数值分析(英文版)
更新时间:2023-05-12 04:34:02 阅读量: 实用文档 文档下载
- 数值是什么意思推荐度:
- 相关推荐
第一章
Chapter 0 Foundation of Algebra and Calculus
§0 .1 Foundation of Linear Algebra1, n-dimensional vector x=(x1,x2,…,xn), y=(y1,y2,…,yn). operations: x+y, x-y, cx. inner product of two vectors (x,y) length of a vector |x| a vector space V, a subspace of V linear independent of vectors
2013-12-9
第一章
2, Matrix
a11 a21 A am1
a12 a22 am 2
a1n a2 n amn
m rows, n columns operations: A+B, A-B, cA, AB, AT |A| (determinant of square matrix ) singular or nonsingular matrix A-1 inverse of a square matrix How to decide whether A is invertible or not? How to calculate A-1 ?2013-12-9 2
第一章
(Continue) some special matrices (1) unit matrix (2) diagonal matrix (3) symmetric matrix (4) orthogonal matrix (5) triangular matrix (upper or lower) (6) elementary matrix 3, Eigenvalue and Eigenvector of matrix
2013-12-9
第一章
3, Eigenvalue and Eigenvector of matrix Eigenpolynomial of matrix Eigenvalue of matrix Eigenvector of matrix similar matrix diagonalization of matrix 4, Quadratic form quadratic form canonical form of matrix positive (negative) definite matrix half positive definite matrix2013-12-9 4
第一章
Exercise 1, x=(2,1,4)T, y=(1,1,1) T, please show x+2y, 3x-4y, |x-y|, (2y,x). 2, 2 1 1 2 1 3 2 1 A 0 3 2 , B 0 4 ,C . 4 1 0 4 1 0 1 1
Please give AT, 2A, |A|, A-1, Rank(A), BC,AB-B.
2013-12-9
第一章
3, Please describe Cramer Rule about the linear system of equations. 4, Solve the following linear system of equations x1 2 x2 x3 3 4 x1 x2 3 x3 5 x 2 x 2 x 1 2 3 1and
2 x1 x2 x3 3 4 x1 x2 3 x3 5 x x 1 2 3
5,
1 3 4 3 2 4 2 1 A , B 0 1 3 , C 2 6 2 . 1 1 0 0 2 4 2 3 6
Please show all eigenvalues and eigenvectors of 2013-12-9 them.
第一章
6,
1 3 0 A 3 6 1 . 0 1 2
Please change A into canonical form, and decide whether A is positive definite or not. 7, 1 a 0 A a 1 0 . 0 0 1
Please show the condition under which A is positive definite.2013-12-9 7
第一章
§0.2 Foundation of Calculus1, derivative and differentiation derivative of elementary functions (sinx)’, (cosx)’,(xa)’,(lnx)’,(ax)’ derivative of composite function (sin2x+a2x)’ (tan(1+x2))’ (f(g(x)))’ high order derivative of functions the Taylor’s expansion of a function f(x)f ''( x*) f ( n ) ( x*) f ( x) f ( x*) f '( x*)( x x*) ( x x*) 2 ( x x*) n Rn ( x) 2! n!
show the Taylor’s expansion the following functions about the point x=0: sinx, 1/(1+x),ex2013-12-9 8
第一章
§1 .2 Foundation of Calculus1, multivariables function and its partial derivative f ( x, y )
f ( x, y ) z=f(x,y), we can define x , y show the partial derivatives of the following functions. z=x2+y2, z=x2y2+sinxy, z=1/(x+y) The Taylor’s expansion of two variables function f ( x*, y*) f ( x*, y*) f ( x, y ) f ( x*, y*) ( x x*) ( y y*) R( x, y ) x y2013-12-9 9
第一章
What is a Taylor series?Some examples of Taylor series which you must have seenx2 x4 x6 cos(x) 1 2! 4! 6!
