2011-Effect of tool design and process parameters on properties of Al alloy 6016 friction stir spot

更新时间:2023-06-11 13:38:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

friction stir welding

JournalofMaterialsProcessingTechnology211 (2011) 972–977

ContentslistsavailableatScienceDirect

JournalofMaterialsProcessing

Technology

journalhomepage:/locate/jmatprote

c

EffectoftooldesignandprocessparametersonpropertiesofAlalloy6016frictionstirspotwelds

W.Yuana,R.S.Mishraa, ,S.Webba,Y.L.Chenb,B.Carlsonb,D.R.Herlingc,G.J.Grantc

a

CenterforFrictionStirProcessing,DepartmentofMaterialsScienceandEngineering,MissouriUniversityofScienceandTechnology,Rolla,MO65409,USAGeneralMotorR&DCenter,Warren,MI48090,USAc

Paci cNorthwestNationalLaboratory,Richland,WA99356,USA

b

articleinfoabstract

Frictionstirspotwelding(FSSW)ofAlalloy6016-T4sheetwasevaluatedusingaconventionalpin(CP)toolandoff-centerfeature(OC)tool.Toolrotationspeedandplungedepthwerevariedtodeterminetheeffectofindividualprocessparameteronlap-shearseparationload.Maximumseparationloadofabout3.3kNwasobtainedbyusinga0.2mmshoulderpenetrationdepthwith1500rpmtoolrotationspeedfortheCPtooland2500rpmfortheOCtool.Threedifferentweldseparationmodesunderlap-shearloadingwereobserved:interfacialseparation,nuggetfractureseparationanduppersheetfractureseparation.Microhardnesspro leforweldcrosssectionindicatednodirectrelationshipbetweenmicrohardnessdistributionandseparationlocations.

© 2010 Elsevier B.V. All rights reserved.

Articlehistory:

Received26July2010

Receivedinrevisedform7December2010Accepted17December2010

Available online 24 December 2010Keywords:

FrictionstirspotweldingTooldesignAlalloy6016

ProcessparameterSeparationmode

1.Introduction

Weightsavingintheautomotiveindustryisbecomingincreas-inglyimportantandcanbeenhancedbyusinglight-weightaluminumalloyforvehicles;particularlyclosurepanelssuchashoods,decklidsandlift-gates.Resistancespotwelding(RSW),currentlythemostcommonlyusedjoiningtechniqueinthevehi-cleindustry,hasapplicationsforlow-carbon,high-strengthandcoatedsteels.However,RSWofaluminumalloysheetsisfraughtwithmanydisadvantages,whichincludeporosityandcracks,asreportedbyThorntonetal.(1996)andGeanetal.(1999).AsevereelectrodetipwearproblemhasalsobeenencounteredduringRSW(Khanetal.,2007).Recently,FSSWforjoiningaluminumalloysheethasbeendevelopedbyMazdaMotorCorporation(Sakanoetal.,2001)andKawasakiHeavyIndustry(Iwashita,2003).

Similartofrictionstirwelding,whichwasdevelopedbyTWI,UKin1991(Thomasetal.,1991),FSSWisasolid-stateweldingtechnique.DuringplungetypeFSSW,arotatingtoolwithaprotrud-ingpinisinsertedintotheoverlappingsheetstoapredetermineddepth.Afteracertaindwelltime,itisretractedandakeyholeisleft.Thefrictionalheatgeneratedatthetool-workpieceinterfacesoftensthesurroundingmaterial,andtherotatingandmovingpincausesthematerial owinboththecircumferentialandtheaxial

Correspondingauthor.Tel.:+15733416361;fax:+15733416934.E-mailaddress:rsmishra@mst.edu(R.S.Mishra).0924-0136/$–seefrontmatter© 2010 Elsevier B.V. All rights reserved.doi:10.1016/j.jmatprotec.2010.12.014

directions(Lathabaietal.,2006).Theinter-mixingoftheplasticizedmaterialandforgingpressureappliedbythetoolshoulderresultintheformationofasolidbondregion(Freeneyetal.,2006).

