Axisymmetric stability criteria for a composite system of stellar and magnetized gaseous si
更新时间:2023-05-23 18:54:01 阅读量: 实用文档 文档下载
- axis英文推荐度:
- 相关推荐
Using the fluid-magnetofluid formalism, we obtain axisymmetric stability criteria for a composite disc system consisting of stellar and gaseous magnetized singular isothermal discs (MSIDs). Lou & Zou recently constructed exact global stationary configurati
Mon.Not.R.Astron.Soc.000,000–000(0000)Printed5February2008
A(MNLTEXstyle lev1.4)
Axisymmetricstabilitycriteriaforacompositesystemof
stellarandmagnetizedgaseoussingularisothermaldiscs
Yu-QingLou1,2,3,4andYueZou1
arXiv:astro-ph/0511348v1 11 Nov 2005
1Physics2Centre
DepartmentandTsinghuaCenterforAstrophysics(THCA),TsinghuaUniversity,Beijing100084,China;dePhysiquedesParticulesdeMarseille(CPPM)/CentreNationaldelaRechercheScienti que(CNRS)/InstitutNationaldePhysiqueNucl´eaireetdePhysiquedesParticules(IN2P3)etUniversit´edelaM´editerran´eeAix-MarseilleII,163,AvenuedeLuminyCase902F-13288Marseille,Cedex09,France;3DepartmentofAstronomyandAstrophysics,TheUniversityofChicago,5640EllisAve,Chicago,IL60637,USA;4NationalAstronomicalObservatories,ChineseAcademyofScience,A20,DatunRoad,Beijing100012,China.
Accepted2004...Received2004...;inoriginalform2004
ABSTRACT
Usingthe uid-magneto uidformalism,weobtainaxisymmetricstabilitycriteriaforacompositediscsystemconsistingofstellarandgaseousmagnetizedsingularisothermaldiscs(MSIDs).Both(M)SIDsarepresumedtoberazor-thinandaregravitationallycoupledinaself-consistentaxisymmetricbackgroundequilibriumwithpower-lawsur-facemassdensitiesand atrotationcurves.ThegaseousMSIDisembeddedwithanon-force-freecoplanarazimuthalmagnetic eldBθ(r)ofradialscalingr 1/2.Lou&Zourecentlyconstructedexactglobalstationarycon gurationsforbothaxisym-metricandnonaxisymmetriccoplanarmagnetohydrodynamic(MHD)perturbationsinsuchacompositeMSIDsystemandproposedtheMHDDs criteriaforaxisym-metricstabilitybythehydrodynamicanalogy.Inadi erentperspective,wederiveandanalyzeherethetime-dependentWKBJdispersionrelationinthelow-frequencyandtight-windingregimetoexamineaxisymmetricstabilityproperties.ByintroducingarotationalMachnumberDsfortheratioofthestellarrotationspeedVstothestellar
2
numericallytovelocitydispersionas,onereadilydeterminesthestablerangeofDs
establishtheDs criteriaforaxisymmetricMSIDstability.ThoseMSIDsystemsro-tatingeithertoofast(ringfragmentation)ortooslow(Jeanscollapse)areunstable.
2
ThestablerangeofDsdependsonthreedimensionlessparameters:theratioλfortheAlfv´enspeedtothesoundspeedinthegaseousMSID,theratioβforthesquareofthestellarvelocitydispersiontothegassoundspeedandtheratioδforthesurfacemassdensitiesofthetwo(M)SIDs.OurWKBJresultsof(M)SIDinstabilityprovidephys-icallycompellingexplanationsforthestationaryanalysisofLou&Zou.Wefurtherintroduceane ectiveMHDQparameterforacompositeMSIDsystemandcomparewiththeearlierworkofElmegreen,JogandShen&Lou.Asexpected,anaxisym-metricdarkmatterhaloenhancesthestabilityagainstaxisymmetricdisturbancesinacompositepartialMSIDsystem.Intermsoftheglobalstarformationrateinadiscgalaxysystem,itwouldappearphysicallymoresensibletoexaminetheMHDQMstabilitycriterionagainstgalacticobservations.Relevancetolarge-scalestructuresindiscgalaxiesarealsodiscussed.
Keywords:MHDwaves—ISM:magnetic elds—galaxies:kinematicsanddynam-ics—galaxies:spiral—star:formation—galaxies:structure.
1INTRODUCTION
Incontextsofgalacticstructures,discstabilitiesandglobalstarformationratesinspiralgalaxies,wederiveherein-stabilitycriteriaforaxisymmetriccoplanarmagnetohydro-dynamic(MHD)perturbationsinacompositediscsystem
withanazimuthalmagnetic eldinthegasdisccomponentandestablishageneralizedde nitionofane ectiveMHDQMparameterappropriatetosuchamagnetizedgravita-tionalsystem.Formulatedassuch,thisisanidealizedandlimitedtheoreticalMHDdiscproblemyetwithseveralkeyconceptualelementsincluded.Thesimplephysicalrationale
Using the fluid-magnetofluid formalism, we obtain axisymmetric stability criteria for a composite disc system consisting of stellar and gaseous magnetized singular isothermal discs (MSIDs). Lou & Zou recently constructed exact global stationary configurati
2Y.-Q.LouandY.Zou
isthatzonalregionsofhighergasdensityandmagnetic eldarevulnerabletoactiveformationofmassivestarswithvar-iousscalesinvolveddi eringbymanyordersofmagnitudes.Onthesameground,non-axisymmetricstabilitycriteriaareequallyimportantbutaremorechallengingtoestablish(seee.g.Shuetal.2000forrelevantissues).Overfourdecades,importantdevelopmenthavebeenmadeforinstabilitycrite-riarelevanttogalacticdiscdynamics(seeLin1987,Binney&Tremaine1987andBertin&Lin1996andextensiverefer-encestherein).Theoriginalstudiesofaxisymmetricinstabil-itieswereconductedbySafronov(1960)andToomre(1964)whointroducedthedimensionlessQparameterforthelocalstability(i.e.Q>1)againstaxisymmetricring-likedistur-bances.Fordiscgalaxies,itwouldbemorerealisticandsen-sibletoinvestigateacompositediscsystemconsistingofastellardisc,amagnetizedgasdiscandamassivedarkmat-terhalo.Therehavebeenextensivetheoreticalstudiesonthistypeofcompositetwo-componentdiscsystemsofvar-ioussub-combinations(Lin&Shu1966,1968;Kato1972;Jog&Solomon1984a;Bertin&Romeo1988;Romeo1992;Elmegreen1995;Jog1996;Lou&Fan1998b,2000a,b;Lou&Shen2003;Shen&Lou2003,2004a,b;Lou&Zou2004;Lou&Wu2005).Inparticular,therehavebeenseveralstud-iestryingtode neapropere ectiveQparameterforlocalaxisymmetricinstabilitycriterioninacompositediscsys-tem(Elmegreen1995;Jog1996;Lou&Fan1998b,2000a,b;Shen&Lou2003,2004a,b).Fromdi erentperspectives,theseanalyseso erinsightsforinstabilitypropertiesofacompositediscsystemandprovideatheoreticalbasisforunderstandingthelarge-scaledynamicsinsuchasystem(e.g.Lou&Fan2000a,b;Lou&Shen2003;Shen&Lou2003,2004a,b;Lou&Zou2004;Lou&Wu2005).
Themainmotivationhereistoexplorebasicproper-tiestheMSIDmodelinacompositesystemandobtaincon-ceptualinsightsforastrophysicalapplicationsinmagnetizedspiralgalaxiesandinestimatingglobalstarformationratesindiscgalaxies(e.g.,Lou&Bian2005).Intheoreticalstud-iesofmodelingdiscgalaxies,theclassofSIDmodelshasadistinguishedhistorysincethepioneeringworkofMestel(1963)(Zang1976;Toomre1977;Lemos,Kalnajs&Lynden-Bell1991;Lynden-Bell&Lemos1993;Syer&Tremaine1996;Goodman&Evans1999;Charkrabarti,Laughlin&Shu2003)andhasgainedconsiderableattentionandinter-estsrecentlybyconsideringacompositediscsystemandbyincorporatinge ectsofmagnetic eld(Shuetal.2000;Lou2002;Lou&Fan2002;Lou&Shen2003;Shen&Lou2003,2004a,b;Shen,Liu&Lou2004;Lou&Zou2004;Lou&Wu2005).Speci cally,Shuetal.(2000;seealsoGallietal.2001)studiedglobalstationary(i.e.,zeropatternspeed)perturba-tioncon gurationsinanisopedicallymagnetizedSIDwith-outinvokingtheusualWKBJortight-windingapproxima-tion.Theyobtainedexactglobalsolutionsforbothalignedandunalignedaxisymmetricandnon-axisymmetriclogarith-micspiralcon gurationsandinterpretedtheaxisymmetricsolutionforperturbationswithradialpropagationsasde-marcatingtheboundariesbetweenthestableandunstableregimes.Bytheseaxisymmetricinstabilities,aSIDwitha
su cientlyslowrotationspeedwouldJeanscollapseinducedbyperturbationsoflargerradialscales,whileaSIDwithasu cientlyfastrotationspeedmaysu ertheringfragmen-tationinstabilityinducedbyperturbationsofsmallerradialscales(see g.2ofShuetal.2000).Byintroducingaro-tationalMachnumberD,de nedastheratiooftheSIDrotationspeedVtotheisothermalsoundspeeda,thecrit-icalvaluesofthehighestandlowestDforanaxisymmetricstabilitycanbedetermineddirectlyfromthemarginalsta-bilitycurve.Tosupporttheirphysicalinterpretations,theyinvokedthewell-knownToomreQparameterandfoundthatthehighestD,namelytheminimumoftheringfragmenta-tioncurve,correspondstoaQvalueveryclosetounity,thusheuristicallysuggestingthecorrespondencebetweentheD criterionandtheQ criterion.
