一元一次方程应用题分类汇集(我已整)2013.12.5

更新时间:2024-05-12 23:35:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

一元一次方程应用题分类汇集

一、一元一次方程应用题归类汇集:行程问题 , 工程问题 , 和差倍分问题(生产、做工等各类问题), 调配问题, 分配问题,配套问题 ,销售问题 增长率问题 数字问题 ,方案设计与成本分析 ,积分问题 5古典数学 , 浓度问题等。

二、列方程解应用题的一般步骤(解题思路)

(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).

(2)设—设出未知数:根据提问,巧设未知数.

(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.

(4)解——解方程:解所列的方程,求出未知数的值.

(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位) 三、具体分类

(一)行程问题——画图分析法(线段图) 解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。并且还常常借助画草图来分析,理解行程问题。

1.行程问题中的三个基本量及其关系:

路程=速度×时间 时间=路程÷速度 速度=路程÷时间 2.行程问题基本类型

(1)相遇问题: 快行距+慢行距=原距 (2)追及问题: 快行距-慢行距=原距

(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度 逆水(风)速度=静水(风)速度-水流(风)速度

水流速度=(顺水速度-逆水速度)÷2

抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.即顺水逆水问题常用等量关系:顺水路程=逆水路程.

常见的还有:相背而行;行船问题;环形跑道问题;隧道问题;时钟问题等。

常用的等量关系:

1、甲、乙二人相向相遇问题

⑴甲走的路程+乙走的路程=总路程 ⑵二人所用的时间相等或有提前量 2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题

⑴甲走的路程-乙走的路程=提前量 ⑵二人所用的时间相等或有提前量 3、单人往返

⑴ 各段路程和=总路程 ⑵ 各段时间和=总时间 ⑶ 匀速行驶时速度不变 4、行船问题与飞机飞行问题

⑴ 顺水速度=静水速度+水流速度 ⑵ 逆水速度=静水速度-水流速度

1

5、考虑车长的过桥或通过山洞隧道问题

将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。 6、时钟问题:

⑴ 将时钟的时针、分针、秒针的尖端看作一个点来研究

⑵ 通常将时钟问题看作以整时整分为起点的同向追击问题来分析。 常用数据:① 时针的速度是0.5°/分 ② 分针的速度是6°/分 ③ 秒针的速度是6°/秒

例1:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

(1)慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇? (2)两车同时开出,相背而行多少小时后两车相距600公里?

(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里? (4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车? (5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车? (此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。) 解:1、设快车开出x小时后相遇,依题意得 480=90(1+x)+140X 解得x=39/23小时

2、设x小时后两车相距600km,依题意得 600-480=90x+140X 解得x=12/23小时

3、设x小时后两车相距600km,依题意得 600-480=140x-90x 解得x=2.4小时

4、设x小时后快车追上慢车,依题意得 480=(140-90)x 解得x=9.6小时

5、设x小时后快车追上慢车,依题意得 480+90*1=(140-90)x

解得x=11.4小时

2、人从家里骑自行车到学校。若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米? 解:设家到学校y千米,依题意得

y15y15???解得y=45/4千米 1560960答:家到学校的距离为45/4千米

3、某人计划骑车以每小时12千米的速度由A地到B地,这样便可在规定的时间到达B地,但他因事将原计划的时间推迟了20分,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B地,求A、B两地间的距离。

2

解:方法一:设由A地到B地规定的时间是 x 小时,则

12x=15??x???204??? x=2 12 x=12×2=24(千米) 6060?方法二:设由A、B两地的距离是 x 千米,则 (设路程,列时间等式)

xx204??? x=24 答:A、B两地的距离是24千米。 12156060温馨提醒:当速度已知,设时间,列路程等式;设路程,列时间等式是我们的解题策略。 3、甲、乙两人同时同地同向而行,甲的速度是4千米/小时,乙的速度比甲慢,半小时后,甲调头往回走,再走10分钟与乙相遇,求乙的速度。