ThestrengthofweldsiscriticalwhenapplyingFSSWtoload-bearingcomponents.Thisstrengthisaffectedmainlybytoolgeometryandprocessparameters.Toolgeometry,suchasshoul-derdiameterandshape,pinshape,length,diameterandfeatureisakeyparametertoaffectheatgenerationandmaterial ow(MishraandMa,2005).Currently,aconcavetoolshoulderisthemostcommonshoulderdesigninFSSW,thoughsome attoolshoul-derdesignshavealsobeenused.Aruletal.(2005)reportedthatconcaveshouldertoolproducedhigherjointstrengththanthe atshouldertoolduringFSSWofaluminum5754.Badarinarayanetal.(2009a)alsoreportedthatspotweldsmadeusingconcavepro leshoulderexhibitedhigherweldstrengththanthoseusingconvexor atshoulderasaresultofthehighesteffectivetopsheetthick-nessachievedusingconcaveshoulder.Recently,Tozakietal.(2010)proposedanewlydesignedscroll-groovedshouldertoolwithoutaprobewhichproducedmuchhigherfailurestrengthofaluminumalloy6061weldsthantoolwithprobe.Thetoolpinisdesignedtodisruptthefayingsurface,transportandshearadjacentmaterialandgeneratefrictionalheatinthethicksheet.Themostcurrentpindesigninopenliteratureisconventionalcylindricalandconicalpinwithorwithoutthreads.Valantetal.(2005)havereportedathree-pinfeaturedesign.Recently,Mishraetal.(2007)havereportedtheconceptofOCtooltohavebettercontroloverthematerialsweepduringFSSW.Badarinarayanetal.(2009a,b)presentedtheeffectof

friction stir welding

W.Yuanetal./JournalofMaterialsProcessingTechnology211 (2011) 972–977

973

Fig.1.Schematicillustrationoflap-shearspecimen.

toolgeometryonstaticstrengthandhookformationandshowedthattheprobegeometrysigni cantlyaffectedthehookformation.Processparametersarealsokeyfactorsthataffectthestrengthoftheweldjoints.Themechanicalbehaviorofspotweldedaluminumalloyshasbeenstudied.Sakanoetal.(2001)andAruletal.(2008)showedthatthelapshearload rstincreased,andthendecreasedasthetoolrotationspeedincreased.Freeneyetal.(2006)andTozakietal.(2007)reportedthathigherweldstrengthcanbeattributedtoalargerstirzonesizeattainedbyloweringtoolrotationspeed.However,Lathabaietal.(2006)reportedthatahighertoolrotationspeedof3000rpmwasoptimumforAlalloy6060-T5andpenetra-tiondepthhadsigni cantin uenceonthetensileshearstrength.Ontheotherhand,Freeneyetal.(2006)andMitlinetal.(2006)reportedthatincreasingpenetrationdepthhadnoin uenceonthefailureload.Tranetal.(2009)showedthatfailureloadofdissim-ilaraluminumalloyspotfrictionweldsincreasedwithprocessingtimeasaresultofenlargedwelddiameter.Theliteratureonhowtheseprocessparametersaffectweldstrengthisdiverse,andonlyageneralcomparisoncanbeachievedbecauseofdifferentalloyuse,variedalloythicknessandtooldesign.

Inthispaper,twodifferenttoolswiththesameshoulderdiam-eterandconcaveshapebutdifferentpinfeatureswerecompared.Onewasaconventionaltoolwithastepspiralpin,p-sheartestswereusedtoinvestigatesystematicallytheeffectofindividualprocessparameteronweldstrength.Crosssectionalmicrostruc-turesoftheweldedandseparatedspecimenswereanalyzedtooutlinethedifferentseparationmodesunderlap-sheartests.2.Experimentalprocedures

Fig.3.Opticalmacrographsofspotweldsmadeusingconventionalpintoolat(a)1500rpmand(b)2500rpm;off-centerfeaturetoolat(c)1500rpmand(d)2500rpm.

off-center0.8mmlonghemisphericalpinfeatures.BothtoolsweremachinedfromDensimettungstenalloy.Thespotweldingmachinewasoperatedunderpositioncontrolmode.FortheOCtool,astop-then-retractionmodewasused.

