ASTMD7797-18脂肪酸甲酯

更新时间:2023-04-07 04:38:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

ASTM D7797?18

标准试验方法

使用傅里叶变换红外光谱学-快速筛选法的流量分析测定航空涡轮燃

料脂肪酸甲酯含量

本标准以固定名称D7797发行。名称后紧跟的数字表示最初采用的年份,如果是修订版本,则表示上次修订的年份。括号中的数字表示上次批准的年份。上标(ε)表示自上次修订或重新批准以来的编辑更改。

1.范围

1.1此测试方法指定了一种快速筛选方法,该方法使用傅里叶变换红外(FA-FTIR)光谱和偏最小二乘(PLS-1)处理进行流动分析来测定航空涡轮机燃料(A VTUR)中脂肪酸甲酯(FAME)的含量,范围从10 mg/kg到150 mg/kg。

注1:属于该测试方法范围的规范是:规范D1655和国防标准91-91。

注2:按照标准D6751和EN 14214的规定,该测试方法可检测所有FAME组分,并具有约1749 cm-1的红外吸收峰和C8至C22分子。该方法的准确性基于分子量C16至C18 FAME 组分;其他分子量不同的FAME组分的存在可能会影响准确性。

注3:添加剂,例如抗静电剂,抗氧化剂和腐蚀抑制剂,是通过FTIR光谱仪用FAME 测量的。但是,这些添加剂的作用已通过流动分析过程消除。

注4:可以测量的FAME浓度范围为150 mg/kg至500 mg/kg,以及低于10 mg/kg,但精度会受到影响。

1.2以SI单位表示的值应视为标准值。本标准不包括其他计量单位。

1.3本标准并不旨在解决与使用相关的所有安全问题。本标准的使用者有责任建立适当的安全,健康和环境规范,并在使用前确定法规限制的适用性。

1.4本国际标准是根据世界贸易组织贸易壁垒技术委员会(TBT)发布的《国际标准,指南和建议制定原则决定》中确定的国际公认的标准化原则制定的。

2.参考文件

2.1 ASTM标准:

D1298用比重计法测试原油和液体石油产品的密度,相对密度或API重力的测试方法

D1655航空涡轮燃料规范

D4052数字密度计测试液体密度,相对密度和API重力的测试方法

D4057石油和石油产品手动采样规范

D4177石油和石油产品自动采样规范

D6300石油产品和润滑剂测试方法中使用的精度和偏差数据的确定规范

D6751中间馏分燃料用生物柴油燃料共混原料(B100)规范

E1655红外多元量化规范分析

2.2 CEN标准:

EN 14214规范汽车燃料—柴油发动机的脂肪酸甲酯(FAME)—要求和测试方法

2.3能源研究所标准:

IP 583傅立叶变换红外光谱法流动分析快速测定航空涡轮燃料中脂肪酸甲酯含量的试验方法

2.4其他标准:

国防标准91-91第7版(DERD 2494)涡轮燃料,航空煤油型,喷气A1

2.5 ASTM附件:

ADJD6300(D2PP)用于石油产品测试方法的精度和偏差数据的确定

3.术语

3.1定义:

3.1.1 FAME,n-脂肪酸甲酯,也称为生物柴油。

3.1.1.1讨论-用作汽车柴油的成分,以及由于使用多燃料油轮和管道而导致的航空涡轮机燃料的潜在污染源。

3.2本标准特有的术语定义:

3.2.1 FA-FTIR,n-通过傅立叶变换红外技术进行的流量分析使用流通式测量池对试样流进行多次测量。

3.2.1.1讨论-在通过旨在延缓要测量的FAME污染的吸附剂之前和之后对试样进行分析。比较结果以能够确定航空燃料中存在的FAME量。

3.2.2吸附剂盒,n-装有特定吸附剂的供测试样品流过的盒

3.2.2.1讨论-每次测试后都将吸收剂盒丢弃。

4.测试方法摘要

4.1在通过装有设计为相对较长的吸附剂的滤芯前后,通过FTIR光谱仪在2 mm有效路径长度的流通池中自动分析航空涡轮(A VTUR)燃料的试样。FAME 的停留时间。测量之间的红外光谱的光谱吸收率差异与PLS-1模型一起处理,以确定FAME在大约1749 cm-1处的羰基峰的存在和幅度。测试时间通常为20分钟。FTIR的流量分析使FAME IR峰能够从燃料的整体IR特性中解析出来。