Di erentfromyetcomplementarytotheanalysisofShuetal.(2000)onasingleisopedicallymagnetizeddisc,Lou(2002)studiedglobalcoplanarMHDperturbationsinasin-gleMSIDembeddedwithanazimuthalmagnetic eldandrevealedthattheminimumoftheMHDringfragmenta-tioncurveinthisMSIDmodelistightlyassociatedwiththegeneralizedMHDQMparameteroriginallyintroducedbyLou&Fan(1998a)indevelopingthegalacticMHDden-sitywavetheory(Fan&Lou1996).ForacompositesystemoftwocoupledunmagnetizedhydrodynamicSIDs,Lou&Shen(2003)constructedstationaryglobalperturbationcon- gurationsandShen&Lou(2003)suggestedastraightfor-wardD criterionfortheaxisymmetricringfragmentationinstabilityinsuchasystemonthebasisofalow-frequencyWKBJanalysis;theyrevealedthattheminimumoftheringfragmentationintheircompositeSIDmodelisagaincloselyrelatedtoapropere ectiveQparameter(Elmegreen1995;Jog1996).Furthermore,foracompositeSIDsystemwithanisopedicallymagnetizedgaseousSIDandastellarSIDinthe uiddescription,Lou&Wu(2005)haveconstructedglobalstationaryMHDperturbationstructuresandexam-inedstabilitypropertiestoanticipateasimilarD criterioninparalleltothecaseofShen&Lou(2003).Meanwhile,Shen&Lou(2004b)havefurthergeneralizedbothworkofSyer&Tremaine(1996)andLou&Shen(2003)tothesitu-ationofacompositesystemfortwogravitationallycoupledscale-freediscs;theyalsostudiedtheaxisymmetricstabilityofsuchacompositesystemintermsofthemarginalstabilitycurvesandproposedaDs&Lou(2003).
criterionbytheanalogyofShenWehaverecentlyexaminedtwo-dimensionalcoplanarMHDperturbationsinacompositesystemconsistingofastellarSIDandagaseousMSID.BothSIDsareexpedientlyapproximatedasrazor-thinandthegasdiscisembeddedwithanon-force-freecoplanarmagnetic eld(Lou&Zou2004).Inthis uid-magneto uidMSIDmodelapproxima-tion,weobtainedexactglobalstationaryMHDsolutionsforalignedandunalignedlogarithmicspiralperturbationcon- gurationsinsuchacompositeMSIDsystem,expressedintermsofthestellarrotationalMachnumberDs.Inrefer-encetotheresultsofasingleSID(Shuetal.2000;Gallietal.2001;Lou2002),itwouldbenaturaltosuggestthat
Using the fluid-magnetofluid formalism, we obtain axisymmetric stability criteria for a composite disc system consisting of stellar and gaseous magnetized singular isothermal discs (MSIDs). Lou & Zou recently constructed exact global stationary configurati
thestationaryaxisymmetricsolutionswithradialpropaga-tionsgiverisetomarginalstabilitycurves(seeFigure2inthispaperlaterandLou&Zou2004).Incomparisonwith
thesingleSIDcase,thestablerangeofD2
sisreducedasaresultofthemutualgravitationalcouplingbetweenthetwoSIDs.However,incomparisonwiththecaseofacompositeunmagnetizedSIDsystem(Lou&Shen2003;Shen&Lou
2003),thestablerangeofD2
sexpandsconsiderablyduetothepresenceofacoplanarmagnetic eld.
Tocon rmheuristicargumentsfortheaboveanalogyandourintuitivephysicalinterpretations,weconductinthispaperalow-frequencytime-dependentstabilityanalysisintheWKBJortight-windingapproximationforthecompos-iteMSIDsystem(Shen&Lou2003,2004a;Lou&Zou2004).Weshalldemonstrateunambiguouslythevalidityofdemar-catingthestableandunstableregimesbythestellarrota-tionalMachnumberDs.Toplaceouranalysisinpropercontexts,wealsodiscussspeci callyhowthetwoe ectiveQparametersofElmegreen(1995)andofJog(1996)arere-latedtoourDsparameterwhenotherrelevantparametersarespeci ed,andshowthatthetwoe ectiveQparame-tersarepertinenttotheringfragmentationinstabilityinacompositeMSIDsystem.
InSection2,wederivethetime-dependentdisper-sionrelationusingtheWKBJapproximationforpertur-bationsinacompositeMSIDsystemandintroduceafewkeydimensionlessparameters.InSection3,wepresenttheDsite MSIDcriterionsystemandbeingtwoe ectivestableagainstQparametersarbitraryforaxisymmet-acompos-ricperturbationswithradialpropagations.MainresultsanddiscussionsaresummarizedinSection4.
2AFLUID-MAGNETOFLUIDFORMALISM
Weconsiderbelowacompositesystemconsistingoftwogravitationallycoupled(M)SIDswithoneoftheSIDsbeingmagnetizedandthusreferredtoasMSID.Forphysicalvari-ables,weuseeithersuperscriptorsubscriptstoindicateanassociationwiththestellarSIDandeithersuperscriptorsubscriptgtoindicateanassociationwiththegaseousMSID.ThestellarSIDandthegaseousMSIDcanhavecon-stantyetdi erentrotationalspeedsVsandVg(relatedtothephenomenonofasymmetricdriftinthegalacticcontext);wethuswritethebackgroundangularrotationspeeds softhestellarSIDand gofthegaseousMSIDas
s=Vs/r=asDs/r
(1)
and
g=Vg/r=agDg/r,
(2)separately,whereasandagaretheconstantvelocitydis-persionofthestellarSIDandtheisothermalsoundspeedofthegaseousMSID,respectively;DsandDgarethecor-respondingrotationalMachnumbers.Therelevantepicyclicfrequenciesintermsof sand garegivenby
κ22 s
s≡
dr
(r2 s)=2 2s
(3)
MHDstabilitycriteriaforcompositeMSIDs
3
and
κ2g
g≡
2 dr
(r2 g)=2 2g,
(4)
respectively.SimilartoasingleMSID,wetaketheback-groundazimuthalmagnetic eldtobeintheformof
B1/2θ(r)=Fr ,
(5)
whereFisaconstant(Lou2002;Lou&Fan2002)and
Br=Bz=0.
(6)
Foramoregeneralpower-lawradialvariationoftheaz-imuthalmagnetic eldandthoseofotherrelatedback-groundvariables,theinterestedreaderisreferredtoarecentanalysisofShen,Liu&Lou(2005).
Inthe uidapproximationofastellarSID,themassconservation,theradialcomponentofthemomentumequa-tionandtheazimuthalcomponentofthemomentumequa-tionaregivenbelowinorder,namely
Σs (rΣsus) (Σsjs)
rr2
+u
s u
s
us1 t
r2
r3=
r
s j
s
js
Πs
t+ur2Σs θ
,(9)whereusistheradialcomponentofthebulk owvelocityofthestellarSID,js≡rvsisthestellarspeci cangularmomentumalongthez direction,vsistheazimuthalcom-ponentofthestellarbulk owvelocity, isthetotalgrav-itationalpotential,Πsistheverticallyintegratedpressure,andΣsisthesurfacemassdensityofthestellarSID.
Inthemagneto uidapproximationforthegaseousMSID,themassconservation,theradialcomponentofthemomentumequationandtheazimuthalcomponentofthemomentumequationaregivenbelowinorder,namely
Σg
(rΣgug) (Σgjg)rr2
+ug
ug
ug
1
t
r2
r3=
r
dzBθ
Σg
r
Br
g
Πg t
+ug
j jgr2Σg θ
+1 (rBθ)
4π
θ
(12),
whereugistheradialcomponentofthegasbulk owveloc-ity,jg≡rvgisthegasspeci cangularmomentuminthez
direction,vg
istheazimuthalcomponentofthegasbulk owvelocity,Πgisthetwo-dimensionalgaspressure,ΣgisthegassurfacemassdensityandBrandBθaretheradialandazimuthalcomponentsofthemagnetic eldB.Thelasttwotermsontheright-handsidesofequations(11)and(12)aretheradialandazimuthalcomponentsoftheLorentzforceduetothecoplanarmagnetic eld.Thetwosetsof uidandmagneto uidequations(7) (9)and(10) (12)aredynam-icallycoupledbythetotalgravitationalpotential through
Using the fluid-magnetofluid formalism, we obtain axisymmetric stability criteria for a composite disc system consisting of stellar and gaseous magnetized singular isothermal discs (MSIDs). Lou & Zou recently constructed exact global stationary configurati
4Y.-Q.LouandY.Zou
thePoissonintegral
∞s
(r,θ,t)= dψ
G(Σg+Σ)ζdζ
Bθ
r
+
t=
1 θ
(ugBθ vgBr),(15)
Bθ
r
(ugBθ vgBr).
