2011-Effect of tool design and process parameters on properties of Al alloy 6016 friction stir spot
更新时间:2023-06-11 13:38:01 阅读量: 实用文档 文档下载
friction stir welding
JournalofMaterialsProcessingTechnology211 (2011) 972–977
ContentslistsavailableatScienceDirect
JournalofMaterialsProcessing
Technology
journalhomepage:/locate/jmatprote
c
EffectoftooldesignandprocessparametersonpropertiesofAlalloy6016frictionstirspotwelds
W.Yuana,R.S.Mishraa, ,S.Webba,Y.L.Chenb,B.Carlsonb,D.R.Herlingc,G.J.Grantc
a
CenterforFrictionStirProcessing,DepartmentofMaterialsScienceandEngineering,MissouriUniversityofScienceandTechnology,Rolla,MO65409,USAGeneralMotorR&DCenter,Warren,MI48090,USAc
Paci cNorthwestNationalLaboratory,Richland,WA99356,USA
b
articleinfoabstract
Frictionstirspotwelding(FSSW)ofAlalloy6016-T4sheetwasevaluatedusingaconventionalpin(CP)toolandoff-centerfeature(OC)tool.Toolrotationspeedandplungedepthwerevariedtodeterminetheeffectofindividualprocessparameteronlap-shearseparationload.Maximumseparationloadofabout3.3kNwasobtainedbyusinga0.2mmshoulderpenetrationdepthwith1500rpmtoolrotationspeedfortheCPtooland2500rpmfortheOCtool.Threedifferentweldseparationmodesunderlap-shearloadingwereobserved:interfacialseparation,nuggetfractureseparationanduppersheetfractureseparation.Microhardnesspro leforweldcrosssectionindicatednodirectrelationshipbetweenmicrohardnessdistributionandseparationlocations.
© 2010 Elsevier B.V. All rights reserved.
Articlehistory:
Received26July2010
Receivedinrevisedform7December2010Accepted17December2010
Available online 24 December 2010Keywords:
FrictionstirspotweldingTooldesignAlalloy6016
ProcessparameterSeparationmode
1.Introduction
Weightsavingintheautomotiveindustryisbecomingincreas-inglyimportantandcanbeenhancedbyusinglight-weightaluminumalloyforvehicles;particularlyclosurepanelssuchashoods,decklidsandlift-gates.Resistancespotwelding(RSW),currentlythemostcommonlyusedjoiningtechniqueinthevehi-cleindustry,hasapplicationsforlow-carbon,high-strengthandcoatedsteels.However,RSWofaluminumalloysheetsisfraughtwithmanydisadvantages,whichincludeporosityandcracks,asreportedbyThorntonetal.(1996)andGeanetal.(1999).AsevereelectrodetipwearproblemhasalsobeenencounteredduringRSW(Khanetal.,2007).Recently,FSSWforjoiningaluminumalloysheethasbeendevelopedbyMazdaMotorCorporation(Sakanoetal.,2001)andKawasakiHeavyIndustry(Iwashita,2003).
Similartofrictionstirwelding,whichwasdevelopedbyTWI,UKin1991(Thomasetal.,1991),FSSWisasolid-stateweldingtechnique.DuringplungetypeFSSW,arotatingtoolwithaprotrud-ingpinisinsertedintotheoverlappingsheetstoapredetermineddepth.Afteracertaindwelltime,itisretractedandakeyholeisleft.Thefrictionalheatgeneratedatthetool-workpieceinterfacesoftensthesurroundingmaterial,andtherotatingandmovingpincausesthematerial owinboththecircumferentialandtheaxial
Correspondingauthor.Tel.:+15733416361;fax:+15733416934.E-mailaddress:rsmishra@mst.edu(R.S.Mishra).0924-0136/$–seefrontmatter© 2010 Elsevier B.V. All rights reserved.doi:10.1016/j.jmatprotec.2010.12.014
directions(Lathabaietal.,2006).Theinter-mixingoftheplasticizedmaterialandforgingpressureappliedbythetoolshoulderresultintheformationofasolidbondregion(Freeneyetal.,2006).