5.意义和用途

5.1当前和日益增长的国际政府对柴油燃料中添加脂肪酸甲酯(FAME)的要求产生了意想不到的副作用,该副作用导致在多燃料运输设施(如油轮和管道)以及工业中喷气涡轮燃料的FAME潜在污染,广泛的关注。

5.2已经开发出了分析方法,可以测量低至5 mg/kg以下的FAME,但是这些方法很复杂,需要专门的人员和实验室设施。这种快速筛选方法是由非专业人员开发的,用于供应链,覆盖范围从10 mg/kg到150 mg/kg。

6.干扰

6.1在生产,储存,分配或取样过程中可能会产生的化合物,其碳吸收基团在红外光谱中的吸光度接近1749 cm-1时,会产生影响。增塑剂:己二酸二(2-乙基己基)酯;已知癸二酸二丁酯会增加通过该测试方法获得的测量读数。

注5:在有限的研究中,己二酸二(2-乙基己基)酯在航空燃料中的浓度为30 mg/kg,读数增加为15 mg/kg,癸二酸二丁酯在50 mg/L时读数为读数增加20 mg/kg。

7.仪器

7.1自动控制,紧密集成的仪器,包括具有2 mm有效光程长度流通池的FTIR 光谱仪,计算机控制的泵,吸附剂药筒支架,控制和接口电子设备,试样和废物容器以及电磁阀。

7.2处理计算机可以集成到仪器中。

7.3该设备和所需的吸附剂盒在附件A1中有更详细的描述。

7.4密度测量装置(可选)-根据测试方法D1298或D4052或等效的国家标准,根据需要确定航空燃料测试样品的密度。

8.试剂和材料

8.1清洁溶剂,庚烷,试剂级。

8.2验证液:

8.2.1 100mg/kg,包含100mg/kg±10mg/kg FAME,具有认证值和不确定度。

8.2.2 30 mg/kg,包含30mg/kg±5mg/FAME,具有认证值和不确定度。

8.3校准液:

8.3.1五种流体的集合,包含具有认证值和不确定度的一定数量的FAME。

8.4无绒布,用于清洁和干燥样品输入管。

9.抽样

9.1除非另有规定,否则应按照操作D4057或D4177或按照国家标准或法规对石油产品进行采样的要求(或两者)至少采样60 mL。

9.2使用带有惰性封闭物的不透明的新玻璃或环氧衬里金属容器。

9.2.1允许使用已使用过的样品容器,只要可以确认这些样品容器未用于未知液体或FAME含量大于5%的液体即可。

注6:出于对清除先前样品中残留的所有痕量FAME的困难的考虑,强烈建议使用新的样品容器。

9.2.2用庚烷(8.1)或其他合适的溶剂冲洗所有样品容器并排干。然后用要采样的产品冲洗至少3次。每次冲洗应使用产品体积为容器体积10%至20%的产品。每次冲洗均应包括将容器关闭并摇晃至少5秒钟,然后将产品沥干。

10.仪器的准备

10.1请按照制造商的说明和屏幕上的说明正确安装和关闭设备。

10.2如果最后一个测试样品的FAME含量超过150 mg ? kg,则按照制造商的说明使用庚烷(8.1)进行冲洗。

10.3在开始测试之前,用不起毛的布(8.4)擦干样品输入管。

10.4确保仪器的验证和校准符合第11节的规定。

10.5在抽出样品之前,轻轻旋转样品使其均匀。

10.6如果密度未知,则使用密度测量装置(7.4)确定样品的密度。

10.7使用新的试样容器,或者如果有足够的试样,则允许在使用庚烷进行每次测试之前彻底清洁和干燥试样容器,然后部分填充试样,旋转并沥干,重复三遍。

注7:出于对清除先前测试样品中残留的所有痕量FAME的困难的考虑,强烈建议使用新的样品容器。

11.校准和标准化

11.1验证:

11.1.1遵循设备和试样制备说明(10),并检查所用验证液的有效性。

11.1.2至少每6个月根据制造商的说明使用验证液(8.2.1)验证仪器的正确运行。应根据当地质量控制要求进行更频繁的性能检查。

11.1.3至少每12个月或在对测量系统进行任何维护后,立即按照制造商的说明使用两种验证液(8.2.1和8.2.2)验证仪器的正确运行。

11.1.4如果结果不在R /√2加上验证液认证值的不确定度或验证液随附的公差范围内,请重新检查验证液的有效日期并执行冲洗程序(10.2),然后重复验证。

注8:在11.1.4中,R是测试方法在100 mg ? kg或30 mg ? kg时的可重复性。

11.1.5如果无法满足11.1.4中的标准来验证仪器的正确操作,请遵循制造商关于故障查找和校准的说明。

11.2校准:

11.2.1当无法满足11.1.4中的标准来验证仪器的正确操作时,请按照制造商的说明校准仪器。

11.2.1.1校准使用涵盖测试方法范围的五个(5)校准标准(8.3),其中包含在已知流体中的已知FAME量(mg ? kg)。

12.程序(见图1)

12.1开始测试测量顺序(请参阅第10节),并按照制造商的说明和屏幕上的说明输入以千克/立方米(kg ? m3)为单位的样品密度和样品标识。

注9:如果航空燃料的密度未知,则假定标称值为807.5 kg ? m3。这可能最多影响结果4%。

12.2插入新的吸附剂盒(A1.1.3),并在吸附剂盒的出口(底部)安装新的过滤器(A1.1.9);按照制造商的说明将输入管安装到墨盒上。

12.3将大约50 mL的样品倒入按10.7所述准备的试样容器(A1.1.4)中,定位并固定容器盖和样品输入管。

12.4确保一个空的废液容器,盖子和输出管(A1.1.5)处于适当位置。

图1 测试顺序

关键词

prime and flush:灌注和冲洗

measure spectrum of test specimen:测量试样的光谱

measure spectra from the sorbent cartridge:从吸附剂盒测量光谱

calculate and display result:计算并显示结果

flush out test specimen:冲洗掉试样

purge with water:用水冲洗

12.5当通过编程泵将试样从仪器中抽出时,开始测试以开始以下自动程序:(见图1和图A1.1):

12.5.1用试样灌注并冲洗管道和流通测量池。

12.5.2测量试样的光谱以检查是否有污染并获得参考光谱。

12.5.3测量吸附剂盒输出的光谱,直到达到稳定值,然后与参考光谱进行比较。

12.5.4重新测量试样的光谱以获得第二参考光谱。

12.5.5分析流动分析光谱(参见12.5.3)并与参考光谱进行比较,并使用PLS-1模型(参见A1.1.10)在标称1660 cm-1至1800 cm-1范围内确定FAME峰幅度范围。

12.5.6使用校准曲线,确定的峰,校准材料密度的存储值和样品密度计算FAME浓度(mg/kg)(请参见10.6)。

12.5.7用其余的试样冲洗系统,最后用空气吹扫。

12.5.8以数字和图形方式显示结果(典型示例参见图A1.1)。

12.6记录测试结果,并按照制造商的说明卸下和处理用过的吸附剂盒和过滤器。

13.计算

13.1

FAME mg/kg=(C m)×(P c/P s) (1)注:

C m =直接来自积分校准曲线的值mg / kg,

P c =样品密度(kg/m3),

P s =校准材料的密度,单位kg/m。

报告样品中的FAME量精确到0.1 mg/kg。

14.报告

14.1测试报告应至少包含以下信息:

14.1.1引用本标准,

14.1.2完整识别测试产品所需的所有详细信息,

14.1.3测试结果(参见第13节),

14.1.4通过协议或其他方式偏离规定的程序,以及

14.1.5测试的时间和日期。

15.精度和偏差

15.1概述-精度是从2013年在欧洲进行的能源研究所ILS获得的,其使用位于单独实验室中的八台仪器/操作器以及一个样品组,其中包含13种航空涡轮机燃料样品,一式两份与已知量的FAME混合。样品包括加氢处理过的燃料,未加氢处理过的燃料和合成燃料,分别来自美国,英国和欧洲。13.1中给出的精度值来自这些测试结果的统计分析。

15.1.1通过使用ADJD6300 D2PP根据Practice D6300对ILS测试结果进行统计检验来获得精度。

15.2重复性-在正常和正确的测试方法操作下,同一操作人员使用同一设备在恒定的操作条件下,对相同名义的测试材料获得的连续测试结果之间的差异,仅在一种情况下超过20以下:

r = 4.589 mg / kg (2)有关精度的表格说明,请参见表1。

15.3再现性-在正常和正确的测试方法操作中,由不同的操作人员使用不同的设备使用名义上相同的测试材料分别获得的两个测试结果之间的差异仅会在以下情况下超过以下值:20