(16)
UsingPoissonintegral(13),onereadilyderivesthefollowingexpressionsforthebackgroundsurfacemassdensities
Σsa22
0=
s(1+Ds)
2πGr(1+δ)
,(18)
whereδ≡Σgs
0/Σ0isthesurfacemassdensityratioofthetwodynamicallycoupledbackground(M)SIDsandCAistheconstantAlfv´enwavespeedintheMSIDde nedC2A≡ by
dzB2θ/(4πΣg0).
(19)Apparently,equations(17)and(18)requires
a2D2222
s(1+s)=ag(1+Dg) CA/2.
(20)
Wenowintroducetwomoreusefuldimensionlessparameters
here.The rstparameterβ≡a22
s/agstandsforthesquareoftheratioofthestellarvelocitydispersiontotheisothermalsoundspeedintheMSIDandthesecondparameterλ2C22≡A/agstandsforthesquareoftheratiooftheAlfv´
enwavespeedtotheisothermalsoundspeedintheMSID.Inlate-typediscgalaxies,thestellarvelocitydispersionasisusuallyhigherthanthegassoundspeedag,wethusfocusonthecaseofβ≥1(Jog&Solomon1984a,b;Bertin&Romeo1988;Jog1996;Elmegreen1995;Lou&Fan1998b;Lou&Shen2003;Shen&Lou2003,2004a,b;Lou&Wu2005).
Beforegoingfurther,wenotethatatypicaldiscgalaxysysteminvolvesamassivedarkmatterhalo,astellardiscandagaseousdiscofinterstellarmedium(ISM)onlargescales,wheretheISMdiscismagnetizedwiththemagneticenergydensity(~1eV/cm3)beingcomparabletotheen-ergydensitiesofthermalISMandofrelativisticcosmic-raygas(e.g.Lou&Fan2003).Tocomprehensivelyun-derstandmulti-wavelengthobservationsoflarge-scalespi-ralstructuresofdiscgalaxiesandtodeveloppotentiallypowerfulobservationaldiagnostics(Lou&Fan2000a,b),itwouldbemorerealisticandnecessarytotakeintoaccountofmagnetic elde ectsinacompositemagnetizeddisc-halomodel. Whilethereareexceptions,galacticmagnetic elds
Thecosmic-raygasissetasideheremerelyforthesakeofsim-
typicallytendtobecoplanarwiththediscplaneofaspiral
galaxyonlargescales.Onsmallerscales,regionsofclosedandopenmagnetic eldsaremostlikelyintermingledbythesolaranalogy(e.g.Lou&Wu2005).Asa rststep,Lou(2002)carriedoutacoplanarMHDperturbationanal-ysisforstationaryalignedandunalignedlogarithmicspiralstructuresinasingleMSIDembeddedwithanazimuthalmagnetic eldanddemonstratedthattheminimumoftheringfragmentationcurveinthisMSIDmodelisclearlyre-latedtothegeneralizedMHDQMparameter(Lou&Fan1998a).SincethebackgroundMHDrotationalequilibriumadoptedbyLou&Fan(1998a)isnotanMSIDmodel,itwouldbemoresatisfyingtojustifythestatementandin-terpretationofLou(2002)inadynamicallyself-consistentmanner.Weshallde neaQMparametersimilartothatofLou(2002)andshowthatthisQMisequivalenttothatofLou&Fan(1998a).
ForasingleMSID,wereadilyderivelinearequations(bysettingrelevantparametersforthestellarSIDtovanish)forcoplanaraxisymmetricMHDperturbationswithFourierharmonicdependenceexp(ikr+iωt),wherekistheradialwavenumberandωistheangularfrequency.IntheusualWKBJortight-windingapproximationofkr 1,weobtainthelocalWKBJdispersionrelationforMHDdensitywavespropagatinginanMSIDintheformof
ω2=κ2222g+k(ag+CA) 2πG|k|Σg
0,
(21)
whichistheMHDgeneralizationoftheWKBJdispersionrelationforcoplanarperturbationsinanunmagnetizedSID.
Toderiveane ectiveQMparameterfortheaxisym-metricstability(i.e.,ω2withanarbitraryk,thedeterminant≥0)againstofMHDtheright-handperturbationssideofequation(21)shouldbenegativeforallk.Thisrequires
κg(C2
21/2QM≡
A+ag)
Using the fluid-magnetofluid formalism, we obtain axisymmetric stability criteria for a composite disc system consisting of stellar and gaseous magnetized singular isothermal discs (MSIDs). Lou & Zou recently constructed exact global stationary configurati
mutualgravitationalcouplingbetweenthetwoSIDsbythetermontheright-handside.The rstfactorontheleft-handsideisforperturbationsinthestellarSIDapproximatedasa uid,whilethesecondfactorisforcoplanarMHDpertur-bationsinthegaseousMSID[seeexpression(21)].Itshouldbeemphasizedthatwhiledispersionrelation(23)isalo-calone,thebackgroundphysicalvariablesareinrotationalMHDequilibriuminaconsistentmanner.Inparticular,Σg0givenbyexpression(18)containstheinformationofback-groundmagnetic eldviaC2
A.
AsnotedbyLou&Shen(2003),thedispersionrelationderivedhereforcoplanarMHDperturbationsinacomposite(M)SIDapproachisqualitativelysimilartothosepreviouslyobtainedbyJog&Solomon(1984),Elmegreen(1995)andJog(1996)inspirit,butonemajordistinctionisthatintheformulationofourcomposite(M)SID,therotationspeedsofthetwoSIDsVsandVgaredi erentingeneral.Wethushaveinequalityκs=κg,whileinthoseearlieranalyses,κs=κgwaspresumedapriorifollowingtheassumptionofVs=Vg.
Thisisconceptuallyrelatedtothephenomenonofasymmetricdrift(e.g.Binney&Tremaine1987).Physically,stellarvelocitydispersionsmimicapressure-likeforceforthestellarcomponent,whilethethermalISMgasandmagneticpressureforcestogetheractonthemagnetizedgascompo-nent.Inthesamegravitationalpotentialwelldeterminedbythetotalmassdistribution,thedi erenceinthestellarpressure-likeforceandthesumofthegaseousandmagneticpressureforceswouldleadtodi erentVsandVgandthustheasymmetricdrift.TheraresituationofVsandVgbeingequalmayhappenunderveryspecialcircumstances.
3
AXISYMMETRICSTABILITYANALYSIS
FORACOMPOSITEMSIDSYSTEM
WedescribebelowcoplanarMHDperturbationanalysisfortheaxisymmetricstabilityofacompositeMSIDbasedonalow-frequencytime-dependentWKBJapproach.Generaliz-ingthenotationsofShen&Lou(2003)yetwiththee ectofmagnetic eldincluded,weherede ne
H1≡κ22a2s+ks 2πG|k|Σs
0,
(24)
H2≡κ2222g+k(ag+CA) 2πG|k|Σg0,
(25)
G1≡2πG|k|Σs0,(26)
G2≡2πG|k|Σg0,
(27)
whereΣs0andΣg
0aregivenbyequations(17)and(18).In
additiontotheappearanceofC2
Ainequation(25),Σg0givenbyexpression(18)alsocontainsthemagnetic elde ect.Dispersionrelation(23)canbecastintotheformof
ω4 (H1+H2)ω2+(H1H2 G1G2)=0,
(28)
MHDstabilitycriteriaforcompositeMSIDs
5
withthetworootsω22
+andω givenbyω2±(k)=(H1+H2)/2
H2)2Similartothe±[(proofH1+ofShen 4(&H1H2Lou(2003, G1G2)]1/2/2.
(29)
2004a),theω2+
rootremainsalwayspositive.Incontrast,ω2
maybecomenegative,leadingtoaxisymmetricMSIDinstabilities.Sub-stitutionsofexpressionsH1,H2,G1,G2andde nitions(17)and(18)andexpression(20)intoequation(29)for
theminus-signsolutionwouldgiveω2
intermsof vedi-mensionlessparametersD2
s,K≡|k|r,δ,βandλ2,namely
ω2 (k)
=
a2s
β
,(33) ≡B4K4+B3K3+B2K2+B1K+B0,
(34)B4≡[1 (1+λ2)/β]2,
(35)B3≡2(1+y)(δ 1)[1 (1+λ2)/β]/(1+δ),
(36)
B2≡[y2+2y 3+(8β 4 2λ2+2λ4+2βλ2)/β2],(37)
B1≡4(1+y)(1 δ)[1 1/β+λ2/(2β)]/(1+δ),
(38)B0D≡4[1 1/β+λ2/(2β)]2,
(39)
wherey≡2
s.TheanalysishereparallelsthatofShen&Lou(2003);thenovelmagnetic elde ecttobeexplorediscontainedinthedimensionlessparameterλ2.