AnMTStestingmachinewasusedtoevaluatethreelap-shearspecimensforeachweldingconditioninordertoobtainarepre-sentativeaveragemaximumlap-shearseparationload.Specimenswerepulledatarateof0.02mm/s.Inadditiontomechanicaltest-ing,twoweldsineachconditionwerecross-sectionedandmountedformetallographicstudiesandmicrohardnesstests.Sampleswerepreparedandetchedusinga5%HFreagenttodetermineweldmor-phology.Microhardnesstestswereperformedoncrosssectionsofweldsmadebybothtools.Vickersmicrohardnessmeasurementsweretakenat0.5mmbelowtheuppersheetsurfacewith1.0mmintervalusingadiamondindenterwitha0.5kgfloadand10sdwelltime.ThesampleswerekeptinafreezerbetweenFSSWrunsandmicrohardnesstests.3.Resultsanddiscussion

1.0mmthickAlalloy6016-T4sheetswereusedinthisstudy.Alalloy6016isalowCu,Mg–Sialloythatgainedpopularityasskinmaterialforcarbodypanelsduetoitsdesirabledentresistanceandrelativelyhighformability(Hirthetal.,2001).Aluminumsheetswereshearedtoadimensionof127.0mmlongand38.1mmwide.Fig.1showsalap-shearspecimenusedtoinvestigatethestrengthofthewelds.Thespecimenhada38.1mmsquareoverlaparea.

AplungetypeFSSWmachinewithaxialloadcapacityof22.2kNandspindlerotationspeedsupto3000rpmwasused.Duringtheweld,axialforce,torqueandtimeweredatalogged.TwotoolsareshowninFig.2.TheCPtool,whichisaconventionaltoolwithacenterpin,hasaconcaveshoulderwith10.0mmdiameteranda1.5mmlongstepspiralpinwithrootdiameterof4.5mmandtipdiameterof3.0mm.TheOCtoolistheoff-centerfeaturetoolwiththesameconcaveshouldershapeanddiameter,and

three

3.1.Macrostructure

Fig.3showstypicalcrosssectionsofaluminumalloyspotwelds.Theregioninsideofthedashedlinesindicatesthedynamicrecrys-tallizedzonewhichisgenerallyreferredasnuggetzoneorstirzoneandtheregionrightadjacentisthethermomechanicallyaffectedzone(TMAZ)(MishraandMa,2005).AsFSSWofaluminumalloyisgenerallyperformedwithoutadditionalspecimencleaningoroxideremoving,ahookingorhookfeature(indicatedbyblackarrowinFig.3)originatingfromthefayingsurfaceofthetwosheetsisoftenobservedduetotheuncompletedbreak-upofaluminumoxide lm.Basedonthedistributionoftheoxide lm,thebondingconditionsbetweentwosheetscanbede nedascompletelymet-allurgicalbonded,partiallymetallurgicalbondedand

unbonded

Fig.2.Macroimagesof(a)Conventionalpintooland(b)Off-centerfeaturetool.

friction stir welding

974W.Yuanetal./JournalofMaterialsProcessingTechnology

211 (2011) 972–977

p-shearseparationloadandfrictionalheatinputasafunctionoftoolrotationspeed.