R = 0.04967(X +100) (3)

其中X是要比较的两个结果的平均值,mg/kg。有关精度的表格说明,请参见表1。

15.4偏差-由于没有可接受的参考材料来确定此测试方法中程序的偏差,因此无法确定偏差。某些样品可能存在样品特异性偏差。100个独立的燃料样品的评估,以确定潜在的燃料影响的报告“IP583 FAME喷气全球测试计划的研究报告。”

16.关键字

16.1 A VTUR;喷气燃料中的生物柴油;污染;FAME;FTIR;FA-FTIR;甲酯

表1列表重复性(r)和再现性(R)

附件

(强制性资料)

A1.装置详细信息

A1.1仪器

A1.1.1参见图A1.1和图A1.2。

A1.1.2傅里叶变换红外(FTIR)光谱仪,符合表A1.1的要求。

A1.1.2.1流通池组件,包括氟化钙透明窗口,有效光程长度为2.0mm±0.2mm。

A1.1.3吸收剂盒,见图A1.2,单独包装在密封的信封中,每个测试一个。

A1.1.4测试样品容器,标有大约50 mL的体积,带有盖子,并规定将输入管保持在容器底部上方约5 mm处。

A1.1.5废液容器,50 mL,带盖,并装有废液出口管。

A1.1.6电磁阀,计算机控制,死体积小,节流孔尺寸小。

A1.1.7连接管,窄口尼龙或其他适合航空涡轮机燃料和FAME的合适材料。

注A1.1:含增塑剂的管子不适合,因为会释放出酯。

A1.1.8计算机控制的泵,标称流量为5 mL ?min。

A1.1.9过滤器,标称直径为30毫米的5微米尼龙过滤器,安装在吸附剂盒的出口,带有鲁尔接头,每个测试一个。

A1.1.10 PLS-1模型-该“冻结”模型内置于设备软件中,不受校准的影响,并且用户不可调节。它是根据实践E1655中概述的数学得出的。它使用五个加载向量,并且基于来自炼油厂,机场和存储设施的20多个地点的A VTUR(脱硫醇和加氢处理)的900多个数据点。

图A1.1仪器原理图

关键词:

Reverse flow flushing 冲洗流路

Normal flow 正常流路

1、Test specimen container试样容器

2、Sorbent cartridge and filter 吸附剂筒和过滤器

3、4、6、solenoid valves 电磁阀

5、FTIR flow-through cell FTIR流通池

7、Pump 泵

8、Waste container 废液桶

图A1.2吸附剂筒

关键词:

1、Cartridge cap 吸附剂盖

2、20 μm upper frit 20微米上熔块

3、6 ml polypropylene cartridge housing 6毫升聚丙烯样品桶

4、2.85g±5% sorbent to specification SA5001 2.85g±5%符合SA5001规格的吸附剂

5、20 μm lower frit 20微米下熔块

6、Input seal housing 输入密封外壳

7、Exit Luer fitting 出口鲁尔接头

表A1.1 FTIR光谱仪的规格

关键词:

光谱范围(至少)、波数精度、分辨率、皿长(光学)、流通样品池、密封、单光束反射

变更摘要

小组委员会D02.J0已经确定了自上一版(D7797-17)起可能对此标准的使用造成影响的本标准的选定更改的位置。(2018年12月1日批准。)(1)修改第4.1小节。

(2)添加了新的6.1节和新的注释5。

原文注释:

1、本试验方法是ASTM委员会D02石油产品,液体燃料和润滑剂的管辖,是小组委员会D02.J0.05对燃油清洁度的直接责任。

当前版本于2018年12月1日批准。于2019年1月发布。最初于2012年批准。最新的上一版本于2017年批准为D7797-17。DOI:10.1520 / D7797-18。

2、该标准是在ASTM International和伦敦能源研究所之间的共同努力下制定的。该IP和ASTM标志暗示ASTM和IP标准在技术上是等效的,但它们的使用并不意味着这两种标准都社论相同。

3、有关参考的ASTM标准,请访问ASTM网站be1710b61cd9ad51f01dc281e53a580216fc50a0,或通过service@be1710b61cd9ad51f01dc281e53a580216fc50a0与ASTM客户服务联系。有关ASTM标准年度手册的量信息,请参阅ASTM网站上该标准的“文档摘要”页面。