解:半小时=1/2小时,10分钟=1/6小时。 设乙的速度是每小时x千米,依题意得

11(4?x)?(4?x)解得x=2 62答:乙的速度是每小时2千米。

4、甲、乙两人同时从A地前往相距25.5千米的B地,甲骑自行车,乙步行,甲的速度比乙的速度的2倍还快2千米/时,甲先到达B地后,立即由B地返回,在途中遇到乙,这时距他们出发时已过了3小时。求两人的速度。 解:设乙的速度是 x 千米/时,则

3x+3 (2x+2)=25.5×2 ∴ x=5 2x+2=12 答:甲、乙的速度分别是12千米/时、5千米/时。

5、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。汽车速度是60千米/时,步行的速度是5千米/时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行的这部分人。出发地到目的地的距离是60千米。问:步行者在出发后经过多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计) 老师提醒:此类题相当于环形跑道问题,两者行的总路程为一圈

即 步行者行的总路程+汽车行的总路程=60×2

解:设步行者在出发后经过x小时与回头接他们的汽车相遇,则 5x+60(x-1)=60×2

6、休息日我和妈妈从家里出发一同去外婆家,我们走了1小时后,爸爸发现带给外婆的礼

品忘在家里,便立刻带上礼品以每小时6千米的速度去追我们,如果我和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问爸爸能在我和妈妈到外婆家之前追上我们吗? (提示:此题为典型的追击问题) 解:设爸爸用x小时追上我们,则 6x=2x+2×1

解得 x=0.5 0.5小时<1小时45分钟 答:能追上。

7、甲骑自行车从A地到B地,乙骑自行车从B到A地,两人都匀速前进,已知两人在上午

8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A、B两地间的路程。

解:设A、B两地间的路程是 x 千米,则

方法一:

x?36x?36? 243

方法二:x+36=36×2×2 解,得 x=108 答:A、B两地间的路程是108千米。

8、甲乙两人在400米的环形跑道上跑步,从同一起点同时出发,甲的速度是5米/秒,乙的速度是3米/秒。(1)如果背向而行,两人多久第一次相遇?(2)如果同向而行,两人多久第一次相遇?

解:(1).背向而行,设为X秒,两人合计跑400米,依题意得 5X+3X=400 解得X=50秒

(2).同向 设为Y秒,甲必须比乙多跑一圈才能相遇,依题意得 5Y-3Y=400 解得Y=200秒

答:如果背向而行,两人50秒第一次相遇。如果同向而行,两人200秒第一次相遇。 9、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。行人的速度是每小时3.6km,骑自行车的人的速度是每小时10.8km。如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。⑴ 行人的速度为每秒多少米? ⑵ 这列火车的车长是多少米?

老师提醒:将火车车尾视为一个快者,则此题为以车长为提前量的追击问题。 等量关系: ① 两种情形下火车的速度相等 ② 两种情形下火车的车长相等

在时间已知的情况下,设速度列路程等式的方程,设路程列速度等式的

方程。

解:⑴ 行人的速度是:3.6km/时=3600米÷3600秒=1米/秒

骑自行车的人的速度是:10.8km/时=10800米÷3600秒=3米/秒

⑵ 方法一:设火车的速度是x米/秒,则 26×(x-3)=22×(x-1) 解得x=4

方法二:设火车的车长是x米,则

x?22?1x?26?3? 222610.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车

尾相离经过16秒,已知客车与货车的速度之比是3∶2,问两车每秒各行驶多少米?

解:设客车每秒行驶3x米,则货车每秒行驶2x米,依题意得 3x×16+2x×16=200+280 解得x=6

客车的速度为3x6=18 货车的速度为2x6=12

答:客车和货车每秒分别行驶18米、12米。

11、一列火车长150米,以每秒15米的速度通过600米的隧道,从火车进入隧道口算起,到这列火车完全通过隧道所需时间是【 】

(A)60秒 (B)50秒 (C)40秒 (D)30秒

老师提醒:将车尾看作一个行者,当车尾通过600米的隧道再加上150米的车长时

所用的时间,就是所求的完全通过的时间,哈哈!你明白吗?