(Badarinarayanetal.,2009a).Fig.3(a)and(b)showsthecrosssec-tionsofweldsmadeat1500rpmand2500rpmusingCPtool.Alargerbondedregionwasachievedatalowerrpmwitharela-tively athookingwhichappearstodisappearattheinterfaceofthenuggetregion.Athigherrpms,ratherthandisappearing,thehook-ingtendedtocurveupwardsontheouteredgeofthenuggetregion,whicheffectivelydecreasesthebondedregion.Thedistincthook-ingfeatureresultsfromthedifferenceinmaterial owatlowerandhighertoolrotationrates.DuringFSSW,materialundergoessevereplasticdeformationandthermalcycle.Softmaterialistransporteddownbythesynergyoffeaturedpinandtoolshoulder,andthenitisreleasedand owsupwardintothestirzone(Suetal.,2007).Thisprocesscontinuesuntiltoolretracts.Toolrotationratein uencesthematerial owbyvaryingthefrictionalheatinputandvolumeofmaterialtransportedandreleasedwhichdirectlyaffecttheforma-tionofstirzone.ThefrictionalheatinputundervarioustoolrotationrateswascalculatedandshowninFig.4basedonthetoolprocess-ingforce,spindletorqueandprocessingtime.Detailsofheatinputcalculationcanbefoundelsewhere(Linetal.,2011).Theheatinputincreasedwithincreaseintoolrotationrate,whichinturnreducedtheviscosityofmaterialunderthetoolshoulderandaroundthepin,i.e.highertoolrotationrateleadstobettermaterial owabil-ity,consequentlymorematerialdisplacedperunittime,andlessshearandforgingcomponentsrequiredfromthetooltodeformthematerial.Thiscanbeveri edbythepro leofstirzone.Atlowertoolrotationrate,theboundarybetweenstirzoneandTMAZchangesmildlyandhookingbecomesstirredandmoredispersed.How-ever,sharpinnercurvedstirzonepro lecanbeobservedathighertoolrotationrateandhookingappearstobejustextrudedbythereleasedmaterialandsubsequentlysqueezedbydownwardmate-rial ow.Fig.3(c)and(d)showsthecross-sectionsofweldsmadeat1500rpmand2500rpmusingtheOCtool.UnliketheresultsfortheCPtool,thehookingwasnotpronounced,especiallyat1500rpmwheretwosheetswerenotwellbondedandthesizeofthebondedregionincreasedfortheOCtoolfrom1500rpmto2500rpm.Itsug-geststhattheOCtoolgeometrygeneratesalowerheatinputforgivenprocessparametersandassuchisabletoincreasetheamountofmaterialintothestirzonewithinthisrpmrangeversustheCPtool.SimilartotheCPtool,thefrictionalheatincreases(notedfromFig.4)andtheviscositydecreasewhenthetoolrotationrateincreases.Aslightlyupwardhookingfeatureformedtoaccommo-datethematerialreleaseduringtoolplunging.Thematerial owduringFSSWusingtheOCtoolismorecomplexduetotheasym-metricarrangementofpinsandthehemisphericalpinfeature.The

hemisphericalfeatureisnotpronetointroducesigni cantverticalmaterial ow,butenhancedmaterialsweepinhorizontalplanes,thisisseenbythelimitedupwardhookingfeature;thesmallvol-umeofpinwithhemisphericalfeaturesandshallowtoolplungedepthisthesuggestedreasonforthis.

Itshouldbenotedthatforthesameprogrammedtoolplungedepthunderdisplacementcontrol,theaccuracyofplungedepthisbetterathighertoolrotationspeedsforbothtools.Thisislikelytoberelatedtothefactthatatlowerrpmsthereislowerheatinputandagreaterresistancetothetoolwhichisaffectedbythecomplianceofthemachine.Valantetal.(2005)reportedasimilarobservationandindicatedthatforagivenpositionoftheZ-axisser-vomotor,axialloadontheZ-axisspindleand nitestiffnessofthemachinedeterminedtheactualtoolpenetrationdepth.Althoughastop-then-retractionmodewasusedfortheOCtool,themotorinertiaandsoftermaterialaroundthepinswerepulledoutwiththetool,whichleftaholeintheweldcenter.