ThestrengthofweldsiscriticalwhenapplyingFSSWtoload-bearingcomponents.Thisstrengthisaffectedmainlybytoolgeometryandprocessparameters.Toolgeometry,suchasshoul-derdiameterandshape,pinshape,length,diameterandfeatureisakeyparametertoaffectheatgenerationandmaterial ow(MishraandMa,2005).Currently,aconcavetoolshoulderisthemostcommonshoulderdesigninFSSW,thoughsome attoolshoul-derdesignshavealsobeenused.Aruletal.(2005)reportedthatconcaveshouldertoolproducedhigherjointstrengththanthe atshouldertoolduringFSSWofaluminum5754.Badarinarayanetal.(2009a)alsoreportedthatspotweldsmadeusingconcavepro leshoulderexhibitedhigherweldstrengththanthoseusingconvexor atshoulderasaresultofthehighesteffectivetopsheetthick-nessachievedusingconcaveshoulder.Recently,Tozakietal.(2010)proposedanewlydesignedscroll-groovedshouldertoolwithoutaprobewhichproducedmuchhigherfailurestrengthofaluminumalloy6061weldsthantoolwithprobe.Thetoolpinisdesignedtodisruptthefayingsurface,transportandshearadjacentmaterialandgeneratefrictionalheatinthethicksheet.Themostcurrentpindesigninopenliteratureisconventionalcylindricalandconicalpinwithorwithoutthreads.Valantetal.(2005)havereportedathree-pinfeaturedesign.Recently,Mishraetal.(2007)havereportedtheconceptofOCtooltohavebettercontroloverthematerialsweepduringFSSW.Badarinarayanetal.(2009a,b)presentedtheeffectof
friction stir welding
W.Yuanetal./JournalofMaterialsProcessingTechnology211 (2011) 972–977
973
Fig.1.Schematicillustrationoflap-shearspecimen.
toolgeometryonstaticstrengthandhookformationandshowedthattheprobegeometrysigni cantlyaffectedthehookformation.Processparametersarealsokeyfactorsthataffectthestrengthoftheweldjoints.Themechanicalbehaviorofspotweldedaluminumalloyshasbeenstudied.Sakanoetal.(2001)andAruletal.(2008)showedthatthelapshearload rstincreased,andthendecreasedasthetoolrotationspeedincreased.Freeneyetal.(2006)andTozakietal.(2007)reportedthathigherweldstrengthcanbeattributedtoalargerstirzonesizeattainedbyloweringtoolrotationspeed.However,Lathabaietal.(2006)reportedthatahighertoolrotationspeedof3000rpmwasoptimumforAlalloy6060-T5andpenetra-tiondepthhadsigni cantin uenceonthetensileshearstrength.Ontheotherhand,Freeneyetal.(2006)andMitlinetal.(2006)reportedthatincreasingpenetrationdepthhadnoin uenceonthefailureload.Tranetal.(2009)showedthatfailureloadofdissim-ilaraluminumalloyspotfrictionweldsincreasedwithprocessingtimeasaresultofenlargedwelddiameter.Theliteratureonhowtheseprocessparametersaffectweldstrengthisdiverse,andonlyageneralcomparisoncanbeachievedbecauseofdifferentalloyuse,variedalloythicknessandtooldesign.
Inthispaper,twodifferenttoolswiththesameshoulderdiam-eterandconcaveshapebutdifferentpinfeatureswerecompared.Onewasaconventionaltoolwithastepspiralpin,p-sheartestswereusedtoinvestigatesystematicallytheeffectofindividualprocessparameteronweldstrength.Crosssectionalmicrostruc-turesoftheweldedandseparatedspecimenswereanalyzedtooutlinethedifferentseparationmodesunderlap-sheartests.2.Experimentalprocedures
Fig.3.Opticalmacrographsofspotweldsmadeusingconventionalpintoolat(a)1500rpmand(b)2500rpm;off-centerfeaturetoolat(c)1500rpmand(d)2500rpm.
off-center0.8mmlonghemisphericalpinfeatures.BothtoolsweremachinedfromDensimettungstenalloy.Thespotweldingmachinewasoperatedunderpositioncontrolmode.FortheOCtool,astop-then-retractionmodewasused.