解:时间=(600+150)÷15=50(秒) 选B。

12、一列火车匀速行驶,经过一条长300m的隧道需要20s的时间。隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s,根据以上数据,你能否求出火车的长度?火车的长度是多少?若不能,请说明理由。

老师解析:只要将车尾看作一个行人去分析即可,

4

前者为此人通过300米的隧道再加上一个车长,后者仅为此人通过一个车长。 此题中告诉时间,只需设车长列速度关系,或者是设车速列车长关系等式。

解:方法一:设这列火车的长度是x米,根据题意,得

300?xx? x=300 答:这列火车长300米。 2010方法二:设这列火车的速度是x米/秒,

根据题意,得20x-300=10x x=30 10x=300 答:这列火车长300米。

13、甲、乙两人相距5千米,分别以2千米/时的速度相向而行,同时一只小狗以12千米/时的速度从甲处奔向乙,遇到乙后立即掉头奔向甲,遇到甲后又奔向乙??直到甲、乙相遇,求小狗所走的路程。

注:此为二题合一的题目,即独立的二人相遇问题和狗儿的独自奔跑。只是他们的开始与结束时间是一样的,

以此为联系,使本题顿生情趣,为诸多中小学资料所采纳。 解:设甲、乙两人相遇用 x 时,则2x+2x=5 x?55 12x?12??15(千米) 44答:小狗所走的路程是15千米。

14、在8点和9点间,何时时钟分针和时针重合?何时时钟分针和时针成直角?何时时钟分针和时针成平角? 解:设X分钟后重合 开始时相距240°(从12到8) 分针每分钟走6°,时针每分钟走0.5°(360/60;30/60) 6X=0.5X+240解得X=480/11时重合 即8点43又7/11 同理

平角:6X+180=0.5X+240解得X=120/11 8点10又10/11分 直角:6X+90=0.5X+240解得X=300/11 8点27又3/11分。 或6X-90=0.5X+240解得X=60(不合舍去)

15、在6点和7点之间,什么时刻时钟的分针和时针重合?

老师解析:6:00时分针指向12,时针指向6,此时二针相差180°,

在6:00~7:00之间,经过x分钟当二针重合时,时针走了0.5x°分针走了6x°

以下按追击问题可列出方程,不难求解。

解:设经过x分钟二针重合,则6x=180+0.5x 解得x?3608?32 111116、在3时和4时之间的哪个时刻,时钟的时针与分针:⑴重合;⑵ 成平角;⑶成直角;

解:⑴ 设分针指向3时x分时两针重合。x?5?3?答:在3时1611804x x??16 1211114分时两针重合。 11⑵ 设分针指向3时x分时两针成平角。x?5?3?答:在3时4911x?60?2 x?49 12111分时两针成平角。 11 5

⑶设分针指向3时x分时两针成直角。x?5?3?答:在3时3218x?60?4 x?32 12118分时两针成直角。 11 行船问题

流水问题是研究船在流水中的行程问题,因此,又叫行船问题。 流水问题有如下两个基本公式:

顺水速度=船速+水速 (V顺=V静+V水) 逆水速度=船速-水速 (V顺=V静-V水)

例:17 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?

解:设船的速度为x 千米/每时,依题意得 2(x+3)=3(x-3) 解得x=15

码头之间的距离为2 x(15+3)=36(千米)

答:两码头的之间的距离是36千米。

18、一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间的距离。 解:设无风时的速度为x千米/小时,依题意得

(2?50)(x?24)?3(x?24) 60解得x=840

3( x-24)=3x (840-24)=2448

答:飞机速度是每小时840千米,距离是2448千米

19、某船从A码头顺流航行到B码头,然后逆流返行到C码头,共行20小时,已知船在静水中的速度为7.5千米/时,水流的速度为2.5千米/时,若A与C的距离比A与B的距离短40千米,求A与B的距离。

解:设A与B的距离是x千米,(请你按下面的分类画出示意图,来理解所列方程)

x40??20 解得x=120

7.5?2.57.5?2.5xx?x?40??20 解得x=56 ② 当C在BA的延长线上时,

7.5?2.57.5?2.5① 当C在A、B之间时,

答:A与B的距离是120千米或56千米。

(二)工程问题:

(1)、工程问题中的三个量及其关系为:工作总量=工作效率×工作时间 工作总量=人均工作效率×工作时间×人数

(2).经常在题目中未给出工作总量时,设工作总量为单位1。即完成某项任务的各工作量的和=总工作量=1.

