工程材料课后布置习题的参考解答

更新时间:2024-06-08 10:41:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

科学出版社《工程材料》(杨瑞成等编著,2012.1)

课后布置习题(参课件)的参考解答

第1章 机械工程对材料性能的要求

1名词解释:参考书上相应部分。

3机械零件在工作条件下可能承受哪些负荷?这些负荷对零件产生什么作用?

工程构件与机械零件(以下简称零件或构件)在工作条件下可能受到力学负荷、热负荷或环境介质的作用。有时只受到一种负荷作用,更多时候将受到两种或三种负荷的同时作用。 在力学负荷作用条件下,零件将产生变形,甚至出现断裂;

在热负荷作用下,将产生尺寸和体积的改变,并产生热应力,同时随温度的升高,零件的承载能力下降;

环境介质的作用主要表现为环境对零件表面造成的化学、电化学腐蚀及摩擦磨损等作用。 4常用机械工程材料按化学组成分为几个大类?各自的主要特征是什么? 机械工程中使用的材料常按化学组成分为四大类: 金属材料、高分子材料、陶瓷材料和复合材料。

材料 结合键 主要特征 优点:良好的综合力学性能(强度和塑性等)、导电性、导金属材料 金属键 热性和工艺性能等,并呈特有的金属光泽。 缺点:在特别高的温度以及特殊介质环境中,由于化学稳定性问题,一般金属材料难以胜任。 优点:具有较高弹性、耐磨性、绝缘性、抗腐蚀性及重量轻等优良性能,而且易于成形。 缺点:耐热差,尺寸稳定性低,强度硬度低,易老化。 优点:熔点高、硬度高、化学稳定性高,具有耐高温、耐腐蚀、耐磨损、绝缘和热膨胀系数小的特点。 缺点:脆性大、不易加工成形。 优点:具有单一材料所不具备的优异性能,可按需要进行人为设计、制造。 缺点:价格昂贵 提示:按强度、塑性等力学性能,化学稳定性、高温性能、电学、热学等方面特性回答。 7常用哪几种硬度试验?如何选用?硬度试验的优点何在? 硬度试验 布氏硬度 选用 常用于退火状态下的钢材、铸铁、有色金属及调质钢的硬度测试(即材料硬度相对偏中低水平的)。 不适宜于测量硬度较高的零件、成品零件及薄而小的零件。 可测量较高硬度的材料(如一般淬火处理的钢或工具钢),也可测量硬度不太高的材料(如调质钢)等,并且测量中压痕小、不易损伤零件表面。 组织粗大且不均匀的材料,测量结果不够准确、重复性差。 维氏硬度多用于薄工件或薄表面硬化层的硬度测试。 显微硬度用于材料微区硬度(如单个晶粒、夹杂物、某种组成相等)的测试。 莫氏硬度用于陶瓷和矿物的硬度测定。 高分子材料 共价键和 分子键 离子键或 共价键 陶瓷材料 复合材料 多种键复合 洛氏硬度 维氏硬度 其他 邵氏硬度常用于橡胶、塑料的硬度测定。 硬度试验有以下优点:

? 试验设备简单,操作迅速方便; ? ? ? ?

试验时一般不破坏成品零件,因而无需加工专门的试样,试验对象可以是各类工程材料和各种尺寸的零件;

硬度作为一种综合的性能参量,与其它力学性能如强度、塑性、耐磨性之间的关系密切,由此可按硬度估算强度而免做复杂的拉伸实验(强韧性要求高时则例外); 材料的硬度还与工艺性能之间有联系,如塑性加工性能、切削加工性能和焊接性能等,因而可作为评定材料工艺性能的参考;

硬度能较敏感地反映材料的成分与组织结构的变化,故可用来检验原材料和控制冷、热

加工质量。

(提示:设备简单;试样方便(无需专门加工);在一定范围可与力学性能、工艺性能建立联系;工程中常用)

11 下列各种工件或钢材可用那些硬度试验法测定其硬度值? (1)车刀(钢制)、锉刀——用洛氏硬度HRC;

(2)供货状态的各种碳钢钢材——用布氏硬度HBS或HBW; (3)硬质合金刀片——用维氏硬度HV或洛氏硬度HRA;

(4)铝合金半成品——用布氏硬度HBS或HBW;

(5)耐磨工件的表面硬化层——用维氏硬度HV或洛氏硬度HRA。

第2章 材料的组成和内部结构特征

1 名词解释:参考书上相应部分。

9在铁碳合金中主要的相是哪几个?两个最主要的恒温反应是什么?其生成的组织是什

么?它们的性能有什么特点?