AnMTStestingmachinewasusedtoevaluatethreelap-shearspecimensforeachweldingconditioninordertoobtainarepre-sentativeaveragemaximumlap-shearseparationload.Specimenswerepulledatarateof0.02mm/s.Inadditiontomechanicaltest-ing,twoweldsineachconditionwerecross-sectionedandmountedformetallographicstudiesandmicrohardnesstests.Sampleswerepreparedandetchedusinga5%HFreagenttodetermineweldmor-phology.Microhardnesstestswereperformedoncrosssectionsofweldsmadebybothtools.Vickersmicrohardnessmeasurementsweretakenat0.5mmbelowtheuppersheetsurfacewith1.0mmintervalusingadiamondindenterwitha0.5kgfloadand10sdwelltime.ThesampleswerekeptinafreezerbetweenFSSWrunsandmicrohardnesstests.3.Resultsanddiscussion
1.0mmthickAlalloy6016-T4sheetswereusedinthisstudy.Alalloy6016isalowCu,Mg–Sialloythatgainedpopularityasskinmaterialforcarbodypanelsduetoitsdesirabledentresistanceandrelativelyhighformability(Hirthetal.,2001).Aluminumsheetswereshearedtoadimensionof127.0mmlongand38.1mmwide.Fig.1showsalap-shearspecimenusedtoinvestigatethestrengthofthewelds.Thespecimenhada38.1mmsquareoverlaparea.
AplungetypeFSSWmachinewithaxialloadcapacityof22.2kNandspindlerotationspeedsupto3000rpmwasused.Duringtheweld,axialforce,torqueandtimeweredatalogged.TwotoolsareshowninFig.2.TheCPtool,whichisaconventionaltoolwithacenterpin,hasaconcaveshoulderwith10.0mmdiameteranda1.5mmlongstepspiralpinwithrootdiameterof4.5mmandtipdiameterof3.0mm.TheOCtoolistheoff-centerfeaturetoolwiththesameconcaveshouldershapeanddiameter,and
three
3.1.Macrostructure
Fig.3showstypicalcrosssectionsofaluminumalloyspotwelds.Theregioninsideofthedashedlinesindicatesthedynamicrecrys-tallizedzonewhichisgenerallyreferredasnuggetzoneorstirzoneandtheregionrightadjacentisthethermomechanicallyaffectedzone(TMAZ)(MishraandMa,2005).AsFSSWofaluminumalloyisgenerallyperformedwithoutadditionalspecimencleaningoroxideremoving,ahookingorhookfeature(indicatedbyblackarrowinFig.3)originatingfromthefayingsurfaceofthetwosheetsisoftenobservedduetotheuncompletedbreak-upofaluminumoxide lm.Basedonthedistributionoftheoxide lm,thebondingconditionsbetweentwosheetscanbede nedascompletelymet-allurgicalbonded,partiallymetallurgicalbondedand
unbonded
Fig.2.Macroimagesof(a)Conventionalpintooland(b)Off-centerfeaturetool.
friction stir welding
974W.Yuanetal./JournalofMaterialsProcessingTechnology
211 (2011) 972–977
p-shearseparationloadandfrictionalheatinputasafunctionoftoolrotationspeed.
(Badarinarayanetal.,2009a).Fig.3(a)and(b)showsthecrosssec-tionsofweldsmadeat1500rpmand2500rpmusingCPtool.Alargerbondedregionwasachievedatalowerrpmwitharela-tively athookingwhichappearstodisappearattheinterfaceofthenuggetregion.Athigherrpms,ratherthandisappearing,thehook-ingtendedtocurveupwardsontheouteredgeofthenuggetregion,whicheffectivelydecreasesthebondedregion.Thedistincthook-ingfeatureresultsfromthedifferenceinmaterial owatlowerandhighertoolrotationrates.DuringFSSW,materialundergoessevereplasticdeformationandthermalcycle.Softmaterialistransporteddownbythesynergyoffeaturedpinandtoolshoulder,andthenitisreleasedand owsupwardintothestirzone(Suetal.,2007).Thisprocesscontinuesuntiltoolretracts.Toolrotationratein uencesthematerial owbyvaryingthefrictionalheatinputandvolumeofmaterialtransportedandreleasedwhichdirectlyaffecttheforma-tionofstirzone.ThefrictionalheatinputundervarioustoolrotationrateswascalculatedandshowninFig.4basedonthetoolprocess-ingforce,spindletorqueandprocessingtime.Detailsofheatinputcalculationcanbefoundelsewhere(Linetal.,2011).Theheatinputincreasedwithincreaseintoolrotationrate,whichinturnreducedtheviscosityofmaterialunderthetoolshoulderandaroundthepin,i.e.highertoolrotationrateleadstobettermaterial