p-sheartest

Forthe rstsetofruns,toolrotationspeedwasvariedfrom1000rpmto2500rpminstepsof500rpm;whileplungedepthwaskeptconstant.Fig.4showstheeffectoftoolrotationspeedonlap-shearseparationloadandfrictionalheatinput.FortheCPtool,thelap-shearseparationload rstincreasedthendecreasedastherotationspeedincreased,withapeakloadof2.8kNat1500rpm.However,fortheOCtool,thelap-shearseparationloadincreasedasthetoolrotationspeedincreased,withamaximumvalueof3.0kNat2500rpm.Nodirectrelationshipbetweenfrictionalheatinputandseparationloadwasobserved,especiallywhentheCPtoolwasused(higherheatinputwithlowerseparationload).Thevariationinlap-shearseparationloadwithtoolrotationspeedisrelatednotonlytothefrictionalheat,butalsotothematerial owwhichaffectsthesizeofbondedregionandhookingfeaturesaswell.Suetal.(2005)haveshownapositivecorrelationbetweenthebondedareaandthelap-shearstrength.Highertoolrotationspeedisbelievedtogeneratemorefrictionalheat,whichisbene cialforformationofalargerbondedregion.Bozzietal.(2010)proposedthatthesizeandlocationofthestirzoneandtheunweldedinter-facetipslopplayedadeterminantroleontheweldstrength.TheupwardandinwardclimbinghookingobservedfortheCPtoolathighertoolrotationratessigni cantlydecreasedthebondedregionandinducedtheeasycrackpropagationduringlap-shearloading,resultinginthereducedseparationload.However,largerbondedregionandlimitedupwardandoutwardhookingmadetheweldsstrongerathighertoolrotationspeedswiththeOCtool.

Forthesecondsetofruns,thepenetrationdepthwasvariedbyincreasingthedepthby0.1mmincrements.Consideringthe nitestiffnessofthemachine,actualshoulderpenetrationdepthwasmeasuredbyweldcrosssection.Thetoolrotationspeedwas1500rpmfortheCPtooland2500rpmfortheOCtool.Fig.5showshowshoulderpenetrationdepthaffectstheseparationload.HighpenetrationdepthhasbeenreportedtogeneratehighweldstrengthbyAruletal.(2005)andLathabaietal.(2006).Cur-rentresultsindicatedtheseparationload rstincreasedandthendecreasedwithplungedepthforweldsmadeusingbothtools.Apeakvalueof3.3kNwasobservedforweldsmadeusingbothtoolswitha0.2mmshoulderpenetration.Continuallyincreasingthepenetrationdepthdecreasedthelap-shearseparationloadofweldsmadeusingbothtools.Yinetal.(2010)suggestedthathighfailureloadswereachievedforlargebondedwidths,smallratioofthedistancefromthesheetintersectiontothetipofthehookregiontotheinitialsheetthicknessandoutwardscurvedfeatureofhook.Withtheincreaseofplungedepth,thesizeofbondedregionincreased,however,hookingwentupandthethicknessoftheuppersheetundershoulderindentationdecreased,whichreduced

friction stir welding

W.Yuanetal./JournalofMaterialsProcessingTechnology211 (2011) 972–977

975

Fig.6.AschematicplotofseparationmodesforspotweldsmadeusingCPtoolandtestedunderlap-shearloadingcondition.

p-shearseparationloadasafunctionofshoulderpenetrationdepth.

theratioindicatedbyYinetal.(2010).Finally,thetopsheetundertheoutercircumferenceofthetoolshoulderbecametheweakestload-bearingcrosssection.

3.3.Separationmodesofweldsunderlap-shearloadingconditionThestrengthofweldsdependsnotonlyonthesizeofthebondedregion,butalsoonthehookingfeaturesandthicknessofthetopsheetattheoutercircumferenceoftheshoulderindenta-tion.Theweakestpoint,ofcourse,isthelocationforseparation.Badarinarayanetal.(2009b)pointedthatacombinationofstressconcentration,mechanicalpropertyofthematerial,andeventheload-carryingareainfrontofthehooktipdeterminedfurthercrackpropagation.Theseparationmodeofspecimenchangeswhenweldingprocessparametersvary.Mitlinetal.(2006)haveindicatedthattoolpinpenetrationdepthhadastrongeffectonthesepara-tionmodeofwelds.Suetal.(2005)haveshownenergyinputduringFSSWin uencedthefracturemodeduringmechanicaltesting.

Inthisstudy,threedifferentseparationmodesunderlap-sheartestswereobservedforbothtools.Aschematicplotofsepara-tionmodesforweldsmadeusingCPtoolisshowninFig.6.