工程问题常用等量关系:先做的+后做的=完成量.

例1、 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,

6

甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程? 解:设乙还要X天才能完成全部工程,依题意得

x11?(?)?3?1 121512解得X=6.6

答:乙还要6.6天才能完成全部工程

2.某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?

解:设再做x天可完成工程的5/6,可得: 4115?(?)x? 1616126解得x=4

答:再做4天后可完成工程的六分之五。

3、甲、乙两个工程队合做一项工程,乙队单独做一天后,由甲、乙两队合做两天后就完成了全部工程.已知甲队单独做所需天数是乙队单独做所需天数的多少天?

2,问甲、乙两队单独做,各需3巧解:设乙队每天完成的工作量为x,那么甲队每天完成的工作量为,由题意得:

解得x=1/6

答:甲队单独做需9天,乙队单独做需6天。 4.已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池注满,出水管工作24小时可以将满池的水放完;如果同时打开进水管和出水管,求几小时后可以把空池注满? 解:设如果同时打开进水管和出水管,x小时后可以把空池注满,依题意得

(11-)x?1 1524解得x=40

答:如果同时打开进水管和出水管,40小时后可以把空池注满。

5、一水池有一个进水管,4小时可以注满空池,池底有一个出水管,6小时可以放完满池的水.如果两水管同时打开,那么经过几小时可把空水池灌满? 解:令水箱为1,进水管每小时注水

11 , 出水管每小时放水 , 46设两水管同时打开 , 经过x小时可把空水池灌满则由题意得 (

11-)x=1 , 解得x=12 答:经过12小时可把空水池灌满。 466、一个水池安有甲乙丙三个水管,甲单独开12h注满水池,乙单独开8h注满,丙单独开24h可排掉满池的水,如果三管同开,多少小时后刚好把水池注满水?

7

111?-)x?1 X=6 12824答:如果三管同开,6小时后刚好把水池注满水。

7.整理一批图书,由一个人做要40小时完成。现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。假设这些人的工作效率相同,具体先安排多少人工作。

解法一:设原先安排x人,依题意得, 4x+(x+2)×8=40 解得 x=2 答:原来有2个人

解法二: 设先安排x人 由题目,有 1/40*4x+1/40(x+2)*8=1 解得 x=2 答:应先安排2人

8、一项工程300人共做, 需要40天,如果要求提前10天完成,问需要增多少人?

1,设需要增x人,

40?3001 则列出方程为 ?x?300??30?1 解得 x=100

40?300解:由已知每人每天完成

答:需要增100人

9.某车间加工30个零件,甲工人单独做,能按计划完成任务,乙工人单独做能提前一天半完成任务,已知乙工人每天比甲工人多做1个零件,问甲工人每天能做几个零件?原计划几天完成?

解:设甲做X个/天,依题意得

3030?1.5?,解得X=4. xx?1原计划就是30/4=7.5天。

答:甲工人每天能做4个零件?原计划7.5天完成。

(三)和差倍分问题

(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率??”来体现。

(2)多少关系:通过关键词语“多、少、和、差、不足、剩余??”来体现。

例1:某车间加工30个零件,甲工人单独做,能按计划完成任务,乙工人单独做能提前一天半完成任务,已知乙工人每天比甲工人多做1个零件,问甲工人每天能做几个零件?原计划几天完成?

例2.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?

解:设原有X升,依题意得

(1-25%)X-40%(75%X)+1=25%x+40%(75%X)

解得X=10 答:油箱里原有汽油10公斤。

8

(四)比例问题

比例分配问题的一般思路为:设其中一份为x ,利用已知的比,写出相应的代数式。 常用等量关系:各部分之和=总量。

1、学校有电视和幻灯机共90台,已知电视机和幻灯机的台数比为2 :3,求学校有电视机和幻灯机各多少台?

2. 如果两个课外兴趣小组共有人数54人,两个小数的人数之比是4:5;如果设人数少的一组有4x人,那么人数多的一组有________人,可列方程为: ______________________

3. 甲乙两人身上的钱数之比为7:6,两人去商店买东西后,甲花去50元,乙花去60时,此时他们身上的钱数之比为3:2,则他们身上余下的钱数分别是多少?