owabil-ity,consequentlymorematerialdisplacedperunittime,andlessshearandforgingcomponentsrequiredfromthetooltodeformthematerial.Thiscanbeveri edbythepro leofstirzone.Atlowertoolrotationrate,theboundarybetweenstirzoneandTMAZchangesmildlyandhookingbecomesstirredandmoredispersed.How-ever,sharpinnercurvedstirzonepro lecanbeobservedathighertoolrotationrateandhookingappearstobejustextrudedbythereleasedmaterialandsubsequentlysqueezedbydownwardmate-rial ow.Fig.3(c)and(d)showsthecross-sectionsofweldsmadeat1500rpmand2500rpmusingtheOCtool.UnliketheresultsfortheCPtool,thehookingwasnotpronounced,especiallyat1500rpmwheretwosheetswerenotwellbondedandthesizeofthebondedregionincreasedfortheOCtoolfrom1500rpmto2500rpm.Itsug-geststhattheOCtoolgeometrygeneratesalowerheatinputforgivenprocessparametersandassuchisabletoincreasetheamountofmaterialintothestirzonewithinthisrpmrangeversustheCPtool.SimilartotheCPtool,thefrictionalheatincreases(notedfromFig.4)andtheviscositydecreasewhenthetoolrotationrateincreases.Aslightlyupwardhookingfeatureformedtoaccommo-datethematerialreleaseduringtoolplunging.Thematerial owduringFSSWusingtheOCtoolismorecomplexduetotheasym-metricarrangementofpinsandthehemisphericalpinfeature.The
hemisphericalfeatureisnotpronetointroducesigni cantverticalmaterial ow,butenhancedmaterialsweepinhorizontalplanes,thisisseenbythelimitedupwardhookingfeature;thesmallvol-umeofpinwithhemisphericalfeaturesandshallowtoolplungedepthisthesuggestedreasonforthis.
Itshouldbenotedthatforthesameprogrammedtoolplungedepthunderdisplacementcontrol,theaccuracyofplungedepthisbetterathighertoolrotationspeedsforbothtools.Thisislikelytoberelatedtothefactthatatlowerrpmsthereislowerheatinputandagreaterresistancetothetoolwhichisaffectedbythecomplianceofthemachine.Valantetal.(2005)reportedasimilarobservationandindicatedthatforagivenpositionoftheZ-axisser-vomotor,axialloadontheZ-axisspindleand nitestiffnessofthemachinedeterminedtheactualtoolpenetrationdepth.Althoughastop-then-retractionmodewasusedfortheOCtool,themotorinertiaandsoftermaterialaroundthepinswerepulledoutwiththetool,whichleftaholeintheweldcenter.
p-sheartest
Forthe rstsetofruns,toolrotationspeedwasvariedfrom1000rpmto2500rpminstepsof500rpm;whileplungedepthwaskeptconstant.Fig.4showstheeffectoftoolrotationspeedonlap-shearseparationloadandfrictionalheatinput.FortheCPtool,thelap-shearseparationload rstincreasedthendecreasedastherotationspeedincreased,withapeakloadof2.8kNat1500rpm.However,fortheOCtool,thelap-shearseparationloadincreasedasthetoolrotationspeedincreased,withamaximumvalueof3.0kNat2500rpm.Nodirectrelationshipbetweenfrictionalheatinputandseparationloadwasobserved,especiallywhentheCPtoolwasused(higherheatinputwithlowerseparationload).Thevariationinlap-shearseparationloadwithtoolrotationspeedisrelatednotonlytothefrictionalheat,butalsotothematerial owwhichaffectsthesizeofbondedregionandhookingfeaturesaswell.Suetal.(2005)haveshownapositivecorrelationbetweenthebondedareaandthelap-shearstrength.Highertoolrotationspeedisbelievedtogeneratemorefrictionalheat,whichisbene cialforformationofalargerbondedregion.Bozzietal.(2010)proposedthatthesizeandlocationofthestirzoneandtheunweldedinter-facetipslopplayedadeterminantroleontheweldstrength.TheupwardandinwardclimbinghookingobservedfortheCPtoolathighertoolrotationratessigni cantlydecreasedthebondedregionandinducedtheeasycrackpropagationduringlap-shearloading,resultinginthereducedseparationload.However,largerbondedregionandlimitedupwardandoutwardhookingmadetheweldsstrongerathighertoolrotationspeedswiththeOCtool.
