份高考中大题都会涉及到.因此认真体会函数与方程思想是成功高考的关键.
考点一 函数思想
一般地,函数思想就是构造函数从而利用函数的图象与性质解题,经常利用的性质是:单调性、奇偶性、周期性、最大值和最小值、图象变换等.在解题中,善于挖掘题目的隐含条件,构造出函数解析式和巧用函数的性质,是应用函数思想的关键,它广泛地应用于方程、不等式、数列等问题.
考点二 方程思想
1.方程思想就是将所求的量(或与所求的量相关的量)设成未知数,用它表示问题中的其他各量,根据题中的已知条件列出方程(组),通过解方程(组)或对方程(组)进行研究,使问题得到解决.
2.方程思想与函数思想密切相关:方程f(x)=0的解就是函数y=f(x)的图象与x轴的交点的横坐标;函数y=f(x)也可以看作二元方程f(x)-y=0,通过方程进行研究,方程f(x)=a有解,当且仅当a属于函数f(x)的值域.函数与方程的这种相互转化关系十分重要.
考点三 函数与方程思想在解题中的应用 可用函数与方程思想解决的相关问题.
1.函数思想在解题中的应用主要表现在两个方面:
(1)借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题; (2)在研究问题中通过建立函数关系式或构造中间函数,把研究的问题化为讨论函数的有关性质,达到化难为易、化繁为简的目的.
2.方程思想在解题中的应用主要表现在四个方面: (1)解方程或解不等式;
(2)带参变数的方程或不等式的讨论,常涉及一元二次方程的判别式、根与系数的关系、区间根、区间上恒成立等知识的应用;
(3)需要转化为方程的讨论,如曲线的位置关系等; (4)构造方程或不等式求解问题.
考点一、运用函数与方程思想解决字母(或式子)的求值或取值范围问题
?-x+6,x≤2,?
例1.(2015·福建,14)若函数f(x)=?(a>0,且a≠1)的值域是4,+∞),则实数a的取值
?3+logx,x>2?a
范围是________.
【答案】 (1,2]
【解析】 由题意f(x)的图象如右图,则
??a>1,
? ?3+loga2≥4,?
∴1<a≤2.
【变式探究】 (2014·陕西卷)
如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连续(相切),已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为( )
11
A.y=x3-x2-x
2211
B.y=x3+x2-3x
221
C.y=x3-x
411
D.y=x3+x2-2x
42【解析】
考点二、运用函数与方程思想解决方程问题
??3x-1,x<1,
例2、(2015·山东,10)设函数f(x)=?x则满足f(f(a))=2f(a)的a取值范围是( )
?2,x≥1,?
2?
A.??3,1? 2
,+∞? C.?3??【答案】 C
B.0,1]
D.1, +∞)
【解析】 当a=2时,f(a)=f(2)=22=4>1,f(f(a))=2f(a),∴a=2满足题意,排除A,B选项;当a2?222f(a)
=时,f(a)=f?=3×-1=1,f(f(a))=2,∴a=满足题意,排除D选项,故答案为C. ?3?333
【规律方法】
研究此类含参数的三角、指数、对数等复杂方程解的问题,通常有两种处理思路:一是分离参数构建函数,将方程有解转化为求函数的值域;二是换元,将复杂方程问题转化为熟悉的二次方程,进而利用二次方程解的分布情况构建不等式或构造函数加以解决.
??2-|x|,x≤2,
【变式探究】 (2015·天津,8)已知函数f(x)=?函数g(x)=b-f(2-x),其中b∈R,2
?(x-2),x>2,?
若函数y=f(x)-g(x)恰有4个零点,则b的取值范围是( )
77
,+∞? B.?-∞,? A.?4??4??77
0,? D.?,2? C.??4??4?【答案】 D
【解析】 记h(x)=-f(2-x)在同一坐标系中作出f(x)与h(x)的图象如图,直线AB:y=x-4,当直线l∥AB
??y=x+b′,
且与f(x)的图象相切时,由?2 ?y=(x-2),?
997
解得b′=-,--(-4)=,
444
7
所以曲线h(x)向上平移个单位后,所得图象与f(x)的图象有四个公共点,平移2个单位后,两图象有
47
无数个公共点,因此,当<b<2时,f(x)与g(x)的图象有四个不同的交点,即y=f(x)-g(x)恰有4个零点.选
4D.
难点三、运用函数与方程思想解决不等式问题
3??x,x≤a,
例3.(2015·湖南,15)已知函数f(x)=?2若存在实数b,使函数g(x)=f(x)-b有两个零点,则
?x,x>a,?
a的取值范围是________.
【答案】 (-∞,0)∪(1,+∞) 【解析】
【规律方法】
(1)在解决值的大小比较问题时,通过构造适当的函数,利用函数的单调性或图象解决是一种重要思想方法.
(2)在解决不等式恒成立问题时,一种重要的思想方法就是构造适当的函数,利用函数的图象和性质解决问题.同时要注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题更明朗化,一般地,已知存在范围的量为变量,而待求范围的量为参数.
(3)在解决不等式证明问题时,构造适当的函数,利用函数方法解题是近几年各省市高考的一个热点.用导数来解决不等式问题时,一般都要先根据欲证的不等式构造函数,然后借助导数研究函数的单调性情况,再结合在一些特殊点处的函数值得到欲证的不等式.