4、某洗衣机厂生产三种型号的洗衣机共1500台,已知A、B、C三种型号的洗衣机的数量比是2:3:5,则三种型号的洗衣机各生产多少台?

5、某工厂甲、乙、丙三个工人每天生产的零件数,甲和乙的比是3:4,乙和丙的比是2:3。若乙每天所生产的件数比甲和丙两人的和少945件,问每个工人各生产多少件?

(五)劳力调配问题: 这类问题要搞清人数的变化,常见题型有:

(1)既有调入又有调出;

(2)只有调入没有调出,调入部分变化,其余不变; (3)只有调出没有调入,调出部分变化,其余不变。

例1.某厂一车间有64人,二车间有56人。现因工作需要,要求第一车间人数是第二车间人数的一半。问需从第一车间调多少人到第二车间?

解:设需从第一车间调x人到第二车间2(64-x)=56+x 解得x=24

答:需从第一车间调24人到第二车间。

例2.甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。

分析:如果从甲车间调100人到乙车间,这时两车间人相等.设乙车间x人,则甲车间x+200人

解:设乙车间x人,则甲车间(x+200)人,依题意得 6(x-100)=x+200+100 解得x=150

答:甲乙车间的人数分别为350人、150人

3、甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下的人数是原乙队人数的一半还多15人,求甲、乙两队原有人数各多少人?

解设乙队有X人,则甲有2X人 ,依题意得 2X-12=1/2X+15 解得X=18 甲:18X2=36(人) 答:甲队有36人,乙队有18人

9

(六)分配问题:

例1、.学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。求房间的个数和学生的人数。

解:设有x间 ,依题意得

9(x-2)=8x+12 解得 x=30 所以宿舍30间,学生8 x 30+12=252(人)

答:房间有30间,学生有252人。

2.学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,问共有多少学生,多少汽车? 解:设有X辆汽车 ,依题意得

45X+28=50(X-1)-12

解得X=18 汽车=18辆 学生=45 X 18+28=838(个)

答:共有838个学生,18辆汽车。

3、有一些相同的房间需要粉刷,一天3名师傅去粉刷8个房间,结果有40㎡墙面未来得及刷;同样的时间内5名徒弟粉刷了9个房间的墙面。每名师傅比徒弟一天多刷30㎡的墙面。求每个房间需要粉刷的墙面面积是多少平方米?

解:设师傅一天粉刷x平方米,徒弟一天粉刷(x-30)平方米 则一天3名师傅粉刷3x平方米,5名徒弟粉刷5(x-30)平方米 列方程 (3x+40)/8=5(x-30)/9 解得 x=120 每个房间需要粉刷的面积(3x120+40)/8=50(平方米) 答:每个房间需要粉刷的墙面面积是50平方米。

(七)配套问题:这类问题的关键是找对配套的两类物体的数量关系(比值)。

1.某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母) 2.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?

3.某车间加工机轴和轴承,一个工人每天平均可加工15个机轴或10个轴承。该车间共有80人,一根机轴和两个轴承配成一套,问应分配多少个工人加工机轴或轴承,才能使每天生产的机轴和轴承正好配套。

4.某队有45人参加挖土和运土劳动每人每天挖土4方或运土6方应该怎样分配挖土和运土的人数才能书每天挖出的土?

5.包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,将两张圆形铁片与和一张可配套成一个密封圆桶,问如何安排工人生产圆形或长方形铁片能合理地将铁片配套?

6.某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净。

7.某厂生产一批西装,每2米布可以裁上衣3件,或裁裤子4条,现有花呢240米,为了使上衣和裤子配套,裁上衣和裤子应该各用花呢多少米?

10

(八)年龄问题:

例1:甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是几岁?

2、小华的爸爸现在的年龄比小华大25岁,8年后小华爸爸的年龄是小华的3倍多5岁,求小华现在的年龄。

3、三位同学甲乙丙,甲比乙大1岁,乙比丙大2岁,三人的年龄之和为41,求乙同学的年龄. x+1+x+x-2=41 x=14

4、今年哥俩的岁数加起来是55岁。曾经有一年,哥哥的岁数与今年弟弟的岁数相同,那时哥哥的岁数恰好是弟弟岁数的两倍.哥哥今年几岁? 曾经:哥哥 弟弟 曾经:哥哥 弟弟 X 今年:X+

XX X 22X X 今年:55-X X 2XX X++X =55 X=22 55-x-x= X- X=22

225.兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?