Forthesecondsetofruns,thepenetrationdepthwasvariedbyincreasingthedepthby0.1mmincrements.Consideringthe nitestiffnessofthemachine,actualshoulderpenetrationdepthwasmeasuredbyweldcrosssection.Thetoolrotationspeedwas1500rpmfortheCPtooland2500rpmfortheOCtool.Fig.5showshowshoulderpenetrationdepthaffectstheseparationload.HighpenetrationdepthhasbeenreportedtogeneratehighweldstrengthbyAruletal.(2005)andLathabaietal.(2006).Cur-rentresultsindicatedtheseparationload rstincreasedandthendecreasedwithplungedepthforweldsmadeusingbothtools.Apeakvalueof3.3kNwasobservedforweldsmadeusingbothtoolswitha0.2mmshoulderpenetration.Continuallyincreasingthepenetrationdepthdecreasedthelap-shearseparationloadofweldsmadeusingbothtools.Yinetal.(2010)suggestedthathighfailureloadswereachievedforlargebondedwidths,smallratioofthedistancefromthesheetintersectiontothetipofthehookregiontotheinitialsheetthicknessandoutwardscurvedfeatureofhook.Withtheincreaseofplungedepth,thesizeofbondedregionincreased,however,hookingwentupandthethicknessoftheuppersheetundershoulderindentationdecreased,whichreduced
friction stir welding
W.Yuanetal./JournalofMaterialsProcessingTechnology211 (2011) 972–977
975
Fig.6.AschematicplotofseparationmodesforspotweldsmadeusingCPtoolandtestedunderlap-shearloadingcondition.
p-shearseparationloadasafunctionofshoulderpenetrationdepth.
theratioindicatedbyYinetal.(2010).Finally,thetopsheetundertheoutercircumferenceofthetoolshoulderbecametheweakestload-bearingcrosssection.
3.3.Separationmodesofweldsunderlap-shearloadingconditionThestrengthofweldsdependsnotonlyonthesizeofthebondedregion,butalsoonthehookingfeaturesandthicknessofthetopsheetattheoutercircumferenceoftheshoulderindenta-tion.Theweakestpoint,ofcourse,isthelocationforseparation.Badarinarayanetal.(2009b)pointedthatacombinationofstressconcentration,mechanicalpropertyofthematerial,andeventheload-carryingareainfrontofthehooktipdeterminedfurthercrackpropagation.Theseparationmodeofspecimenchangeswhenweldingprocessparametersvary.Mitlinetal.(2006)haveindicatedthattoolpinpenetrationdepthhadastrongeffectonthesepara-tionmodeofwelds.Suetal.(2005)haveshownenergyinputduringFSSWin uencedthefracturemodeduringmechanicaltesting.
Inthisstudy,threedifferentseparationmodesunderlap-sheartestswereobservedforbothtools.Aschematicplotofsepara-tionmodesforweldsmadeusingCPtoolisshowninFig.6.
For
eachseparationmode,theinitialcrackstartedfromthefayingsur-facedepictedaspoint“O”.ForthemodeIF,interfacialseparation,thecrackpropagatedalongthehookingtopointA,thenalongthecircumferencetoA .Inthiscase,thecrackpropagatedparalleltotheuppersheetsurfaceandseparatedwithlimitedplasticityattheweldnuggetleadtoseparationload.ModeNF,nuggetfrac-tureseparation,thecrackpropagatedalongthehookingintothestirzoneandthenpropagatedtopointB;afterthatitcametopointB alongtheinnercircumferenceortoB1,B2thentoC alongtheoutercircumference.ModeUSF,uppersheetfracturesepara-tion;inthiscase,signi cantlymorefrictionalheatinputgeneratedalargebondedregionandthehookingmergedintothenuggetcompletely.Whenthecrackreachedthestirzone,itfollowedtheboundaryofTMAZandnuggettothethinnestpartoftopsheet,wherefracturehappenedatpointCthenpropagatedtopointC alongtheoutercircumferenceoftheshoulderindentation.Inthiscase,weldsdisplayedcertainplasticityondeformationandsepa-ratedatahigherload.TheseparationrouteofmodeUSFisshowninFig.7withtheweldcross-sectionindicatedatdifferentlap-sheartestingextensions.Brokensampleswithvariousseparationmodesafterlap-sheartestingareshowninFig.8.