x3 x5 x7 sin(x) x 3! 5! 7!x2 x3 e 1 x 2! 3!x
2013-12-9
第一章
General Taylor SeriesThe general form of the Taylor series is given by f x 2 f x 3 f x h f x f x h h h 2! 3!
provided that all derivatives of f(x) are continuous and exist in the interval [x,x+h]What does this mean in plain English?As Archimedes would have said, “Give me the value of the function at a single point, and the value of all (first, second, and so on) its derivatives at that single point, and I can give you the value of the function at any other point”2013-12-9 11
第一章
Example—Taylor SeriesFind the value of f 6 given that f 4 125, f 4 74, f 4 30, f 4 6 and all other higher order derivatives of f x at x 4 are zero. Solution:h2 h3 f x h f x f x h f x f x 2! 3! x 4 h 6 4 2
2013-12-9
第一章
Example (cont.)Solution: (cont.) Since the higher order derivatives are zero,22 23 f 4 2 f 4 f 4 2 f 4 f 4 2! 3! 2 2 23 f 6 125 74 2 30 6 2! 3! 125 148 60 8
341
Note that to find f 6 exactly, we only need the value of the function and all its derivatives at some other point, x 4 in this case2013-12-9 13
第一章
Derivation for Maclaurin Series for exDerive the Maclaurin seriesx2 x3 e 1 x 2! 3!x
The Maclaurin series is simply the Taylor series about the point x=0h2 h3 h4 h5 f x h f x f x h f x f x f x f x 2! 3! 4 5 h2 h3 h4 h5 f 0 h f 0 f 0 h f 0 f 0 f 0 f 0 2! 3! 4 5
2013-12-9
第一章
Derivation (cont.)Sincef ( x) e x , f ( x) e x , f ( x) e x , ... , f n ( x) e x
and
f n (0) e 0 1
the Maclaurin series is then(e 0 ) 2 (e 0 ) 3 f ( h ) (e ) (e ) h h h ... 2! 3! 1 1 1 h h 2 h3 ... 2! 3!0 0
So,x 2 x3 f ( x) 1 x ... 2! 3!2013-12-9 15
第一章
Error in Taylor SeriesThe Taylor polynomial of order n of a function f(x) wi
th (n+1) continuous derivatives in the domain [x,x+h] is given byh2 hn n f x h f x f x h f ' ' x f x Rn x 2! n!
where the remainder is given by x h n 1 f n 1 c R x n
(n 1)!
wherex c x h
that is, c is some point in the domain [x,x+h]2013-12-9 16
第一章
Example—error in Taylor seriesThe Taylor series forx
e x at point x 0 is given by
x 2 x3 x 4 x5 e 1 x 2! 3! 4! 5!
It can be seen that as the number of terms used increases, the error bound decreases and hence a better estimate of the function can be found. How many terms would it require to get an approximation of e1 within a magnitude of true error of less than 10-6.
2013-12-9
第一章
Example—(cont.)Solution: Using n 1 terms of Taylor series gives error x h n 1 f n 1 c x 0, h 1, f ( x) e x Rn x n 1 ! bound of
0 1 n 1 f n 1 c Rn 0 n 1 ! 1 n 1 e c n 1 ! Sincex c x h 0 c 0 1 0 c 11 e Rn 0 (n 1)! (n 1)!18
2013-12-9
第一章
Example—(cont.)Solution: (cont.) So if we want to find out how many terms it would 1 require to get an approximation of e within a 10 6 , magnitude of true error of less thane 10 6 ( n 1)!
(n 1)! 10 6 e(n 1)! 10 6 3
n 9
So 9 terms or more are needed to get a true error less than 10 62013-12-9 19
正在阅读:
数值分析(英文版)05-12
磷化工概论-109-19
未来乳业的新主角05-11
最新全国计算机一级考试选择题试题与详细答案(免费)资料03-11
活法摘录——稻盛和夫05-31
家乡的油菜花作文450字06-26
初中日记200字大全02-21
静电喷塑中常见故障分析03-11
调查报告 饮料调查报告3篇04-17
管理学复习题06-30
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- 数值
- 英文版
- 分析