答:铁碳合金相图中共有五个基本相,即液相L、铁素体相F、高温铁素体相δ、奥氏体相A及渗碳体相Fe3C。

在ECF水平线(1148℃)发生共晶转变L4.3→A2.11+Fe3C。转变产物为渗碳体基体上分布着一定形态、数量的奥氏体的机械混合物(共晶体),称为莱氏体,以符号“Ld”表示,性能硬而脆。

在PSK线(727℃)发生共析转变A0.77→F0.0218+Fe3C。转变产物为铁素体基体上分布着一定数量、形态的渗碳体的机械混合物(共析体),称为珠光体,以符号“P”表示。珠光体的强度较高,塑性、韧性和硬度介于渗碳体和铁素体之间。

10根据铁碳相图对铁碳合金进行分类,试分析不同铁碳合金成分、室温平衡组织及性能之间关系。

答:由Fe—C相图可将铁碳合金分为以下几类:

①工业纯铁:wC≤0.0218%, 组织为F+Fe3CIII

亚共析钢:0.0218%

亚共晶(白口)铸铁:2.11%

由F和Fe3C两相构成的铁碳合金的室温平衡组织,随着含碳量的增加其变化规律为: F(+少量Fe3CIII)→F+P→P→P+ Fe3CII(网状)→P+ Fe3CII+Ld’ →Ld’ →Ld’+Fe3CI 随着含碳量的增加,组织组成发生相应的变化,硬度增加,塑韧性降低;强度的变化是先增加后降低,大约在含碳量为0.9%时为最大值。合金中组织的不同引起的性能差异很大,这与Fe3C的存在形式密切相关,当Fe3C与F(基体)构成片层状的P组织时,合金的强度和硬度均随含碳量增加而增加,而当Fe3C以网状分布在晶界上时,不仅使塑韧性降低,也使强度降低;当Fe3C以粗大形态存在时(Ld’或Fe3CI),塑韧性和强度会大大降低。 13 从铁一碳相图的分析中回答:

(1)随碳质量百分数的增加,硬度、塑性是增加还是减小?

答:随着含碳量的增加,硬度增加,塑韧性降低;因为随含碳量增加Fe3C数量越来越多。 (2)过共析钢中网状渗碳体对强度、塑性的影响怎样? 答:对基体产生严重的脆化,使强度和塑性下降。

(3)钢有塑性而白口铁几乎无塑性?

答:钢是以塑韧的F为基体,而白口铁是以硬脆的Fe3C为基体,所以钢有塑性,而白口铁几乎无塑性。

(4)哪个区域熔点最低?哪个区域塑性最好? 答:共晶白口铸铁熔点最低。A区塑性最好。 14 根据Fe-Fe3C相图,说明产生下列现象的原因: (1)含碳量为1.0%的钢比含碳量为0.5%的钢硬度高;

答:因为钢的硬度随含碳量的增加(即硬相Fe3C数量增加)而增加。

(2)在室温下含碳量0.8%的钢其强度比含碳量1.2%的钢强度高;

答:含碳量超过0.9%后,Fe3C以网状分布在晶界上,从而使钢的强度大大下降。 (3)低温莱氏体的塑性比珠光体的塑性差;

答:因为低温莱氏体是由粗大、脆性的共晶Fe3C、Fe3CII和珠光体组成,因此比起但纯的珠光体来说,其塑性要差。

(4)在1100℃,含碳量0.4%的钢能进行锻造,含碳量4.0%的生铁不能锻造;

答:因为在1100℃,含碳量0.4%的钢处于A单相奥氏体区,而含碳量4.0%的生铁处于A+ Fe3CII+Ld’亚共晶区;

(5)钢铆钉一般用低碳钢制成;

答:钢铆钉需要有良好的塑韧性,另外需要兼有一定的抗剪切强度,因而使用低碳钢制成; (6)钳工锯0.8%C、1.0%C等钢材比锯0.1%C、0.2%C钢材费力,锯条容易磨损; 答:0.8%C、1.0%C、1.2%C中的含碳量高,组织中的Fe3C的含量远比0.1%C、0.2%C钢中的含量高,因此比较硬,比较耐磨,较难以锯削;

(7)钢适宜于通过压力加工成形,而铸铁适宜于铸造成型;

答:铸铁的熔点低,合金易熔化、铸造过程易于实施,故而宜于铸造成型;钢的含碳量比铸铁低,通过加热可进入单相固溶体区,从而具有较好的塑性、较低的变形抗力,不易开裂,因此适宜于压力加工成形。

第3章 工程材料成形过程中的行为与性能变化

1 名词解释:参考书上相应部分。

3 金属晶粒大小对机械性能有什么影响?细化晶粒的措施有哪些?