Asaresultoftheone-to-onecorrespondencebetweenD22sandDgdictatedbyexpression(20),itisstraightforwardtoderiveanequivalentformofexpression(30)intermsofD2ginsteadofD2s.MathematicalsolutionsofD2gandD2s
becomeunphysicalforeitherD22
g<0orDs<0orbothbe-ingnegative.Onecanreadilyshowfromcondition(20)thatD22s<Dgforβ≥1(Lou&Zou2004).Therefore,itsu ces
torequireD2
s>0.Inthesubsequentanalysis,wemainly
useD2
s–thesquareoftherotationalMachnumber–toexaminetheaxisymmetricstabilitypropertyinacompositeMSIDsystem.
Bysettingλ2=0forzeromagnetic eldinexpressions(30) (39),theyallreducetothecorrespondingexpressionsforacompositesystemoftwocoupledunmagnetizedSIDsanalyzedbyShen&Lou(2003).Forscale-freediscsmoregeneralthanSIDs,thereaderisreferredtotheworkofSyer
Using the fluid-magnetofluid formalism, we obtain axisymmetric stability criteria for a composite disc system consisting of stellar and gaseous magnetized singular isothermal discs (MSIDs). Lou & Zou recently constructed exact global stationary configurati
6Y.-Q.LouandY.Zou
&Tremaine(1996),Shen&Lou(2004a,b)andShen,Liu&Lou(2005).Toderiveane ectiveMHDQMparameterforacompositediscsystemofoneSIDandonegaseousMSID,
wemustdeterminethevalueofKminatwhichω2
reachestheminimumvalue.
3.1The
D2s Criterion
intheWKBJRegime
Beforede ningane ectiveQMparameter,we rstshow
unambiguouslytheDsandcon rmourearlier interpretationscriterionforaxisymmetricforthemarginalstabilitysta-bilitycurvesinacompositeMSIDsystem(Lou&Zou2004).
Accordingtosolution
(30),ω2
isafunctionofKandD2.Bysettingω2
s =0andassigningvaluesofparametersδ,βandλ2insolution(30),weendupwithanequation
forD2.Contoursofω22
sandK inDsandKwithvarious
combinationsofδ,βandλ2
aregivenbelowtocomparewithourmarginalstabilitycurvesobtainedearlier(Lou&Zou2004;seealsoShen&Lou2003,2004a,b,Shen,Liu&Lou2005andLou&Wu2005).
Asanexampleofillustration,weset|m|=0,δ=0.2,β=1.5andλ2=1anddeterminenumericallycontour
curvesofω22
intermsofDsandKasdisplayedinFig.1.
Physically,thetworegionslabelledω2
<0inthelower-leftandupper-rightcornersareunstable,whiletheregionla-belledbyω2
>0isstableagainstaxisymmetriccoplanarMHDperturbations.Forcomparison,weshowtheglobalmarginalstabilitycurveinacompositeMSIDsystemwiththesameparametervaluesinFig.2( gure11ofLou&Zou2004),whereαisadimensionlesse ectiveradialwavenum-ber(seeShuetal.2000;Lou2002;Lou&Shen2003;Lou&Zou2004).IntheWKBJapproximationoflargeKandα,thetwoupper-rightsolidcurvesinFigs.1and2showgoodmutualcorrespondencefortheringfragmentationinstabil-ity.Thusourpreviousinterpretationfortheglobalstation-aryaxisymmetricMHDperturbationcon gurationasthemarginalstabilitycurveiscon rmedbytheWKBJanaly-sishere.Incomparison,thecorrespondenceinthesmallKregimeisqualitativewithapparentdeviations;theWKBJapproximationworksbetterforalocalanalysis,whiletheresultsofFig.2areglobalandexactwithouttheWKBJapproximation.Itisclearthatthiscomparisonrevealsthephysicalnatureofthedemarcationcurvesastheaxisym-metricstabilityboundaries.
Byanω2 contourplotforD2
sversusK,thestablerangeofD2
sintheWKBJapproximationcanbereadilyidenti ed.Forexample,inFig.1with|m|=0,δ=0.2,β=1.5andλ2=1,thecompositeMSIDsystemhasastablerangefromD20.1205atK=0.5075toD2s=s=6.3428atK=3.5149.IntheWKBJapproximation,weexplorenumericallyandshowsomequalitativetrendsofvariationsforthemarginalstabilitycurveswithparametersδ,βandλ2inFigs.3 5.Ingeneral,theincreaseofδandβtendstomakeacompositeMSIDsystemmorevulnerabletoinstability(compareFigs.1,5and6),whiletheincreaseofthemagnetic eldstrengthλ2expandsthestablerangeandreducesthedangerofin-stabilities(compareFigs.3and4).
Figure1.Acontourplotofω2 asafunctionofKandD2s
with|m|=0,δ=0.2,β=1.5andλ2=1.Thetwoseparated
regionslabelledω2
<0inthelower-leftandupper-rightcornersareunstable.Thetwosolidcurvesmarkω2
=0.Figure2.TheglobalmarginalstabilitycurveofD2s
versusef-fectivedimensionlessradialwavenumberαfor|m|=0,δ=0.2,β=1.5andλ2=1[see gure11ofLou&Zou(2004)].
Figure3.Acontourplotofω2 asafunctionofKandD2s
with|m|=0,δ=0.2,β=1andλ2=0.09.Thetwoseparated
domainslabelledbyω2<0areunstable.Thetwosolidcurvesmarkω2
=0.
Using the fluid-magnetofluid formalism, we obtain axisymmetric stability criteria for a composite disc system consisting of stellar and gaseous magnetized singular isothermal discs (MSIDs). Lou & Zou recently constructed exact global stationary configurati
Figure4.Acontourplotofω2 asafunctionofKandD2with|m|=0,δ=0.2,β=1andλ2s=3.61.Thetwodomainslabelled
byω2 <0areunstable.Thetwosolidcurvesmarkω2 =0.
Figure5.Acontourplotofω2 asafunctionofKandD2s
with|m|=0,δ=0.2,β=10andλ2=1.Thetwodomainslabelled
byω2 <0areunstable.Thetwosolidcurvesmarkω2
=0.
Figure6.Acontourplotofω2 asafunctionofKandD2s
with|m|=0,δ=1,β=10andλ2=1.Thetworegionslabelledbyω2 <0areunstable.Thetwosolidcurvesmarkω2
=0.MHDstabilitycriteriaforcompositeMSIDs
7
Figure7.TheglobalmarginalstabilitycurveofD2s
versusef-fectivedimensionlessradialwavenumberαfor|m|=0,δ=0.2,β=10andλ2=1[see gure13ofLou&Zou(2004)].
Theroleofcoplanarringmagnetic eldinstabilizing
acompositeMSIDsystemcanbephysicallyunderstoodasfollows.Accordingtodispersionrelation(23),weseethat,intheMSIDfactor,thegasandmagneticpressuretermsareexplicitlyassociatedwiththesquareoftheradialwavenum-ber|k|,whilethebackgroundsurfacemassdensitytermislinearin|k|.Fortheringfragmentationinstabilitythatoc-cursatrelativelylargeradialwavenumbers,thetwopressuretermsdominateandtheincreaseofmagneticpressuretendstoenhancetheaxisymmetricstabilityofacompositeMSIDsystem.FortheJeanscollapseinstabilitythatoccursatrela-tivelysmallwavenumbers,thebackgroundgassurfacemassdensitytermintheMSIDfactorbecomesdominantoverthetwopressureterms.BytherotationalMHDradialforcebal-ancecondition(18),thebackgroundgassurfacemassden-sitytendstobereducedbytheincreaseofmagnetic eldstrengthandthustheJeanscollapseinstabilitytendstobesuppressed.Inaddition,theright-handsideofdispersionre-lation(23)representsthemutualgravitationalcouplinginthepresenceofcoplanarMHDperturbations.Areductionofbackgroundgassurfacemassdensitywillweakenthiscou-plingandthusincreasetheaxisymmetricstability.
Forafurthercomparison,wereproducetheglobalmarginalstabilityresultsof gure13inLou&Zou(2004)hereasFig.7,whichhasthesamesetofparametersasFig.5forthelocalWKBJsolutionresults.Wenoteagainthatfortheunstableregion(upperright)oflargeradialwavenum-ber,labelledastheringfragmentationinLou&Zou(2004),Figs.5and7showverygoodcorrespondenceasexpected.Asreference,Table1containsseverallistsfortheoverall
stablerangeofD2
swithm=0anddi erentsetsofpa-rametersδ,βandλ2
,includingtheresultsbothfromhereusingtheWKBJapproximationandfromthoseofLou&Zou(2004)forexactglobalMHDperturbationcalculationsinacompositeMSIDmodel.
