新人教版必修4高中数学第三章《三角恒等变换》单元测试题

更新时间:2023-11-10 18:56:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

单元练习

《三角恒等变换》单元测试题

一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的) 1、已知cos???312???,???,??,sin???,?是第三象限角,则cos?????的513?2?值是 ( )

33635616 B、 C、 D、? 65656565542、已知?和?都是锐角,且sin??,cos???????,则sin?的值是

135 A、? ( ) A、

33165663 B、 C、 D、 656565653、已知x??2k??( ) A、???3??3???x的值是 ?,2k????k?Z?,且cos??x???,则cos244?45??724247 B、? C、 D、 25252525y124、设cos?x?y?sinx?sin?x?y?cosx?,且y是第四象限角,则tan的值是

213( ) A、?2332 B、? C、? D、? 32235、函数f?x??sin?2x?cos?2x的最小正周期是 ( )

A、? B、2? C、1 D、2

5?、若函数g?x??f?x?sin??x?为以2为最小正周期的奇函数,则函数f?x?可以是

( )

???????x? C、sin?x? D、sin?x? ??2??2????6、某物体受到恒力是F?1,3,产生的位移为s??sint,?cost?,则恒力物体所做的功

A、sin??x? B、cos????2??是 ( )

单元练习

A、3?1 B、2 C、22 D、3 ??????6?、已知向量a??2cos?,2sin??,???90,180?,b??1,1?,则向量a与b的夹角为

( )

A、? B、??45? C、135??? D、45???

7、要得到函数y?2sin2x的图像,只需要将函数y?3sin2x?cos2x的图像 ( ) A、向右平移

??个单位 B、向右平移个单位 612??C、向左平移个单位 D、向左平移个单位

612cos2x?????12??的值为( ) ?x????x??,则式子

???2??4?13?4cos??x??4?8、已知sin?2410512 B、 C、 D、?

13131313xx9、函数y?sin?3cos的图像的一条对称轴方程是 ( )

225?5??11 A、x?? B、x? C、x?? D、x??

33331?cosx?sinx??2,则sinx的值为 ( ) 10、已知

1?cosx?sinx A、? A、

43415 B、? C、? D、? 555511、已知???0,????4??,???0,??,且tan??????11,tan???,则2???的值是 27 ( ) A、?5?3?2?7? B、? C、 ? D、? 6431212、已知不等式f?x??32sinxxx6cos?6cos2??m?0对于任意的4442?5???x?恒成立,则实数m的取值范围是 ( ) 66A、m?3 B、m?3 C、m??3 D、?3?m?3 二、填空题(本大题共4小题,每小题4分,共16分.请把答案填在题中的横线上)

单元练习

13、已知sinx?1,sin?x?y??1,则sin?2y?x?? 314、函数y?sin2x?22cos?15、函数y?????x??3的最小值是 ?4?1?cosx图像的对称中心是(写出通式) sinx16、关于函数f?x??cos2x?23sinxcosx,下列命题: ①、若存在x1,x2有x1?x2??时,f?x1??f?x2?成立; ②、f?x?在区间??????,?上是单调递增; 63?????,0?成中心对称图像; ?12?5?个单位后将与y?2sin2x的图像重合.其中正确的12③、函数f?x?的图像关于点?④、将函数f?x?的图像向左平移

命题序号 (注:把你认为正确的序号都填上)

三、解答题(本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤)

17、(本小题满分12分) 已知0????2,tan?2?1tan?2???5?,试求sin????的值.

3?2?

单元练习

18、(本小题满分12分)

????已知a??3sin?x,cos?x,b??cos?x,cos?x????0?,令函数f?x??a?b,且

??f?x?的最小正周期为?.

(1) 求?的值;

(2) 求f?x?的单调区间.

(选做)18?、设a??1?cos?,sin??,b??1?cos?,sin??,c??1,0?,???0,??,

???????????的????,2??,设a与c的夹角为?1,b与c夹角为?2,且?1??2?.求sin68值.