解:设x年后,兄的年龄是弟的年龄的2倍, 则x年后兄的年龄是15+x,弟的年龄是9+x.

由题意,得2×(9+x)=15+x 18+2x=15+x,2x-x=15-18∴x=-3 答:3年前兄的年龄是弟的年龄的2倍.

(点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3?年后具有相反意义的量)

(九)数字问题:

(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其

中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)则这个三位数表示为:100a+10b+c。 (2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示。

例1.有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。 2 .一个两位数,十位上的数字与个位上的数字之和为8,把这个两位数减去36后,结果恰好成为十位数字与个位数字对调后组成的两位数,求原来的两位数?

3.一个两位数,十位上的数字与个位上的数字之和为11,如果把十位上的数字与个位上的数字对调,那么得到的新数就比原数大63,求原来的两位数。

4.三位数的数字之和是17,百位上的数字与十位上的数字的和比个位上的数大3,如把百位上的数字与个位上的数字对调,所得的新数比原数大495,求原数.

5.有一个两位数,它的十位上的数字比个位上的数字小3,十位上的数字与个位上的数字之

11

和等于这个两位数的

1,求这个两位数。 4

13579

1113151719

21232527296.将连续的奇数1,3,5,7,9?,排成如下的数表:

3133353739(1)十字框中的五个数的平均数与15有什么关系?

(2)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于315吗?若能,请求出这五个数;若不能,请说明理由.

(十)比赛积分问题:

1、某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。已知某人有5道题未作,得了103分,则这个人选错了几道题?

2、某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?

3、小明在一次篮球比赛中,共投中15个球(其中包括2分球和3分球),共得34分,则小明共投中2分球和3分球各多少个?

(十一)销售问题

(1)销售问题中常出现的量有:进价(或成本)、售价、标价(或定价)、利润等。 (2)利润问题常用等量关系:

商品利润=商品售价-商品进价=商品标价×折扣率-商品进价

商品售价-商品进价商品利润商品进价商品利润率=商品进价×100%=×100% (3)商品销售额=商品销售价×商品销售量

商品的销售利润=(销售价-成本价)× 销售量

(4)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.即商品售价=商品标价×折扣率.

例.1、 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利

15元,这种服装每件的进价是多少? 2、某商品的销售价格每件900元,为了参加市场竞争,商店按售价的九折再让利40元销售,此时仍可获利10%,此商品的进价是多少元?

3、某商店在同一时间内以每件60元的价格卖出2件衣服,其中一件盈利25%,另一件亏损25%,则卖这2件衣服是盈利还是亏损了,还是不盈不亏?

4.某件商品进价为800元,出售时标价为1200元,现准备打折出售该商品,但要保证利润率

12

不低于5%,则最多可打几折?

5、某商品进价1500元,提高40%后标价,若打折销售,使其利润率为20%,则此商品是按几折销售的?

6、一商场把彩电按标价的九折出售,仍可获利20%,如果该彩电的进货价是2400元,那么彩电的标价是多少元?

7.商店里有种型号的电视机,每台售价1200元,可盈利20%,现有一客商以11500元的总价购买了若干台这咱型号的电视机,这样商店仍有15%的利润,问客商买了几台电视机?

8、 现对某商品降价10%促销,为了使销售总金额不变,销售量要比按原价销售时增加百分之几?

(十二) 储蓄问题

1.顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率. 2.储蓄问题中的量及其关系为:

利息=本金×利率×期数 本息和=本金+利息

利率?利息本金×100% 利息税=利息×税率(20%)

例1. 某同学把250元钱存入银行,整存整取,存期为半年。半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税)

2.莉莉的叔叔将打工挣来的25000元钱存入银行,整存整取三年,年利率为3.24%,三年后本金和利息共有 元(不计利息税)

3.国家规定:存款利息税=利息×20%,银行一年定期储蓄的年利率为1.98%.小明有一笔一年定期存款,如果到期后全取出,可取回1219元。求小明的这笔一年定期存款是多少元?