Asshownabove,axisymmetricstabilitypropertiesofacompositeMSIDsystemcanbequalitativelyunderstoodusingtheWKBJanalysis.Nevertheless,theWKBJapproxi-
Using the fluid-magnetofluid formalism, we obtain axisymmetric stability criteria for a composite disc system consisting of stellar and gaseous magnetized singular isothermal discs (MSIDs). Lou & Zou recently constructed exact global stationary configurati
8Y.-Q.LouandY.Zou
Table1.ThestablerangeofD2s
foraxisymmetriccoplanarMHDperturbationsofanywavelengthsfordi erentvaluesofδ,βandλ2intheWKBJapproximation.ThevaluesinparenthesesarethosedeterminedbyLou&Zou(2004)forglobalmarginalsta-bilitycurvesandaremoreaccurate,especiallyfordescribingtheJeanscollapseregimeinvolvinglargeradialspatialscales.
0.2
1.510.1205(0.7695)6.3428(6.1554)0.210.090.1594(0.9063)5.9573(5.7561)0.213.610.1111(0.6783)7.9494(7.7905)0.21010.1184(0.7534)4.5499(4.4310)11010.0396(0.4063)2.2787(2.2434)
[A2K2
2r2
min+A1Kmin+A0 1/2]
=a2s
( 1/2and de nedbyequation
A2K2
min(34)takes A1K(41)
min)
,onthevalueatKmin.AlthoughtheformsofthesemathematicalexpressionsarestrikinglysimilartothoseofElmegreen(1995),allrelevantcoe cientsandvariablescontainthee ectofmagnetic eldthrougnλ2.Byde nition(41)ofQ2Eabove,itisclearthat
forQ22
E>1,theminimumofω >0andthusthecom-positeMSIDsystemwouldbestableagainstaxisymmet-riccoplanarMHDperturbationsofarbitraryradialwave-lengths.ThisgeneralizedMHDparameterQ2Ecorresponds
tothestablerangeofD2
swhereDsistherotationalMachnumberofthestellarSIDmodelledasa uid.
Theformidableappearanceofω2
givenbyequation(40)wouldpreventusfromderivingastraightforwardana-lyticalexpressionofKmin.Nonetheless,insteadofminimiz-ingω2
directly,itismuchsimplertodeterminethecriticalvalueKcforKcorrespondingtotheminimumofvariable
W≡ω22
+ω .Byequation(28),wehaveW≡ω22
+ω =H1H2 G1G2.
(42)
ForpossibleextremaofW,therelevantcubicequationthatKcshouldsatisfyis
dW
dK
=0,
(43)
orequivalently
dK3+aK2+bK+c=0,
(44)withthefourcoe cientsexplicitlyde nedd≡4 1+λ2
by
(δ+1),
(45)a≡ 3 βδ+λ2+1
(y+1),
(46)b≡2(δ+1) 2βy 2+λ2+2β+2yλ2+2y
,(47)c≡ (y+1) 2βy+2βyδ 2+λ2+2β
.
(48)
Formostparameterregimesunderconsideration,thereis
onlyonerealsolutionforthecubicequation(44).ThisrealsolutionKctakesthelengthybutstraightforwardformofKc=(x q/2)1/3+( x q/2)1/3 a/(3d),
(49)
wherex≡(q2/4+p3/27)1/2,p≡(b/d) (a/d)2/3andq≡2(a/d)3/27 ab/(3d2)+c/d.WethenusethisKctoestimateKminandtodeterminethee ectiveMHDQEparameterasthegeneralizationofQE′.RelevantcurvesofMHDQ2E
versusD2
scorrespondingtodi erentvaluesofδ,βandλ2aredisplayedinFigures8 10.
Using the fluid-magnetofluid formalism, we obtain axisymmetric stability criteria for a composite disc system consisting of stellar and gaseous magnetized singular isothermal discs (MSIDs). Lou & Zou recently constructed exact global stationary configurati
Figure8.SeveralcurvesofQ22EversusDsfordi erentβvalues
withspeci edparameters|m|=0,δ=0.2andλ2=1.Foreach
Q2twointersectionpointsatQ2stableEcurve,therangeofDE=1bracketthe
2s.ThisstableD2s
rangeshrinksasβincreases.
Figure9.SeveralcurvesofMHDQ22relevantparametersEversusDsfordi erentδ
valuesasindicated.Other|m|=0,β=10andλ2=1are xed.ForeachMHDQ2tionpointsatQ2stableEcurve,thetwointersec-rangeofD2E=1bracketthes.ThisstableD2srangeshrinksasδincreases.
Byvaryingparametersδ,βandλ2,weobserveseveral
trendsofvariationinthepro leofMHDQ22
EversusDsasdisplayedinFigs.8 10.Whenβincreaseswith xedδandλ2values,orδincreaseswith xedβandλ2values,the
stablerangeofD2
sshrinksingeneral,whiletheincreaseofλ2tendstoexpandthestablerangeofD2s.SimilarvariationtrendshavebeennoticedearlierfortheDsexactglobalperturbationsolutionsinour compositecriterionandMSIDthemodel(Lou&Zou2004).
Byde nition(41)fortheMHDQEparameter,onede-terminesthestablerangeofD2
sintheWKBJapproxima-tionasshowninFigures8 10.Forexample,givenδ=0.2,β=1.5andλ2=1inFig.8,wehaveQ2E>1for
0.12<D2
s<6.34;thecompositeMSIDsystemisthusstableagainstaxisymmetriccoplanarMHDperturbations
withinthisrangeofD2
s.Morenumericalresultsforthesta-blerangesofD2
sfordi erentparametersaresummarizedin
MHDstabilitycriteriaforcompositeMSIDs
9
Figure10.SeveralcurvesofMHDQ222Otherrelevantparameters|mEversusDsfordi erentλ
values.|=0,δ=0.2andβ=1.5are xed.Foreachcurve,thetwointersectionpointsatQ2bracketthestablerangeofDThisstableDE=1
2s.2srangeexpandson
bothendsasλ2increases.
Table2.ApproximatestablerangesofD2determinedbythecriterionQ2s
≥1inacompositesystemof(M)SIDs.TheD2s
val-uesoutsidetheparenthesesaregivenbytheMHDQEparameter
generalizingthatofElmegreen(1995),whiletheD2s
valuesin-sidetheparenthesesarederivedfromtheMHDQJparameter
generalizingthatofJog(1996).ThesetwosetsofD2s
valuescor-respondingtoMHDQEandMHDQJparametersarenearlythe
sameandthestableD2s
rangesareveryclosetothevaluesgivenbyourexactglobalDs criterionusingtheMHDperturbationprocedureofLou&Zou(2004;seealsoTable1here).
0.2
1.510.12(0.12)6.34(6.34)0.210.090.16(0.16)5.96(5.96)0.213.610.11(0.11)7.95(7.95)0.21010.12(0.12)4.55(4.55)11010.04(0.04)2.28(2.28)
Using the fluid-magnetofluid formalism, we obtain axisymmetric stability criteria for a composite disc system consisting of stellar and gaseous magnetized singular isothermal discs (MSIDs). Lou & Zou recently constructed exact global stationary configurati
10Y.-Q.LouandY.Zou
Table3.NumericalvaluesfortheminimaofD2s
ringfragmen-tationcurve(Lou&Zou2004)andthecorrespondingvaluesofe ectiveMHDQparameters,includingboththeMHDQEpa-rametergeneralizingQE′ofElmegreen(1995)andtheMHDQJparametergeneralizingQJ′ofJog(1996).
0.21.516.15541.02161.02230.210.095.75611.02481.02470.213.617.79051.01441.01590.21014.43101.01841.018811012.24341.01151.0102
[κ2g+k2(a22+
2πGkΣs0
g+CA)]
2πGkΣs0
[κ2g+k2(a2g+C2A)]
+
2[β(1+y) 1+λ2/2]+K2(1+λ2)+
K(1+y)/(1+δ)Kmin(1+y)/(1+δ)
(1+
Q2J)
≡F=
(52)
2[β(1+y) 1+λ2/2]+K2
min(1+λ2)
[seeequations(5)and(6)ofJog(1996)andequation(30)
ofShen&Lou(2003)].ItfollowsimmediatelythatQ2J>1andQ2J<1correspondtoaxisymmetricMHDstabilityandinstability,respectively.GivenQ2J>1,itindeedfollowsthat
H1H2 G1G2>0fortheω2
correspondingtoKmin.That
is,theminimumofω2
ispositiveforarbitraryKandcon-sequently,thecomposite(M)SIDsystemisstableagainstaxisymmetriccoplanarMHDdisturbances.TheprocedureofobtainingtheMHDQJparametercanbesummarizedas
follows.Foragivensetofδ,β,λ2andD2
s,one rstdeter-minesthevalueofKminnumericallyusingequation
(30).ByinsertingthisKminintoequation(52),onethenobtainsthenumericalvalueofMHDQ2JinacompositeMSIDsystem
forthegivensetofδ,β,λ2andD2
s.