For

eachseparationmode,theinitialcrackstartedfromthefayingsur-facedepictedaspoint“O”.ForthemodeIF,interfacialseparation,thecrackpropagatedalongthehookingtopointA,thenalongthecircumferencetoA .Inthiscase,thecrackpropagatedparalleltotheuppersheetsurfaceandseparatedwithlimitedplasticityattheweldnuggetleadtoseparationload.ModeNF,nuggetfrac-tureseparation,thecrackpropagatedalongthehookingintothestirzoneandthenpropagatedtopointB;afterthatitcametopointB alongtheinnercircumferenceortoB1,B2thentoC alongtheoutercircumference.ModeUSF,uppersheetfracturesepara-tion;inthiscase,signi cantlymorefrictionalheatinputgeneratedalargebondedregionandthehookingmergedintothenuggetcompletely.Whenthecrackreachedthestirzone,itfollowedtheboundaryofTMAZandnuggettothethinnestpartoftopsheet,wherefracturehappenedatpointCthenpropagatedtopointC alongtheoutercircumferenceoftheshoulderindentation.Inthiscase,weldsdisplayedcertainplasticityondeformationandsepa-ratedatahigherload.TheseparationrouteofmodeUSFisshowninFig.7withtheweldcross-sectionindicatedatdifferentlap-sheartestingextensions.Brokensampleswithvariousseparationmodesafterlap-sheartestingareshowninFig.8.

ThemaximumseparationloadwasachievedundermodeUSFseparationconditionforweldsmadeusingbothtools;separa-tionmodedidnotchangeastoolpenetrationdepth

continued

Fig.7.SeparationrouteofweldsmadeusingCPtoolandseparatedundermodeUSFcondition.

friction stir welding

976W.Yuanetal./JournalofMaterialsProcessingTechnology

211 (2011) 972–977

Fig.8.BrokensamplesmadeusingCPtool,separatedby:(a)modeIF,(b)and(c)modeNF,and(d)modeUSF.Thephotosshow,fromlefttoright,viewsofthetopsheet,theundersideofthetopsheetandthebottomsheet.

toincrease.However,themaximumseparationloaddecreasedgreatly,potentiallybecausethethinuppersheetundertheshoulderindentationbecameweakestanddominatedthe nalseparation.TherelationbetweenseparationloadandextensionofweldsmadeusingtheCPtoolandthemodeofseparationispresentedinFig.9.Theresultsindicatedthreeseparationmoderegionsandtwomodetransitionregions.AstheseparationmodeshiftedfromIFtoUSF,theseparationloadsandextensionswereatleastdoubled.Noobvi-ousrelationshipbetweenweldingparametersandseparationmodewasobserved.Generally,theIFmodewaspresentedatlowerheatinputconditions(lowerrpm,lowerplungedepth)whenthesizeofbondedregionwassmallandinterfacialbondingwasweak.Astheheatinputincreasedbyincreasingrpmandplungedepth,thesepa-rationmodechangedfromIFtoNForUSFdependedontheratioofthesizeofbondedregiontotheeffectivethicknessofuppersheet,andthefeatureofthehooking.Asmallerratioandinwardhook-ingpromotedtheNFmode,andalargerratioandoutwardhookingpreferredtheUSFmode.3.4.Microhardnesstest

Thetensilepropertiesoftheweldaredependentonthestrengthdistributionwithintheweldonlywhenitisfreeofdefects.Tounderstandtherelationshipbetweenstrengthdistributionandseparationlocations,microhardnesspro lesforweldcrosssectionsweretakenatthreedifferentshoulderpenetrationdepthswhichcorrespondedtothreeseparationmodes.Microhardnesstestswereperformed0.5mmbelowtheuppersheetsurface.TheresultsinFig.10showatypicalheat-affectedzone(HAZ)which

under-Fig.9.Separationloadasafunctionofextensionforweldsseparateatdifferent

modes.