(十三)增长率问题:

1.某化肥厂去年生产化肥3200吨,今年计划生产3600吨,今年计划比去年增产 % 2.某加工厂有出米率为70%的稻谷加工大米,现在加工大米100公斤,设要这种大米x公斤,则列出的正确的方程是 。。 3.某印刷厂第三季度印刷了科技书籍50万册,而第四季度印刷了58万册,求季度的增长率是多少?

4.两个班组工人,按计划本月应共生产680个零件,实际第一组超额20%、第二组超额15%完成了本月任务,因此比原计划多生产118个零件。问本月原计划每组各生产多少个零件? 5.甲、乙两厂去年完成任务的112%和110%,共生产机床4000台,比原来两厂任务之和超产400台,问甲厂原来的生产任务是多少台?

6.民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超过部分每千克按飞

13

机票价的1.5%购买行李票。一名旅客带了35千克行李乘机,机票连同行李费共付了1323元,求该旅客的机票票价。

7.某村去年种植的油菜籽亩产量达150千克,含油率为40﹪。今年改种新选育的油菜籽后亩产量提高了30千克,含油率提高了10百分点。今年与去年相比,油菜的种植面积减少了40亩,而村榨油厂用本村所产油菜籽的产油量提高了20﹪。(1)求今年油菜的种植面积。 设今年油菜的种植面积是x 亩。完成下表后再列方程解答。 去年 今年 亩产量 种植面积 (千克/亩) (亩) 150 x 油菜籽总产量 (千克) 含油率 40﹪ 产油量 (千克) (2)已知油菜种植成本为200元/亩,菜油收购价为6元/千克。试比较这个村去今两年种植油菜的纯收入。

(十四)、等积变形问题

等积变形问题

等积变形是以形状改变而体积不变为前提。

常用等量关系为:原料体积=成品体积。常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.

2?rh ①圆柱体的体积公式 V=底面积×高=S·h=

②长方体的体积 V=长×宽×高=abc

1、一个长方形的周长为26㎝,这个长方形的长减少1㎝,宽增加2㎝,就可成为一个正方

形,则原长方形的长和宽各为多厘米?

2、在一个底面直径为30厘米,高为8厘米的圆锥体容器中倒满水,然后将水倒入一个底面直径为10厘米的圆柱体空容器内,圆柱体容器内的水有多高?

3.现有直径为0.8米的圆柱形钢坯30米,可足够锻造直径为0.4米,长为3米的圆柱形机轴多少根?

(十五)、方案选择问题

1、某通讯公司推出了甲、乙两种市内移动通讯业务。甲种使用者需每月缴纳15元月租费,然后每通话1分钟,再付花费0.3元;乙种使用者不缴纳月租费,每通话1分钟,付花费0.6元。根据一个月的通话时间,选择哪种方式更优惠?

2.在“五一”黄金周期间,小明小亮等同学随家人一同到将狼山游玩,下面是购买门票是,小明与他爸爸的对话:爸爸说:“大人总门票每张35元,学生门票五折优惠,我们总共有12人,共要350元。”小敏说:“爸爸,等一下,让我算一算,换一种方式买票是否更省钱。” 票价单:成人:35元一张。 学生:按成人5折优惠,团体票:16人以上(含16人)按成人票6折优惠。问题:(1)小明他们一共去了几个成人?几个学生?(2)小明算一算,用那种方式买票更省钱?并说明理由

3某班去商店为体育比赛优胜者买奖品,书包每个定价30元,?文具盒每个定价5元,商店实行两种优惠方案:①买一个书包赠送一个文具盒;②按总价的九折付款,若该班需购书包8

14

个,设需购文具盒x个(x≥8),付款共y元.

(1)用含x的式子分别表示这两种优惠方案的付款; (2)若购文具盒30个,应选哪种优惠方案?付多少钱? (3)你认为应选择哪种方案更合算?