19、(本小题满分12分)

sin2??2cos2?1??? 已知tan??????,试求式子的值.

1?tan?2?4?单元练习

20、(本小题满分12分)

??12?1x?3已知x?R,f?x??sinx??tan??cos2x.

x22?2?tan?2??(1) 若0?x?,求f?x?的单调的递减区间;

2(2) 若f?x??

3,求x的值. 2

单元练习

21、(本小题满分12分) 已知函数f?x?满足下列关系式: (i)对于任意的x,y?R,恒有 2f?x?f?y??f?????x?y???2????f??x?y?; ?2?(ii)f??????1. ?2?求证:(1)f?0??0; (2)f?x?为奇函数;

(3)f?x?是以2?为周期的周期函数.

《三角恒等变换》单元测试题

3????,??412cos???sin??sin??????2?,∴5,5,又13,?是第三象限角,∴1、∵

5?3??12?4335?????????cos???????13?5??13?565 13,∴cos?????单元练习

sin??2、依题意,∵

5124?cos??cos?????????????13,∴13,又5,∴2,∴

sin??????312?4?5563sin?????????sin[???????]513?5?1365 5,∵sin??,因此有,

3?????2?x??2k???,k2???si?n?x???cx?osx??sin044?,∴coxs?sxi?n,即?4?2?3、∵,∴

???4si?n?x???4?5,又∵

??cox?s2??2??sxi?n?????24?????x??2s?ixn???4?,∴?cos4??3cox?s?2???2???5??524 251212sin?x?x?y??siny?????13得?13,又∵y是第四

4、由

cos?x?y?sinx?sin?x?y?cosx?cosy?象限角,∴

513,∵

tany1?cosy??22sinycosysiny22

2sin2y252?13??123?13 1?5因为

??f?x?1??sin?x?1??cos?x?1?22?cos?????????sin??x??cos??x??22??22??2x??sin?2x?f?x?,∴最小正周期是T?1

?5?、∵g??x???gx立,∴选C

fx?sin?x??f??x??f?x??,∴f??x?sin???x????,即得:成

g?x?2??g?x?,∴

f?x?为偶函数,又∵

f?x?2??fx??,即f?x?的周期为2,

??????w?F?s?sint?3cost?2sin?t???3?,∴w?2 6、∵功

?????b?2b?2co?s?2?s?in2?2?s?i?n4a5?26?、∵a?,,,因此,

单元练习

????a?b????cos???45??cosa,b????sin?45?????cos?90?45??????a?b??a,b????,∴

45?3?1??????y?3sin2x?cos2x?2?sin2x?cos2x??2sin2x??2sin2x??2?????2612??????,∵7、∵

????????y?2sin2?y?2sin2x?????x?????12向左平移得??12向右平移得12?选D

??5?cosx????x??x????413??422448、∵,∴,则,则式为

????5??????????sin??2x?2sin??x?cos??x?2???4??4??2sin???x?????4?????????2cos???x?cos??x?cos??x????4??4??4? xy?sin?3cos29、∵

x??x?2sin?x???x?????k???x?2k?????23?,令23223?k?Z?,

当k??1时,

5?3

?1??1?10

cx??ocx??oxx2?x?si?n2sincos?nsxs?ix222????tanxxsxsin2x2c?os2sincos2??2,∴22222sxi?n1?txan42??x5t2an2

11、∵

11?127tan??tan?????????????1?1?31?????2?7?,∴

t??a??n???2???11?32?1?111tan???1??t2??an????0,??????37,,又∵,

单元练习

??????0,?4??,∴???2????0,∴2?????3?4

?x??5??f?x??6sin?????x??26??m?0对于66恒成立,即m?f?x?max?3 12、∵

13、∵

si?xn?y?????x?y?2?k?y?2?k?12,∴2,∴

???x,∴

si?ny?2?x?????co?s?x???2???s?i?kn?(?2y?s2?1xs?in3

???)i?n?y???2????yco?scosk??2?x??2???????????t?cos??x?y??cos??2x??22cos??x??3?4?,∴?2??4? 14、令

??2?2???2?t??5??2?1??5?2?22???????2?2???

y?15、∵

221?cosxx?tansinx2∴对称中心为?k?,0??k?Z?