WehaveexploredrelevantparameterregimesofinterestandrevealedseveralqualitativevariationtrendsofMHDQ2JparameterasshowninFigures11 13.Similartothe
MHDQ2parameter,therangeofD22
EsforMHDQJ>1correspondstotheaxisymmetricstabilityofacompositeMSIDsystem.CorrespondingtoMHDQ2J>1,wehave
calculatedstablerangesofD2
sgivenseveralsetsofδ,βandλ2andthedetailedresultsaresummarizedinTable2along
Using the fluid-magnetofluid formalism, we obtain axisymmetric stability criteria for a composite disc system consisting of stellar and gaseous magnetized singular isothermal discs (MSIDs). Lou & Zou recently constructed exact global stationary configurati
MHDstabilitycriteriaforcompositeMSIDs
11
Figure12.SeveralcurvesofMHDQ22|m|JversusDsfordi erentδ
values.Otherrelevantparameters=0,β=10andλ2=1are xed.ForeachMHDQ2atQ2bracketthestableJcurve,thetwointersectionpoints
rangeofD2s.ThisstableD2J=1srangeshrinksasδincreases.
Figure13.SeveralcurvesofMHDQ222Otherrelevantparameters|mJversusDsfordi erentλ
values.|=0,δ=0.2andβ=1.5
are xed.ForeachQ2curve,thetwointersectionpointsatQ21bracketthestableJrangeofD2.ThisstableD2rangeexpandsJ=
asλ2ss
increases.
withthosecorrespondingtotheMHDQ2Eparameter.Itis
apparentthatthestablerangeofMHDD2
sgivenbyMHDQ2
JMeanwhile,≥1isalmostinFiguresthesame11 13,asthatwerevealgiventhebyMHDsamevariationQ2E≥1.trendsasthoseobtainedbyMHDQ2EandbyexactglobalMHDperturbationprocedureofLou&Zou(2004).Whenβincreaseswith xedδandλ2values(seeFig.11),orδincreaseswith xedβandλ2values(seeFig.12),thestable
rangeofD2
stendstoshrink,whiletheincreaseofλ2tends
toexpandthestablerangeofD2
s(seeFig.13).
Onceagain,wefollowthesimilarprocedureofLou&Zou(2004)torevealthecloserelationshipbetweenthemin-imumoftheD2
smarginalstabilitycurveandthee ectiveMHDQparameter.Forspeci edvaluesofparametersδ,βandλ2,wecomputetheminimumoftheringfragmen-tationD2
scurveusingtheexactglobalMHDperturbation
procedureofLou&Zou(2004),inserttheresultingD2
sinto
expression(52)andobtainthevalueofMHDQ2Jparame-tercorrespondingtotheminimumoftheringfragmentationcurve.Forexample,givenδ=0.2,β=1.5andλ2=1in gure11ofLou&Zou(2004)(orFigure2here),themin-imumofD2
s
intheringfragmentationcurveis~ingde nition(52),weobtainthecorrespondingMHDQ2J=1.02223.Moredetailednumericalresultsaresumma-rizedinTable3forreference.
Bythesenumericalexperiments,wedemonstratethat
thevaluesofMHDQ22
JandMHDQEcorrespondingtothe
minimaofD2
s
ringfragmentationcurvesarenearlythesame,withtherelevantvaluesofMHDQ2Jbeingveryclosetounity.Therefore,thee ectiveMHDQ2JparameterisalsopertinenttotheMHDringfragmentationinstabilityforaxisymmetriccoplanarMHDperturbationsinacompositeMSIDsystem.
IncomparisontothedeterminationofMHDQ2E,thesearchfortheMHDQJvaluerequiresnumericalexplo-rationsforeachgivenD2
s.Themajoradvantageisthatthede nition(52)forMHDQ2Jremainsvalidfortheentirepa-rameterregimeandavoidsimpropersituationsofunusualsetsofδ,βandλ2.
3.3
ACompositePartialMSIDSystem
Inmostdiscorspiralgalaxies,thereareoverwhelmingob-servationalevidencefortheexistenceofmassivedarkmatter
haloesingeneral.Toincludethelarge-scalegravitationalef-fectofamassivedarkmatterhalo,weaddagravitationalpotentialΦtermassociatedwiththedarkmatterhaloinourbasicMHDequations(8),(9),(11)and(12),whereΦispresumedtobeaxisymmetricforsimplicityandforthelackofinformation.BasedonN bodynumericalsimulationsforgalaxyformation,typicalvelocitydispersionsofdarkmatter‘particles’arefairlyhigh(morethanafewhundredkilome-terspersecond).Hence,anothermajorsimpli cationofouranalysisistoignoreperturbationresponsesofthemassivedarkmatterhalotocoplanarMHDperturbationsinacom-positeMSIDsystem(e.g.,Syer&Tremaine1996;Shuetal.2000;Lou2002;Lou&Fan2002;Lou&Shen2003;Shen&Lou2004a,b).Asbefore,weintroduceadimensionlessratioF≡ /( +Φ)forthefractionofthediscpotentialrelativetothetotalpotentialallinabackgroundequilib-riumstate(e.g.,Syer&Tremaine1996;Shuetal.2000;Lou2002;Lou&Shen2003;Lou&Zou2004).Theback-groundrotationalMHDequilibriumofacompositeMSIDisthusstronglymodi edbythisadditionalΦterm.fore,wewrite s=asDs/r, g=agDg/r,κs=
√
Asbe-2 g.Itfollowsfromtheradialforcebalanceinthe
(M)SIDsystemthatthebackgroundsurfacemassdensitiesnowbecome
Σsa20
=F
s(1+D2
s)
2πGr(1+δ)
,(54)
Using the fluid-magnetofluid formalism, we obtain axisymmetric stability criteria for a composite disc system consisting of stellar and gaseous magnetized singular isothermal discs (MSIDs). Lou & Zou recently constructed exact global stationary configurati
12Y.-Q.LouandY.Zou
Figure14.Anω2 contourplotasafunctionofKandD2s
withm=0,δ=0.2,β=1.5,λ2=1andF=0.1.Theregionlabelled
byω2
<0isunstableandtheJeanscollapseregimedisappearscompletely.IncomparisonwithFig.1,itisapparentthatthe
stablerangeofD2s
isenlargedasFdecreases.where0≤F<1forapartialcompositeMSIDandF=1
forafullcompositeMSIDthathasbeenstudiedindetailintheprevioussubsections.PerformingthestandardMHDperturbationanalysis,welinearizedependentphysicalvari-ablesbutignoredynamicalfeedbacksfromthemassivedarkmatterhalotocoplanarMHDperturbationsintheMSIDsystem.IntheWKBJapproximation,itisthenstraightfor-wardtoderiveastrikinglysimilardispersionrelationintheformofequation(23)butwithmodi edbackgroundequilib-riumproperties(53)and(54).FollowingthesameprocedureofDstheω 2
criterionanalysisdescribedinsection4.1,weobtain
contourplotasafunctionofstellarrotationalMach
numberD2
sandradialwavenumberK≡|k|rwiththepo-tentialratioFasanadditionalparameter.TypicalresultsaredisplayedinFig.14asanexampleofillustration.
TheexampleofFig.1withF=1correspondstoafullcompositeMSIDsystemwherenobackgrounddarkmatterhaloisinvolved,ashasbeenstudiedinsubsection3.1.AsFbecomeslessthan1correspondingtoanincreaseofthepotentialfractionofthemassivedarkmatterhalo,thestable
rangeofD2
sbecomesenlargedasclearlyshowninFigure14
forthecaseofF=0.1.Fromtheseω2
<0contourplots,itisapparentthattheintroductionofamassivedarkmatterhalotendstostabilizeacompositeMSIDsystemasexpected(Ostriker&Peebles1973;Binney&Tremaine1987;Lou&Shen2003).Forlate-typespiralgalaxies,onemaytakeF=0.1orsmaller.SuchacompositepartialMSIDsystemarestableagainstaxisymmetriccoplanarMHDdisturbances
inawiderangeofD2
s.3.4
QuantitativeEstimatesand
GalacticApplications
Forournumericalexamples,thediscmassdensityratiopa-rameterδ≡ΣgΣs
0/0hasbeentakentobe0.2and0.02(seeFig.12).Forlate-typespiralgalaxies,thisratiorangesfrom0.05to0.15.Forrelativelyyoungandgas-richspiralgalax-
ies,thisratioδcanreach0.2andevenhigher.Innearbyspiralgalaxies,thestrengthofmagnetic eldistypicallyin-ferredtobeafewto10µG;bytheequipartitionargument,magnetic eldstrengthmayreachafewtensofµGincir-cumnuclearregionsandwithintowardsthecentre(e.g.,Louetal.2001).Weshalltaketheratioλ≡CA/agtobeoftheorderof1.Asestimates,wehavetakenβ≡(as/ag)2tobe1,1.5,10,and30inFigure11.Forspiralgalaxies,theratioas/agcanbeoftheorderoforgreaterthan5or6.WiththeseestimatesinFigs.7 12,weseeclearlythatwithoutamassivedarkmatterhalo,atypicaldiscgalaxysystemwithasu cientlyfastrotation(e.g.,aVsring-fragmentationinstability.~150 Although250kms 1)wouldsu erthethepresenceofmagnetic eldo ersthestabilizinge ect(seeFig.9)againstthering-fragmentationinstability,thedevel-opmentofsuchinstabilitywouldbeunavoidablefortypi-callyinferredgalacticmagnetic eldstrenghs.ByFig.14,theinclusionofamassivedarkmatterhaloholdsthekeytopreventsuchring-fragmentationinstability.