ThemaximumseparationloadwasachievedundermodeUSFseparationconditionforweldsmadeusingbothtools;separa-tionmodedidnotchangeastoolpenetrationdepth
continued
Fig.7.SeparationrouteofweldsmadeusingCPtoolandseparatedundermodeUSFcondition.
friction stir welding
976W.Yuanetal./JournalofMaterialsProcessingTechnology
211 (2011) 972–977
Fig.8.BrokensamplesmadeusingCPtool,separatedby:(a)modeIF,(b)and(c)modeNF,and(d)modeUSF.Thephotosshow,fromlefttoright,viewsofthetopsheet,theundersideofthetopsheetandthebottomsheet.
toincrease.However,themaximumseparationloaddecreasedgreatly,potentiallybecausethethinuppersheetundertheshoulderindentationbecameweakestanddominatedthe nalseparation.TherelationbetweenseparationloadandextensionofweldsmadeusingtheCPtoolandthemodeofseparationispresentedinFig.9.Theresultsindicatedthreeseparationmoderegionsandtwomodetransitionregions.AstheseparationmodeshiftedfromIFtoUSF,theseparationloadsandextensionswereatleastdoubled.Noobvi-ousrelationshipbetweenweldingparametersandseparationmodewasobserved.Generally,theIFmodewaspresentedatlowerheatinputconditions(lowerrpm,lowerplungedepth)whenthesizeofbondedregionwassmallandinterfacialbondingwasweak.Astheheatinputincreasedbyincreasingrpmandplungedepth,thesepa-rationmodechangedfromIFtoNForUSFdependedontheratioofthesizeofbondedregiontotheeffectivethicknessofuppersheet,andthefeatureofthehooking.Asmallerratioandinwardhook-ingpromotedtheNFmode,andalargerratioandoutwardhookingpreferredtheUSFmode.3.4.Microhardnesstest
Thetensilepropertiesoftheweldaredependentonthestrengthdistributionwithintheweldonlywhenitisfreeofdefects.Tounderstandtherelationshipbetweenstrengthdistributionandseparationlocations,microhardnesspro lesforweldcrosssectionsweretakenatthreedifferentshoulderpenetrationdepthswhichcorrespondedtothreeseparationmodes.Microhardnesstestswereperformed0.5mmbelowtheuppersheetsurface.TheresultsinFig.10showatypicalheat-affectedzone(HAZ)which
under-Fig.9.Separationloadasafunctionofextensionforweldsseparateatdifferent
modes.
Fig.10.Vickersmicrohardnessdistributionsofweldsatdifferentshoulderpene-trationdepths.
goesthermalcycleswithlowestmicrohardness.TheHAZmovedawayfromtheweldcenterresultingfromhigherthermalinputastheshoulderpenetrationdepthincreased.Nodirectrelationshipbetweenmicrohardnessandseparationlocationswasobserved,sincethemicrohardnessincreasedwhenclosetotheweldcen-terandtherewasnotmuchvariationinmicrohardnessinnuggetsaspenetrationdepthincreased;however,theseparationlocationshiftedawayfromtheweldcenterwithincreaseofpenetrationdepth.Theseparationlocationsweresigni cantin uencedbythehookingwhichnotonlyaffectedthesizeofbondedregionandsubsequentratioofsizeofbondedregiontoeffectivethicknessofuppersheet,butalsointroducedstressconcentrationattheendofunbondedregionduringshearloading,whichin uencedfurthercrackpropagationandthe nallocationforfracture.4.Conclusions
Alalloy6016sheetswerefrictionstirspotweldedbyusingbothCPandOCtools.Resultsindicatethattoolrotationspeedandplungedepthprofoundlyin uencedlap-shearseparationloads.Bothtoolsexhibitedmaximumweldseparationload:about3.3kNat0.2mmshoulderpenetrationdepth;differenttoolrotationspeeds,1500rpmfortheCPtooland2500rpmfortheOCtool.Threedifferentseparationmodeswereobservedforweldsmadeusingbothtools,interfacialseparation,nuggetfractureseparationanduppersheetfractureseparation.Thehighestseparationloadwasachievedunderuppersheetfracturemode.Microhardnesstestsindicatednodirectrelationshipbetweenmicrohardnessandseparationmodes,andtheHAZwasthesoftestregion.