4、.某电信公司开设了甲、乙两种市内移动通信业务。甲种使用者每月需缴15元月租费,然后每通话1分钟, 再付话费0.3元; 乙种使用者不缴月租费, 每通话1分钟, 付话费0.6元。若一个月内通话时间为x分钟, 甲、乙两种的费用分别为y1和y2元。 (1)、试求一个人要打电话30分钟,他应该选择那种通信业务? (2)、根据一个月通话时间,你认为选用哪种通信业务更优惠?

5.某校校长在国庆节带领该校市级“三好学生”外出旅游,甲旅行社说“如果校长买一张票,则其余学生可享受半价优惠”,乙旅行社说“包括校长在内全部按票价的6折优惠”(即按票的60%收费)。现在全票价为240元,学生数为5人,请算一下哪家旅行社优惠?你喜欢哪家旅行社?如果是一位校长,两名学生呢?

6.小明想在两种灯中选购一种,其中一种是10瓦(即0.01千瓦)的节能灯,售价50元,另一种是100瓦(即0.1千瓦)的白炽灯,售价5元,两种灯的照明效果一样,使用寿命也相同(3000小时内)节能灯售价高,但较省电,白炽灯售价低,但用电多,电费0.5元/千瓦·时

(1)照明时间500小时选哪一种灯省钱?(2)照明时间1500小时选哪一种灯省钱? (3)照明多少时间用两种灯费用相等?

7. 清风乐园门票价格如下表所示:

某校七年级①、②两个班共104人去清风乐园春游,其中①班人数较少,不到50人,②班人数较多,超过50人,经估算若两班都以班为单位分别购票,则一共应付1240元. (1)请算出两个班各有多少名学生.

(2)想一想:你认为他们如何购票比较合算?

(3)假如①班先到达乐园,想要单独购票,你能帮他们想出一个比较合算的购票方案吗?

8.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3?种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.

(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.

(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,?销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?

解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,

设购A种电视机x台,则B种电视机y台.

15

(1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程 1500x+2100(50-x)=90000 x=25 50-x=25

②当选购A,C两种电视机时,C种电视机购(50-x)台,可得方程 1500x+2500(50-x)=90000 x=35 50-x=15

③当购B,C两种电视机时,C种电视机为(50-y)台.可得方程

2100y+2500(50-y)=90000 4y=350,不合题意

可选两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C种电

视机15台.

(2)若选择(1)①,可获利150×25+250×15=8750(元)

若选择(1)②,可获利150×35+250×15=9000(元) 故为了获利最多,选择第二种方案.

9.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,?经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是: 如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,?但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案: 方案一:将蔬菜全部进行粗加工.

方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,?在市场上直接销售. 方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.

你认为哪种方案获利最多?为什么?

10.某市剧院举办大型文艺演出,其门票价格为:一等席300元/人,二等席200元/人,三等席150元/人,某公司组织员工36人去观看,计划用5850元购买2种门票,请你帮助公司设计可能的购票方案。

11.某农户2000年承包荒山若干公顷,投资7800元改造后,种果树2000棵,今年水果总产量为18000kg,此水果在市场上每千克售a元,在果园每千克售b元(b

①分别用a、b表示用两种方式出售水果的收入。

②若a=1.3元,b=1.1元,且两种出售水果方式都在相同时间内售完全部水果,请通过计

算说明,选择哪种出售方式较好?

(十六)浓度问题

1.有含盐20%的盐水5千克,要配制成含盐8%的盐水,需加水______________千克。

16

2、某化工厂现有浓度为15%的稀硫酸175千克,要把它配成浓度为25%的硫酸,需要加入浓度为50%的硫酸多少千克?

3.今需将浓度为80%和15%的两种农药配制成浓度为20%的农药4千克,问两种农药应各取多少千克?

4.甲、乙两块合金,含银和铜的比分别是甲为4:3,乙为7:9,今从两块合金中各取多少千克,能得到含银84千克、含铜82千克的新合金?

5.有甲、乙两种铜和银的合金,甲种合金含银25%,乙种合金含银37.5%,现在要熔制含银30%的合金100千克,两种合金应各取多少?

(十七)古典数学:

1.100个和尚100个馍,大和尚每人吃两个,小和尚两人吃一个,问有多少大和尚,多少小和尚。

2.有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?

17

本文来源:https://www.bwwdw.com/article/oiug.html

Top