答:机械工程中应用的大多数金属材料是多晶体。同样的金属材料在相同的变形条件下,晶粒越细,晶界数量就越多,晶界对塑性变形的抗力越大,同时晶粒的变形也越均匀,致使强度、硬度越高,塑性、韧性越好。因此,在常温下使用的金属材料,一般晶粒越细越好。

晶粒度的大小与结晶时的形核率N和长大速度G有关。形核率越大,在单位体积中形成的晶核数就越多,每个晶粒长大的空间就越小,结晶结束后获得的晶粒也就越细小。同时,如果晶体的长大速度越小,则在晶体长大的过程中可能形成的晶粒数目就越多,因而晶粒也越小。细化晶粒的方法有:

1)增大过冷度——提高形核率和长大速度的比值,使晶粒数目增大,获得细小晶粒; 2)加入形核剂——可促进晶核的形成,大大提高形核率,达到细化晶粒的目的;

3)机械方法——用搅拌、振动等机械方法迫使凝固中的液态金属流动,可以使附着于铸型壁上的细晶粒脱落,或使长大中的树枝状晶断落,进入液相深处,成为新晶核形成的基底,因而可以有效地细化晶粒。

5 金属铸锭通常由哪几个晶区组成?它们的性能特点如何?

答:金属铸锭的宏观组织由三个晶区组成的,由外至里分别是细等轴晶粒区、柱状晶粒区和中心等轴晶粒区。其性能特点如下:

(1)表面细等轴晶区:晶粒细小,有较高的致密度,其力学性能也较好。但因其厚度太小,往往在随后的机械加工过程中去除,因而对铸锭总体性能的影响可以忽略不计。

(2)柱状晶区:柱状晶区的各个晶粒平行地向中心长大,彼此互相妨碍,不能产生发达的分枝,结晶后的组织比较致密。但晶粒较粗大,晶粒间交界处容易聚集杂质形成脆弱区,受力时容易沿晶界开裂。因此,柱状晶的力学性能具有较明显的各向异性。一般铸件中应尽量限制出现较大的柱状晶区。

(3)中心等轴晶区:等轴晶分枝比较发达,凝固后容易形成显微缩松,晶体致密度较低,但杂质在等轴晶间的分布比较均匀,不会出现明显的各向异性,铸锭晶间的缩松还可在后续的压力加工过程中焊合。因此,对于铸锭和一般使用条件下的铸件,希望获得等轴晶组织。 7. 室温下,对一根铁丝进行反复弯曲—拉直试验,经过一定次数后,铁丝变得越来越硬,试分析原因。如果将这根弯曲—拉直试验后的铁丝进行一定温度的加热后,待冷至室温,然后再试着弯曲,发现又比较容易弯曲了,试分析原因。

答:铁丝进行反复弯曲—拉直的过程是塑性变形的过程,在经过一定次数后铁丝产生了加工硬化,因此强度硬度越来越高;若进行一定温度的加热后,变形的铁丝发生了回复、再结晶,加工硬化消除,硬度降低,所以又比较容易弯曲了。

8什么是金属的回复和再结晶过程?回复和再结晶过程中金属的组织性能发生了哪些变化?

答:回复:塑性变形后的金属加热时,开始阶段由于加热温度不高,原子获得的活动能力较小,只能进行短距离的扩散,金属的显微组织仍保持纤维组织,力学性能也不发生明显的变化。在这一阶段内,原子的短距离扩散使晶体在塑性变形过程中产生的晶体缺陷减少,晶格畸变大部分消除,材料中的残余应力基本消除,导电性和抗腐蚀能力也基本恢复至变形前的水平。

再结晶:把经历回复阶段的金属加热到更高温度时,原子活动能力增大,金属晶粒的显微组织开始发生变化,由破碎的晶粒变成完整的晶粒,由拉长的纤维状晶粒转变成等轴晶粒。该过程无相变发生,也为原子扩散导致的形核、长大过程,因此称为再结晶。金属在再结晶过程中,由于冷塑性变形产生的组织结构变化基本恢复,力学性能也随之发生变化,金属的强度和硬度下降,塑性和韧性上升,加工硬化现象逐渐消失,金属的性能重新恢复至冷塑性变形之前的状态。