IntheobservationalstudiesofKennicutt(1989)onglobalstarformationratesinspiralgalaxies,thetheoret-icalrationaleisthereforenotsu cientlystrong.Firstly,theapplicationoftheToomorestabilitycriterionforasinglediscistoosimpletobephysicallysensible.Secondly,foracompositediscsystemwithoutmagnetic eld,thegeneral-izedcriteria(Elmegreen1995;Jog1996;Lou&Fan1998)fortheToomreinstabilitycannotbereadilyappliedtoarealgalacticdisc.Thirdly,evenforacompositediscsystemwithacoplanarmagnetic eldwhichshowsclearstabilizingef-fects,theMHDring-fragmentationwouldoccurfortypicallyinferredparametersofaspiralgalaxywithoutasu cientlymassivedarkmatterhalo.Finally,ourconclusionisthere-forethatinrelatingToomre-typeinstabilitieswithglobalstarformationratesinspiralgalaxies,oneshouldconceivenewphysicalrationalesbyincorporatingthedynamicalin-terplaybetweenamassivedarkmatterhaloandamagne-tizedcompositediscsystem(Wang&Silk1994;Silk1997;Lou&Fan2002a,b).
4SUMMARYANDDISCUSSION
Inthispaper,weexaminedtheaxisymmetricMHDlinearstabilitypropertiesofacompositesystemconsistingofastellarSIDandagaseousMSIDcoupledbythemutualgravityandamassivedarkmatterhalo,usingtheWKBJapproximation.Ourmainpurposeistocon rmthephysicalinterpretationfortheglobalmarginalstabilitycurve(Lou&Zou2004)andtoestablishtheMHDgeneralizationoftheQparameter(Safronov1960;Toomre1964)foracom-positeMSIDsysteminreferencetotheearlierwork(e.g.,Elmegreen1995;Jog1996;Lou&Fan1998a,b;Lou2002;Lou&Shen2003;Lou&Zou2004).Wenowsummarizethemaintheoreticalresultsbelow.
WehaverecentlyconstructedexactglobalsolutionsforstationarycoplanarMHDperturbationsinacompositesys-temofastellarSIDandagaseousMSIDforbothaligned
Using the fluid-magnetofluid formalism, we obtain axisymmetric stability criteria for a composite disc system consisting of stellar and gaseous magnetized singular isothermal discs (MSIDs). Lou & Zou recently constructed exact global stationary configurati
MHDstabilitycriteriaforcompositeMSIDs
13
andunalignedlogarithmicspiralcases(Lou&Zou2004).Lou&Zou(2004)haveextendedtheanalysesofShuetal.(2000)onanisopedicallymagnetizedSID,ofLou(2002)onasinglecoplanarlymagnetizedSID,andofLou&Shen(2003)andShen&Lou(2003)onanunmagnetizedcompos-iteSIDsystem.Inabroaderperspective,acompositeMSIDsystemisonlyaspecialcasebelongingtoamoregeneralclassofcompositescale-freemagnetizeddiscsystems(Syer&Tremaine1996;Shen&Lou2004a,b;Shenetal.2005).InanalogyofShuetal.(2000),Lou&Shen(2003)andShen
&Lou(2003),Lou&Zou(2004)naturallyinterpretedD2
smarginalcurvesforstationaryaxisymmetriccoplanarMHDperturbationswithradialpropagationsasthemarginalsta-bilitycurves.Basedonthelow-frequencytime-dependentWKBJanalysishere(Shen&Lou2003,2004a),weestab-lishthephysicalscenarioforthepresenceofthetwounstableregimesreferredtoasthe‘MHDringfragmentationinsta-bility’andthe‘MHDJeanscollapse’inacompositeMSIDsystem.Consequently,itisintuitivelyappealingandphys-icallyreliabletoapplyourexactglobalDscompositeMSIDsysteminordertoexamine itscriterionaxisymmet-foraricstabilityandobtainthestablerangeofD2
s
,whereDsistherotationalMachnumberofthestellarSID.
IntheWKBJapproximation,werelateourMHDDsthe MHDcriterionregime,tothenamely,twoe ectivetheMHDQparametersQEextendedtoizingthatofElmegreen(1995)andtheMHD criterionQJgeneral-generalizingthatofJog(1996).However,ourprocedures criteriondi erfromthoseofElmegreen(1995)andofJog(1996),be-causeourMHDbackgroundofrotationalequilibriumisdy-namicallyself-consistentwithκs=κgingeneral.WeshowthatMHDgeneralizationsofbothQEleadtonearlythesamestablerangefor D2
andQJ criteria
sextendedtotheMHDrealm.Thiscon rmsthecloserelationbetweenourMHDDsComplementarily, criterionweandshowthethatMHDtheQEvalues andoftheQJ MHDcriteria.QE
andQJcorrespondingtotheminimaoftheD2
sringfrag-mentationcurvesintheexactglobalMHDperturbationpro-cedureofLou&Zou(2004)areallclosetounity.Ourin-terpretationoftheaxisymmetricmarginalstabilitycurveasthedemarcationofstableandunstableregimesisphys-icallysensible,andtheMHDQEandQJparametersareassociatedwiththeMHDringfragmentationinstabilityinacompositeMSID.
Finally,wehaveshowntheaxisymmetricMHDstabilitypropertyofacompositepartialMSIDbyincludingthegrav-itationale ectfromanaxisymmetricmassivedarkmatterhalo.Itisapparentthatthedarkmatterhalohasastrongstabilizinge ectforacompositeMSIDsystem.
Inadditiontotheoreticalinterestofdiscinstabili-tiesforforminglarge-scalegalacticstructures(n.b.,non-axisymmetriconesarenotstudiedhere),therehasbeenakeendesiretosomehowrelatesuchinstabilitiestoglobalstarformationratesindiscgalaxiesandtheirevolution(e.g.,Jog&Solomon1984a,b;Kennicutt1989;Wang&Silk1994;Silk1997).Theoverallchainofstarformationpro-cessesfromlarge-scalediscinstabilities,togiantmolecular
clouds,tocloudcollapses,toclustersofstars,todiscac-cretionontoindividualstarsandsoonisquitecomplicatedandinvolvesmanyscalesofdi erentordersofmagnitudes.Conceptually,large-scaleaxisymmetricringstructuresinadiscmustbefurtherbrokendownnon-axisymmetricallyintosmallerpiecesinordertoinitiatethisconceivedchainofcol-lapses.Whilevariousstagesofthis‘chain’havebeeninten-sivelystudiedseparately,theultimaterelationorconnectionbetweenthelarge-scaleaxisymmetricinstabilitiesandtheglobalstarformationrateremainsunclearandneedstobeestablished(e.g.Elmegreen1995;Lou&Bian2005).
Observationally,Kennicutt(1989)attemptedtoinferanempiricalrelationbetweentheQparameterofthestellardiscaloneandtheglobalstarformationrate.Wang&Silk(1994)pursuedasimilarideawithanestimateofQparam-eterforacompositediscsystemoftwo uiddiscs;however,theirapproximationforQparametermaybeo toomuchundervariousrelevantsituations(Lou&Fan1998b,2000a).Shouldthislineofreasoningindeedcontainanelementoftruthforaddressingtheissueoftheglobalstarformationrate,thentheQparameteradoptedshouldreallycorrespondtothatofacompositediscsystemwithamagnetizedgasdisccomponentandinthepresenceofamassivedarkmat-terhalo.Thebasicphysicalreasonbehindthissuggestionisthatstarsformdirectlyinthemagnetizedgasdiscunderthejointgravitationalin uenceofthedarkmatterhalo,thestellardiscandthemagnetizedgasdiscitself.Ifthislineofreasoningdoesindeedmakephysicalsense,thenaninterest-ingpossibilityarises.Thatis,thedarkmatterhalomayplayanimportantroleofregulatingglobalstarformationratesindiscgalaxiesandthusgalacticevolution.Forexample,ifthemassofadarkmatterhaloisverymuchgreaterthanthemassofacompositediscsystem,thenstarformationactivitiesbecomeweaker.Ontheotherhand,ifthedarkmatterhaloisnotsu cientlymassive,thenthediscsystemrapidlyevolvesintoabarsystem.Itisalsopossiblethatthedarkmatterhaloisonlymarginaltomaintainastabilityofacompositedisc.Inthiscase,theglobalstarformationactivitiesinthediscsystemproceedinaregulatedmanner.
OurMHDmodelanalysisinthispaper,highlyidealizedinmanyways,doescontainseveralrequisiteelementsfores-tablishinganMHDgeneralizationoftheQparameterandthecorrespondingcriterionforaxisymmetricstabilityorin-stability.Observationally,itwouldbeextremelyinterestingtoexaminetherelationbetweentheMHDQMparameteringalacticsystemsandglobalstarformationrates.Thisisnotexpectedtobeatrivialexercisegivenvarioussourcesofuncertainties.