Fig.10.Vickersmicrohardnessdistributionsofweldsatdifferentshoulderpene-trationdepths.

goesthermalcycleswithlowestmicrohardness.TheHAZmovedawayfromtheweldcenterresultingfromhigherthermalinputastheshoulderpenetrationdepthincreased.Nodirectrelationshipbetweenmicrohardnessandseparationlocationswasobserved,sincethemicrohardnessincreasedwhenclosetotheweldcen-terandtherewasnotmuchvariationinmicrohardnessinnuggetsaspenetrationdepthincreased;however,theseparationlocationshiftedawayfromtheweldcenterwithincreaseofpenetrationdepth.Theseparationlocationsweresigni cantin uencedbythehookingwhichnotonlyaffectedthesizeofbondedregionandsubsequentratioofsizeofbondedregiontoeffectivethicknessofuppersheet,butalsointroducedstressconcentrationattheendofunbondedregionduringshearloading,whichin uencedfurthercrackpropagationandthe nallocationforfracture.4.Conclusions

Alalloy6016sheetswerefrictionstirspotweldedbyusingbothCPandOCtools.Resultsindicatethattoolrotationspeedandplungedepthprofoundlyin uencedlap-shearseparationloads.Bothtoolsexhibitedmaximumweldseparationload:about3.3kNat0.2mmshoulderpenetrationdepth;differenttoolrotationspeeds,1500rpmfortheCPtooland2500rpmfortheOCtool.Threedifferentseparationmodeswereobservedforweldsmadeusingbothtools,interfacialseparation,nuggetfractureseparationanduppersheetfractureseparation.Thehighestseparationloadwasachievedunderuppersheetfracturemode.Microhardnesstestsindicatednodirectrelationshipbetweenmicrohardnessandseparationmodes,andtheHAZwasthesoftestregion.

friction stir welding

W.Yuanetal./JournalofMaterialsProcessingTechnology211 (2011) 972–977977

Acknowledgments

Theauthorsgratefullyacknowledgethesupportof(a)theNationalScienceFoundationthroughgrantNSF-EEC-0531019and(b)GeneralMotorsCompanyandFrictionStirLinkfortheMissouriUniversityofScienceandTechnologysite.References

Arul,S.G.,Pan,T.-Y.,Lin,P.-C.,Pan,J.,Feng,Z.,Santella,M.L.,2005.Microstruc-turesandFailureMechanismsofSpotFrictionWeldsinLap-ShearSpecimensofAluminum5754Sheets.SAETechnicalSeries2005-01-1256.

Arul,S.G.,Miller,S.F.,Kruger,G.H.,Pan,T.Y.,Mallick,P.K.,Shih,A.J.,2008.Experimen-talstudyofjointperformanceinspotfrictionweldingof6111-T4aluminumalloy.Sci.Technol.Weld.Join.13,629–637.

Bozzi,S.,Helbert-Etter,A.L.,Baudin,T.,Klosek,V.,Kerbiguet,J.G.,Criqui,B.,2010.

In uenceofFSSWparametersonfracturemechanismsof5182aluminumwelds.J.Mater.Proc.Technol.210,1429–1435.

Badarinarayan,H.,Shi,Y.,Li,X.,Okamoto,K.,2009a.Effectoftoolgeometryonhook

formationandstaticstrengthoffrictionstirspotweldedaluminum5754-Osheets.Int.J.Mach.Tool.Manu.49,814–823.

Badarinarayan,H.,Yang,Q.,Zhu,S.,2009b.Effectoftoolgeometryonstaticstrength

offrictionstirspot-weldedaluminumalloy.Int.J.Mach.Tool.Manu.49,142–148.

Freeney,T.,Sharma,S.R.,Mishra,R.S.,2006.EffectofWeldingParametersonProp-ertiesof5052AlFrictionStirSpotWelds.SAETechnicalSeries2006-01-0969.Gean,A.,Westgate,S.A.,Kucza,J.C.,Ehrstrom,J.C.,1999.Staticandfatiguebehavior

ofspot-welded5182-Oaluminumalloysheet.Weld.J.78,80s–86s.