5?????f?x??2sin??2x??2sin?2x?6?6??16、∵5?????2sin2x????12?,∴周期T??,①正???确;∵递减区间是2?2x?????5?3??,???62,解之为?63?,②错误;∵对称中心的横坐标

2x?5?k?5??k??x??6212,当k?1时,得③正确;应该是向右平移,④不正确.

tan17、解:由

?2?1tan?2?521?cos?1?cos?54????sin??0???sin?25,又2,,得sin?cos??∴

18、(1)∵

??41334?33?3sin?????????3525210 ?5,所以???f?x??a?bf?x???3sin?x?cos?x?cos2?x,∴

?5??1???1?11f?x??sin?2?x?cos2?x?3sin2?x??sin??2?x????626????2,22,即

??单元练习

2??∴

2?2?????1T?;

2k??(2)令

?2?2x?2????5??k??,k???2k??,k?Z?f?x??36???k?Z?62,解之在

????k??,k???63???k?Z?. 上递增;同理可求递减区间为???a?b1?co?s?1c?os?cos?1??????cos222?2cos?ab???0,??18?依题意:,又,则

???????cos???????0,???cos?2?sin??2?2?,∴12,同理?22?,因????,2??,所以2??2?????????????0,??2???1??2???2?2?,∴22,将?1、?2代入6有23,从而有

sin19

???82?6????????sin????sin????4?12??64?.

sin2??2cos2?1?tan?2cos2??tan??1??????2cos2??tan????1?tan?4????????cos???????2?4??1?cos2???2???2??????sin???????4???2????1?cos2??1???tan????4???2?2cos2??1????4?4tan???????4??2??2??2?????2?2sin??2???2?25??1??2??2?1?tan????1????4???2?

13?1?cosx1?cosx?f?x??sin2x???cos2x?2sinx?2?sinx20、

12cosx313?sin2x??cos2x?sin2x?cos2xsinx222 2

????sin?2x??3? ?

单元练习

0?x?(1)∵

??2,∴2?2x??3?4????x?3,即122时,f?x?为减函数,故f?x?的

??3?????,sinx2?????????k1223????2,∴x?k递减区间为;(2)∵

x??Z,或

?6?k??k??Z.

???2f2?0??f????2?21、(1)令x?y?0,???f???0?f?0??0?2?;

??????2ffy?fy?f?yf??????x??????1y?R?2?2,(2)令,,∵?2?,∴

?f?yf??y????,故

f?x?y?为奇函数;(3)令

?2,x?R,有x??2f?x??1?f???x??f??x?,即

f???x??f?x??2,y?x有

……①,再令

2???1?f?x??f???x??f???x?f???x??f?x?,即

f???x???f?x??f?x???f?t??f?2??t?f?x?令x???t,则x???2??t,所以,即是以2?为周期的周期

函数.

单元练习

0?x?(1)∵

??2,∴2?2x??3?4????x?3,即122时,f?x?为减函数,故f?x?的

??3?????,sinx2?????????k1223????2,∴x?k递减区间为;(2)∵

x??Z,或

?6?k??k??Z.

???2f2?0??f????2?21、(1)令x?y?0,???f???0?f?0??0?2?;

??????2ffy?fy?f?yf??????x??????1y?R?2?2,(2)令,,∵?2?,∴

?f?yf??y????,故

f?x?y?为奇函数;(3)令

?2,x?R,有x??2f?x??1?f???x??f??x?,即

f???x??f?x??2,y?x有

……①,再令

2???1?f?x??f???x??f???x?f???x??f?x?,即

f???x???f?x??f?x???f?t??f?2??t?f?x?令x???t,则x???2??t,所以,即是以2?为周期的周期

函数.

本文来源:https://www.bwwdw.com/article/oq0v.html

Top