9什么是加工硬化?试述金属塑性变形中发生加工硬化的原因?试分析加工硬化的利与弊。 答:加工硬化:金属在塑性变形过程中,随着变形程度增加,强度、硬度上升,塑性、韧性下降,这种现象称加工硬化(也叫形变强化)。

加工硬化的原因:金属变形过程主要是通过位错沿着一定的晶面滑移实现的。在滑移过程中,位错密度大大增加,位错间又会相互干扰相互缠结,造成位错运动阻力增加,同时亚晶界的增多,从而出现加工硬化现象。

利与弊:加工硬化加大了金属进一步变形的抗力,甚至使金属开裂,对压力加工产生不利的影响,因此需要采取措施加以软化,恢复其塑性,以利于继续形变加工。但是,对于某些不能用热处理方法强化的合金,加工硬化又是一种提高其强度的有效的强化手段。加工硬化还能提高零件应力集中部位的承载能力和安全性,以及保证板材的(冲压)成形。

第4章 改善材料性能的热处理、合金化及改性

1 名词解释:参考书上相应部分。

3 说明共析钢过冷奥氏体在不同温度等温冷却所得的转变组织及其性能的主要特征。

A1~550℃为珠光体转变区(P区),奥氏体分解为铁素体和渗碳体相间的片层状组织,它是靠Fe与C原子长距离扩散迁移,铁素体和渗碳体交替形核长大而形成的,为全扩散型转变。稍低于A1的等温转变产物的片层间距较大。而随着转变温度下降,过冷度加大,过冷奥氏体稳定性变小,孕育期变短,转变产物也变细。P区产物按转变温度的高低分别称为珠光体P(A1~650℃)、索氏体S(650~600℃)和屈氏体T(600~550℃)。这三种组织仅片层粗细不同,并无本质差异,片层越细,硬度、强度越高,它们统称为珠光体类型转变组织。

从550℃到Ms的范围内,过冷奥氏体发生贝氏体转变(B区)。由于转变温度较低,Fe几乎不扩散,仅C原子作短距离扩散,故转变产物的形态、性能及转变过程都与珠光体不同,是含过饱和碳的铁素体和渗碳体的非片层状混合物,为半扩散型转变。按组织形态的不同,将贝氏体分为上贝氏体(B上)和下贝氏体(B下)。共析钢的B上在550~350℃形成,是自原奥氏体晶界向晶内生长的稍过饱和铁素体板条,具有羽毛状的金相特征,条间有小片状的Fe3C。在350~240℃形成的B下,其典型形态是呈一定角度的针片状高过饱和铁素体与其内部沉淀的超细小不完全碳化物(Fe2.4C)片粒,在光学显微镜下常呈黑色针状形态。 M区----无扩散相变,成分不变、形成极度过饱和的α固溶体(马氏体)。一般转变不完全,形成部分残余奥氏体。

板条M:Wc<0.25% ,强度高兼有一定韧性。

片状M:Wc>1.0% , 硬而脆。其碳含量之间,为混合M。

6 试说明预先热处理与最终热处理的主要区别,以及它们之间的联系。

答:预先热处理在零件加工工序的前面阶段(粗加工阶段),常用的工艺方法有退火、正火、调质。通过预先热处理获得的无成分偏析、无热加工缺陷的稳定组织,还有利于零件在最终淬火(最终热处理)时各个部分均得到同等程度的淬火效果,使零件整个截面上的力学性能均匀一致;而且还可以减少零件淬火时尺寸和形状的变化等热处理缺陷。此外,良好的预先热处理组织还可为表面硬化零件提供心部的强韧性。因此,预先热处理可以为零件的最终热处理和表面强化处理做好组织准备。

最终热处理在零件加工工序的后面阶段(精加工阶段),其作用是保证零件的最终性能(图纸要求),工艺方法主要是淬火、回火,还有化学热处理和其他表面改性处理。 8 钢淬火后为什么一定要回火?说明回火的种类及主要应用范围。 答:淬火钢一般不能直接使用,这是由于:

①零件处于高应力状态(可达300~500MPa以上),在室温下放置或使用时很易引起变形和开裂;

②淬火态(M+A′)是亚稳定状态,使用中会发生组织、性能和尺寸变化;

本文来源:https://www.bwwdw.com/article/ol56.html

Top