friction stir welding
W.Yuanetal./JournalofMaterialsProcessingTechnology211 (2011) 972–977977
Acknowledgments
Theauthorsgratefullyacknowledgethesupportof(a)theNationalScienceFoundationthroughgrantNSF-EEC-0531019and(b)GeneralMotorsCompanyandFrictionStirLinkfortheMissouriUniversityofScienceandTechnologysite.References
Arul,S.G.,Pan,T.-Y.,Lin,P.-C.,Pan,J.,Feng,Z.,Santella,M.L.,2005.Microstruc-turesandFailureMechanismsofSpotFrictionWeldsinLap-ShearSpecimensofAluminum5754Sheets.SAETechnicalSeries2005-01-1256.
Arul,S.G.,Miller,S.F.,Kruger,G.H.,Pan,T.Y.,Mallick,P.K.,Shih,A.J.,2008.Experimen-talstudyofjointperformanceinspotfrictionweldingof6111-T4aluminumalloy.Sci.Technol.Weld.Join.13,629–637.
Bozzi,S.,Helbert-Etter,A.L.,Baudin,T.,Klosek,V.,Kerbiguet,J.G.,Criqui,B.,2010.
In uenceofFSSWparametersonfracturemechanismsof5182aluminumwelds.J.Mater.Proc.Technol.210,1429–1435.
Badarinarayan,H.,Shi,Y.,Li,X.,Okamoto,K.,2009a.Effectoftoolgeometryonhook
formationandstaticstrengthoffrictionstirspotweldedaluminum5754-Osheets.Int.J.Mach.Tool.Manu.49,814–823.
Badarinarayan,H.,Yang,Q.,Zhu,S.,2009b.Effectoftoolgeometryonstaticstrength
offrictionstirspot-weldedaluminumalloy.Int.J.Mach.Tool.Manu.49,142–148.
Freeney,T.,Sharma,S.R.,Mishra,R.S.,2006.EffectofWeldingParametersonProp-ertiesof5052AlFrictionStirSpotWelds.SAETechnicalSeries2006-01-0969.Gean,A.,Westgate,S.A.,Kucza,J.C.,Ehrstrom,J.C.,1999.Staticandfatiguebehavior
ofspot-welded5182-Oaluminumalloysheet.Weld.J.78,80s–86s.
Hirth,S.M.,Marshall,G.J.,Court,S.A.,Lloyd,D.J.,2001.EffectsofSiontheaging
behaviorandformabilityofaluminumalloysbasedonAA6016.Mater.Sci.Eng.A319–321,452–456.
Iwashita,T.,Patent6,601,751B2.
Khan,M.I.,Kuntz,M.L.,Su,P.,Gerlich,A.,North,T.H.,Zhou,Y.,2007.Resistanceand
frictionstirspotweldingofDP600:acomparativestudy.Sci.Technol.Weld.Join.12,175–182.
Lathabai,S.,Painter,M.J.,Cantin,G.M.D.,Tyagi,V.K.,2006.Frictionspotjoiningofan
extrudedAl–Mg–Sialloy.ScriptaMater.55,899–902.
Lin,B.Y.,Liu,J.J.,Lu,L.D.,2011.Mechanicalpropertiesandfracturebehavioroffriction
stirspotweldedAZ61magnesiumalloys.Adv.Mater.Res.154–155,498–507.Mishra,R.S.,Ma,Z.Y.,2005.Frictionstirweldingandprocessing.Mater.Sci.Eng.R:
Reports50,1–78.
Mishra,R.S.,Freeney,T.A.,Webb,S.,Chen,Y.L.,Herling,D.R.,Grant,G.J.,2007.Fric-tionstirspotweldingof6016aluminumalloy.In:FrictionStirWeldingandProcessingIV,TheMinerals,Metals&MaterialsSocietyAnnualMeeting.
Mitlin,D.,Radmilovic,V.,Pan,T.,Chen,J.,Feng,Z.,Santella,M.L.,2006.Structure-propertiesrelationsinspotfrictionwelded6111aluminum.Mater.Sci.Eng.A441,79–96.