Bypresumingthatsuchaxisymmetricdiscinstabilities
characterizedbyeitherD2
sorQMparametersmightsome-howhintatorconnecttotheglobalstarformationrate,thereareafewmodelproblemssimilartothecurrentonethatcanbeexploredfurther.Forexample,themodelsofShen&Lou(2004b)andShen,Liu&Lou(2005)canbecombinedtoconstructacompositediscsystemconsistingoftwoscale-freediscswiththegaseousonebeingcoplanarlymagnetizedinthepresenceofadarkmatterhalo.Likewise,
Using the fluid-magnetofluid formalism, we obtain axisymmetric stability criteria for a composite disc system consisting of stellar and gaseous magnetized singular isothermal discs (MSIDs). Lou & Zou recently constructed exact global stationary configurati
14Y.-Q.LouandY.Zou
theworkofLou&Wu(2005)canbegeneralizedtotwocoupledscale-freediscwiththegaseousonebeingisopedi-callymagnetizedinthepresenceofdarkmatterhalo(Lou&Wu2006inpreparation).Therealsituationismorecom-plicated.Wehopetheseanalysesmayo ercertainhintsandinsightsfordi erentaspectsoftheproblem(Lou&Bai2005inpreparation).
ACKNOWLEDGEMENTS
ThisresearchhasbeensupportedinpartbytheASCICen-terforAstrophysicalThermonuclearFlashesattheUni-versityofChicagounderDepartmentofEnergycontractB341495,bytheSpecialFundsforMajorStateBasicSci-enceResearchProjectsofChina,bytheTsinghuaCen-terforAstrophysics,bytheCollaborativeResearchFundfromtheNationalNaturalScienceFoundationofChina(NSFC)forYoungOutstandingOverseasChineseSchol-ars(NSFC10028306)attheNationalAstronomicalOb-servatory,ChineseAcademyofSciences,byNSFCgrants10373009and10533020(YQL)attheTsinghuaUniversity,andbythespecialfund20050003088andtheYangtzeEn-dowmentfromtheMinistryofEducationthroughtheTs-inghuaUniversity.YQLacknowledgessupportedvisitsbyTheoreticalInstituteforAdvancedResearchinAstrophysics(TIARA)ofAcademiaSinicaandNationalTsinghuaUni-versityinTaiwan.ThehospitalityandsupportofSchoolofPhysicsandAstronomy,UniversityofStAndrews,Scotland,U.K.,andofCentredePhysiquedesParticulesdeMarseille(CPPM/IN2P3/CNRS)etUniversit´edelaM´editerran´eeAix-MarseilleII,Francearealsogratefullyacknowledged.A liatedinstitutionsofYQLsharethiscontribution.
REFERENCES
BertinG.,LinC.C.,1996,SpiralStructureinGalaxies.MIT
Press,Cambridge
BertinG.,RomeoA.B.,1988,A&A,195,105
BinneyJ.,TremaineS.,1987,GalacticDynamics.PrincetonUni-versityPress,Princeton,NewJersey
CharkrabartiS.,LaughlinG.,ShuF.H.,2003,ApJ,596,220ElmegreenB.G.,1995,MNRAS,275,944FanZ.H.,LouY.-Q.,1996,Nat,383,800FanZ.H.,LouY.-Q.,1997,MNRAS,291,91FanZ.H.,LouY.-Q.,1999,MNRAS,307,645
GalliD.,ShuF.H.,LaughlinG.,LizanoS.,2001,ApJ,551,367GoodmanJ.,EvansN.W.,1999,MNRAS,309,599JogC.J.,1996,MNRAS,278,209
JogC.J.,SolomonP.M.,1984a,ApJ,276,114JogC.J.,SolomonP.M.,1984b,ApJ,276,127KatoS.,1972,PASJ,24,61
KennicuttR.C.,Jr,1989,ApJ,344,685
LemosJ.P.S.,KalnajsA.J.,Lynden-BellD.,1991,ApJ,375,484LinC.C.,1987,SelectedPapersofC.C.Lin.WorldScienti c,
Singapore
LinC.C.,ShuF.H.,1964,ApJ,140,646
LinC.C.,ShuF.H.,1966,Proc.NatlAcad.Sci.,USA,73,3758LinC.C.,ShuF.H.,1968,inChr´etianM.,DeserS.,GoldsteinJ.,
eds,SummerInstituteinTheoreticalPhysics,BrandeisUniv.,
AstrophysicsandGeneralrelativity.GordonandBreach,NewYork,p.239
LouY.-Q.,2002,MNRAS,337,225
LouY.-Q.,BianF.Y.,2005,MNRAS,358,1231LouY.-Q.,FanZ.H.,1998a,ApJ,493,102LouY.-Q.,FanZ.H.,1998b,MNRAS,297,84LouY.-Q.,FanZ.H.,2000a,MNRAS,315,646
LouY.-Q.,FanZ.H.,2000b,inBerkhuijsenE.M.,BeckR.,Wal-terbosR.A.M.,eds,TheInterstellarMediuminM31andM33.232WE-HeraeusSeminar.ShakerVerlag,Aachen,205LouY.-Q.,FanZ.H.,2002,MNRAS,329,L62LouY.-Q.,FanZ.H.,2003,MNRAS,341,909LouY.-Q.,ShenY.,2003,MNRAS,343,750
LouY.-Q.,YuanC.,FanZ.H.,2001,ApJ,552,189
LouY.-Q.,WalshW.M.,HanJ.L.,FanZ.H.,2002,ApJ,567,289LouY.-Q.,WuY.,2005,MNRAS,inpress(astro-ph/0508601)LouY.-Q.,YuanC.,FanZ.H.,LeonS.2001,ApJ,553,L35
LouY.-Q.,ZouY.,2004,MNRAS,350,1220(astro-ph/0312082)Lynden-BellD.,LemosJ.P.S.,1993(astro-ph/9907093)MestelL.,1963,MNRAS,157,1
OstrikerJ.P.,PeeblesP.J.E.,1973,ApJ,186,467RomeoA.B.,1992,MNRAS,256,307
SafronovV.S.,1960,Ann.Astrophys.,23,979
ShenY.,LiuX.,LouY.-Q.,2005,MNRAS,356,1333
ShenY.,LouY.-Q.,2003,MNRAS,345,1340(astro-ph/0308063)ShenY.,LouY.-Q.,2004a,ChJAA,4No.6,541
(astro-ph0404190)
ShenY.,LouY.-Q.,2004b,MNRAS,353,249(astro-ph0405444)ShuF.H.,LaughlinG.,LizanoS.,GalliD.,2000,ApJ,535,190SilkJ.,1997,ApJ,481,703
SyerD.,TremaineS.,1996,MNRAS,281,925ToomreA.,1964,ApJ,139,1217ToomreA.,1977,ARA&A,15,437
WangB.Q.,SilkJ.,1994,ApJ,427,759
ZangT.A.,1976,PhDThesis,MIT,CambridgeMA
正在阅读:
Axisymmetric stability criteria for a composite system of stellar and magnetized gaseous si05-23
微机会考题必修105-30
广东省装饰装修工程综合定额(2006)06-14
联赛策划书12-23
小学生一年级扫墓作文200字06-14
死亡交通事故心得体会05-06
中学《声现象》综合测试题 (1)06-02
感恩自然作文500字02-04
作文金钱不是万能的02-04
- 1Common Criteria for Information Technology Security Evaluation ....pdf
- 2(79913)_Understanding_Formation_(In)Stability_During_Cementing.
- 3system verilog 面试
- 4Depositional facies, architecture and environments of the Si
- 5Low velocity impact behavior of composite sandwich panels
- 6the fundamental matrix theory algorithms and stability analysis(2004)
- 7system verilog 面试
- 8GraspReport System 帮助
- 9Exchange interaction and stability diagram of coupled quantum dots in magnetic fields
- 10System Verilog笔记总结
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Axisymmetric
- magnetized
- stability
- composite
- criteria
- stellar
- gaseous
- system
- si
- 2011年Nvdia主流笔记本显卡参数表
- 2011第三季度全球基础油市场报告
- 对抗红外制导导弹的激光器基闭环红外干扰系统
- 生产外贸企业出口退税账务处理
- 论文模板 企业进销存管理系统
- 基于Voronoi图的移动机器人SLAM算法
- 房屋建筑施工组织设计
- 第二讲 函数的极限-简化公布版(例题重要)
- 项目主体结构验收一般程序的汇总
- 初中词汇表(含翻译)
- 香农编码实验报告
- 制氮车间设备操作规程 2
- 最新客运驾驶员2014春运安全生产培训试题及答案
- 2010年浙江省金华市中考科学试题(含答案)
- 机械毕业论文-(6)
- 医院PDCA案例交流
- 移动互联网营销入门教程
- 教师资格证认定考试 说课考试 苏教版高中生物必修3 说课稿 全书全.doc
- 中国缺血性卒中_TIA二级预防指南2010解读
- 四年级数学口算练习题 3.27