Hirth,S.M.,Marshall,G.J.,Court,S.A.,Lloyd,D.J.,2001.EffectsofSiontheaging

behaviorandformabilityofaluminumalloysbasedonAA6016.Mater.Sci.Eng.A319–321,452–456.

Iwashita,T.,Patent6,601,751B2.

Khan,M.I.,Kuntz,M.L.,Su,P.,Gerlich,A.,North,T.H.,Zhou,Y.,2007.Resistanceand

frictionstirspotweldingofDP600:acomparativestudy.Sci.Technol.Weld.Join.12,175–182.

Lathabai,S.,Painter,M.J.,Cantin,G.M.D.,Tyagi,V.K.,2006.Frictionspotjoiningofan

extrudedAl–Mg–Sialloy.ScriptaMater.55,899–902.

Lin,B.Y.,Liu,J.J.,Lu,L.D.,2011.Mechanicalpropertiesandfracturebehavioroffriction

stirspotweldedAZ61magnesiumalloys.Adv.Mater.Res.154–155,498–507.Mishra,R.S.,Ma,Z.Y.,2005.Frictionstirweldingandprocessing.Mater.Sci.Eng.R:

Reports50,1–78.

Mishra,R.S.,Freeney,T.A.,Webb,S.,Chen,Y.L.,Herling,D.R.,Grant,G.J.,2007.Fric-tionstirspotweldingof6016aluminumalloy.In:FrictionStirWeldingandProcessingIV,TheMinerals,Metals&MaterialsSocietyAnnualMeeting.

Mitlin,D.,Radmilovic,V.,Pan,T.,Chen,J.,Feng,Z.,Santella,M.L.,2006.Structure-propertiesrelationsinspotfrictionwelded6111aluminum.Mater.Sci.Eng.A441,79–96.

Sakano,R.,Murakami,K.,Yamashita,K.,Hyoe,T.,Fujimoto,M.,Inuzuka,M.,Nagao,U.,

Kashiki,H.,2001.DevelopmentofspotFSWrobotsystemforautomobilebodymembers.In:ProceedingsoftheThirdInternationalSymposiumofFrictionStirWelding,Kobe,Japan.

Su,P.,Gerlich,A.,North,T.H.,2005.FrictionStirSpotWeldingofAluminumand

MagnesiumAlloySheets.SAETechnicalSeries2005-01-1255.

Su,P.,Gerlich,A.,North,T.H.,Bendzsak,G.J.,2007.Intermixingindissimilarfriction

stirspotwelds.Metall.Mater.Trans.A38,584–595.

Thomas,W.M.,Nicholas,E.D.,Needham,J.C.,Murch,M.G.,Templesmith,P.,Dawes,

C.J.,1991.G.B.Patent9125978.8.

Thornton,P.,Krause,A.,Davies,R.,1996.Aluminumspotweld.Weld.J.75,

101s–108s.

Tozaki,Y.,Uematsu,Y.,Tokaji,K.,2007.Effectofprocessingparametersonstatic

strengthofdissimilarfrictionstirspotweldsbetweendifferentaluminiumalloys.FatigueFract.Eng.Mater.30,143–148.

Tozaki,Y.,Uematsu,Y.,Tokaji,K.,2010.Anewlydevelopedtoolwithoutprobe

forfrictionstirspotweldinganditsperformance.J.Mater.Process.Tech.210,844–851.

Tran,V.-X.,Pan,J.,Pan,T.,2009.Effectsofprocessingtimeonstrengthsandfailure

modesofdissimilarspotfrictionweldsbetweenaluminum5754-Oand7075-T6sheets.J.Mater.Process.Tech.209,3724–3739.

Valant,M.,Yarrapareddy,E.,Kovacevic,R.,2005.Anoveltooldesignforfrictionstir

spotwelding.In:InternationalTrendsinWeldingResearchConference,May16–20.

Yin,Y.H.,Sun,N.,North,T.H.,Hu,S.S.,2010.In uenceoftooldesignonthemechanical

propertiesofAZ31 ctionstirspotwelds.Sci.Technol.Weld.Join.15,81–86.

本文来源:https://www.bwwdw.com/article/opo1.html

Top