Sakano,R.,Murakami,K.,Yamashita,K.,Hyoe,T.,Fujimoto,M.,Inuzuka,M.,Nagao,U.,
Kashiki,H.,2001.DevelopmentofspotFSWrobotsystemforautomobilebodymembers.In:ProceedingsoftheThirdInternationalSymposiumofFrictionStirWelding,Kobe,Japan.
Su,P.,Gerlich,A.,North,T.H.,2005.FrictionStirSpotWeldingofAluminumand
MagnesiumAlloySheets.SAETechnicalSeries2005-01-1255.
Su,P.,Gerlich,A.,North,T.H.,Bendzsak,G.J.,2007.Intermixingindissimilarfriction
stirspotwelds.Metall.Mater.Trans.A38,584–595.
Thomas,W.M.,Nicholas,E.D.,Needham,J.C.,Murch,M.G.,Templesmith,P.,Dawes,
C.J.,1991.G.B.Patent9125978.8.
Thornton,P.,Krause,A.,Davies,R.,1996.Aluminumspotweld.Weld.J.75,
101s–108s.
Tozaki,Y.,Uematsu,Y.,Tokaji,K.,2007.Effectofprocessingparametersonstatic
strengthofdissimilarfrictionstirspotweldsbetweendifferentaluminiumalloys.FatigueFract.Eng.Mater.30,143–148.
Tozaki,Y.,Uematsu,Y.,Tokaji,K.,2010.Anewlydevelopedtoolwithoutprobe
forfrictionstirspotweldinganditsperformance.J.Mater.Process.Tech.210,844–851.
Tran,V.-X.,Pan,J.,Pan,T.,2009.Effectsofprocessingtimeonstrengthsandfailure
modesofdissimilarspotfrictionweldsbetweenaluminum5754-Oand7075-T6sheets.J.Mater.Process.Tech.209,3724–3739.
Valant,M.,Yarrapareddy,E.,Kovacevic,R.,2005.Anoveltooldesignforfrictionstir
spotwelding.In:InternationalTrendsinWeldingResearchConference,May16–20.
Yin,Y.H.,Sun,N.,North,T.H.,Hu,S.S.,2010.In uenceoftooldesignonthemechanical
propertiesofAZ31 ctionstirspotwelds.Sci.Technol.Weld.Join.15,81–86.
正在阅读:
2011-Effect of tool design and process parameters on properties of Al alloy 6016 friction stir spot06-11
话题作文:风景08-12
化工原理课程设计01-14
2018-2024年中国沼气发电产业深度调研与投资前景研究报告(目录04-14
《我们一起走过》观后感言04-02
浙江省实施教师资格条例细则(试行)10-19
江阴市小学语文青年教师课堂教学大比武低高年级组总结12-08
毕业设计说明书 - secret05-13
- 1YETIYeast Exploration Tool Integrator
- 2IPC-6016中文
- 3Friction analysis based on integral quadratic constraints
- 4TitaniumDioxideNanomaterialsSynthesis,Properties,Modificatio
- 5The simplescalar tool set, version 2.0
- 64M Process Introduction
- 7Global Warming and its Effect
- 8Mixtures of Gaussian process priors
- 9The - effect - of - globalization - on - Chinese - culture
- 10IPC-6016中文
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- properties
- parameters
- friction
- process
- Effect
- design
- alloy
- 2011
- tool
- 6016
- stir
- spot
- Al
- 2011年9月--2012年3月部分来长春理工校招聘企业及需求专业简介
- 青春作伴好读书策划书
- 人教-选修3-专题5-_5.1生态工程的基本原理1
- 适合做背景音乐总汇集
- 小学六年级上册数学期末试卷练习题(人教版)
- 几何证明的基本方法
- 《中华传统美德》教学设计
- 中华人民共和国公司管理法(素材)
- 高效脱色剂使用方法
- 江苏省地方税务局纳税人之家建设情况
- 商业银行并购贷款及其项目评估研究
- -2016年版-国家自然科学基金项目形式审查自查明细表
- 《孙子兵法》对新世纪企业战略的价值
- 2019年中考复习系列之热效率计算专题(附录答案)
- 青少年常见心理问题
- 小学五年级数学上册复习知识点归纳总结
- 物流成本计算方法
- 深圳东惠州龙光城二期洋房介绍
- 消除WindowsXP中的复制乱码
- 3.4通电导线在磁场中受到的力(第一课时)