【变式探究】设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取到极值. (1)求a,b的值;
(2)若对于任意的x∈0,3]都有f(x) ???f′(1)=0,?a=-3, 因为函数f(x)=2x+3ax+3bx+8c在x=1及x=2时取到极值,所以?解得? ??f′(2)=0.b=4.?? 3 2 当a=-3,b=4时, f′(x)=3(2x2-6x+4)=6(x-2)(x-1). 当x<1时,f′(x)>0; 当1 所以此时1与2都是极值点, 因此a=-3,b=4,f(x)=2x3-9x2+12x+8c. (2) 难点四、运用函数与方程思想解决最优化问题 例4、(2015·江苏,17)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,R以l2,l1所在的直线分别为x,y轴,建立平面直角坐标a 系xOy,假设曲线C符合函数y=2(其中a,b为常数)模型. x+b (1)求a,b的值; (2)设公路l与曲线C相切于P点,P的横坐标为t. ①请写出公路l长度的函数解析式f(t),并写出其定义域; ②当t为何值时,公路l的长度最短?求出最短长度. 【解析】 (1)由题意知,点M,N的坐标分别为(5,40),(20,2.5). 将其分别代入 a y=2,得 x+b ? ?a ?400+b=2.5, a =40,25+b ??a=1 000,解得? ?b=0.? 【规律方法】 解析几何、立体几何及其实际应用等问题中的最优化问题,一般利用函数思想来解决,思路是先选择恰当的变量建立目标函数,再用函数的知识来解决. 【变式探究】某地建一座桥,两端的桥墩已建好,这两桥墩相距m米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为x米的相邻两桥墩之间的桥面工程费用为(2+x)x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y万元. (1)试写出y关于x的函数关系式. (2)当m=640米时,需新建多少个桥墩才能使y最小? 【小结反思】 1.函数与方程思想在许多容易题中也有很多体现. 2.有很多时候可以将方程看成函数来研究,这就是函数思想. 3.有些时候可以将函数看成方程来研究,这就是最简单的方程思想.我们可以有意通过函数思想部分训练提升自己的数学能力.
正在阅读:
专题18函数与方程思想(教学案)-2017年高考文数二轮复习精品资料03-08
高三数学抽象函数习题精选精讲02-26
山西省朔州市平鲁区李林中学2018-2019学年高二数学上学期第一次05-12
八年级英语下册Unit5FeelingexcitedTopic3Manythingscanaffectou05-14
2012年普通高等学校招生统一考试山东数学(理)(精校版)(无答05-28
我和某某作文400字03-31
宏基因组实验计划 - 图文12-20
当幸福来敲门12-31
浅谈实践与认识的辩证关系05-01
植物病原学试题汇编110-15
- 1专题05遗传的分子基础教学案-2018年高考生物二轮复习精品资料解
- 22017年高考语文二轮复习精品资料:专题10 图表与文字转换(押题专
- 32019年高考数学(理)一轮复习精品资料专题07二次函数与幂函数(教学案)含解析
- 42017年高考语文二轮复习精品资料:专题10 图表与文字转换(押题专
- 52017年高考语文二轮复习精品资料:专题10 图表与文字转换(押题专
- 62017年高考语文二轮复习精品资料:专题10 图表与文字转换(押题专
- 718年高考语文二轮复习专题07古代诗词鉴赏与名言名篇教学案(含解
- 818年高考语文二轮复习专题07古代诗词鉴赏与名言名篇教学案(含解
- 92022高考化学二轮复习精品资料 专题12 有机物结构与性质教学案(
- 10高考化学二轮复习精品资料专题03 氧化还原反应教学案(学生版)【
- 公务员上岸同学告诉你,怎样走出面试中常见的十大误区
- 作表率,我们怎么办(办公室主任)
- 乘务员安全责任书
- 增员面试流程
- 河南省焦作市规模以上租赁和商务服务业企业应付职工薪酬数据洞察报告2019版
- 最新4社区工作者面试题
- 个人简历表
- 男教工体检必检项目
- 河南省兰考县规模以上租赁和商务服务业企业应付职工薪酬数据洞察报告2019版
- 兼职译员测试稿
- 河南省开封市规模以上租赁和商务服务业企业应付职工薪酬数据洞察报告2019版
- 永州职业技术学院校园总体规划-永州职业学院
- 最新5、培训科长笔试题(答案)
- 2019雅商酒店境外人员登记培训稀有资料,不可错过
- 小学教师求职简历范文
- 红酒知识与礼仪
- 春节给领导拜年的短信拜年词
- 2019年上半年中小学教师资格证结构化面试真题1
- 20XX年县干部培训工作目标
- 硬笔试听课
- 二轮
- 方程
- 函数
- 复习
- 思想
- 高考
- 专题
- 精品
- 教学
- 资料
- 2017
- 中小学德育工作研讨会暨首届班主任论坛材料
- 教师公招教育学心理学模拟试题三资料
- 教学注重实践交流材料
- 优秀教师先进事迹材料范文9篇
- 【课堂新坐标】(教师用书)高中化学 专题3 第二单元 功能各异的无
- 公开课文化现象研究开题汇报材料
- 《灌溉排水工程学》多媒体教学素材管理系统研究
- 学校汇报材料专题8篇
- 资料提高初中生物课堂教学实效性的研究课题实施方案
- 材料与化学工程学院2017-2018学年第1学期
- 专题134 直接证明与间接证明(教学案)-2015年高考数学(理)一轮复
- 《磁性材料》导学案1
- 《磁性材料》同步练习4
- 中小学教师培训材料关注有效教学,追寻高效课堂
- 网页制作与开发教学点滴心得
- 新华实验小学教研教改工作汇报材料
- 论文资料-初中化学实验教学现状分析及优化策略初探(word)
- 新材料作文审题训练 课堂教学实录(人教版高三必修五)
- 教学常规工作检查汇报材料
- 学校工作汇报材料(多篇)