4、可从美国国家标准协会(ANSI),地址为25 W. 43rd St.,4th Floor,New York,NY 10036,be1710b61cd9ad51f01dc281e53a580216fc50a0。

5、可从英国伦敦WIG 7AR伦敦新卡文迪什街61号能源研究所获得,be1710b61cd9ad51f01dc281e53a580216fc50a0。

6、可从国防部采购执行官DF5(空中)获得,be1710b61cd9ad51f01dc281e53a580216fc50a0。

7、ADJD6300不再可从ASTM国际总部获得。

8、使用以下试剂和材料来制定精度声明:用于英国Seta FIJI,Stanhope-Seta,Chertsey,Surrey,KT16 8AP的Seta验证和校准液。这不是ASTM的认可或认证。

9、支持数据已在英国能源研究所提交,网址为be1710b61cd9ad51f01dc281e53a580216fc50a0,可通过索取《Jet Worldwide测试计划研究报告》中的IP 583循环研究报告或IP 583 FAME获得。

10、目前,委员会已知道该设备的唯一供应来源是Seta FIJI SA5000和滤芯(包括过滤器)SA5005,这是英国的Stanhope-Seta,Chertsey,萨里,萨里,KT16 8AP。如果您知道其他供应商,请将此信息提供给ASTM国际总部。您的意见将在您可能参加的负责的技术委员会的会议上得到认真的考虑。

附件:英文原文

Designation:D7797?18An American National Standard

583/15

Standard Test Method for

Determination of the Fatty Acid Methyl Esters Content of

Aviation Turbine Fuel Using Flow Analysis by Fourier

Transform Infrared Spectroscopy—Rapid Screening

Method1,2

This standard is issued under the?xed designation D7797;the number immediately following the designation indicates the year of

original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A

superscript epsilon(′)indicates an editorial change since the last revision or reapproval.

1.Scope*

1.1This test method speci?es a rapid screening method

using?ow analysis by Fourier transform infrared(FA-FTIR)

spectroscopy with partial least squares(PLS-1)processing for

the determination of the fatty acid methyl ester(FAME)

content of aviation turbine fuel(A VTUR),in the range of

10mg?kg to150mg?kg.

N OTE1—Speci?cations falling within the scope of this test method are:

Speci?cation D1655and Defence Standard91-91.

N OTE2—This test method detects all FAME components,with peak IR

absorbance at approximately1749cm-1and C8to C22molecules,as

speci?ed in standards such as Speci?cation D6751and EN14214.The

accuracy of the method is based on the molecular weight of C16to C18

FAME species;the presence of other FAME species with different

molecular weights could affect the accuracy.

N OTE3—Additives such as antistatic agents,antioxidants and corrosion

inhibitors are measured with the FAME by the FTIR spectrometer.

However the effects of these additives are removed by the?ow analysis

processing.

N OTE4—FAME concentrations from150mg/kg to500mg/kg,and

below10mg/kg can be measured but the precision could be affected.

1.2The values stated in SI units are to be regarded as

standard.No other units of measurement are included in this

standard.

1.3This standard does not purport to address all of the

safety concerns,if any,associated with its use.It is the

responsibility of the user of this standard to establish appro-

priate safety,health,and environmental practices and deter-

mine the applicability of regulatory limitations prior to use.

1.4This international standard was developed in accor-

dance with internationally recognized principles on standard-

ization established in the Decision on Principles for the

Development of International Standards,Guides and Recom-

mendations issued by the World Trade Organization Technical

Barriers to Trade(TBT)Committee.

2.Referenced Documents

2.1ASTM Standards:3

D1298Test Method for Density,Relative Density,or API

Gravity of Crude Petroleum and Liquid Petroleum Prod-

ucts by Hydrometer Method

D1655Speci?cation for Aviation Turbine Fuels

D4052Test Method for Density,Relative Density,and API

Gravity of Liquids by Digital Density Meter

D4057Practice for Manual Sampling of Petroleum and

Petroleum Products

D4177Practice for Automatic Sampling of Petroleum and

Petroleum Products

D6300Practice for Determination of Precision and Bias

Data for Use in Test Methods for Petroleum Products and

Lubricants

D6751Speci?cation for Biodiesel Fuel Blend Stock(B100)

for Middle Distillate Fuels

E1655Practices for Infrared Multivariate Quantitative

Analysis

2.2CEN Standards:4

EN14214Speci?cation Automotive Fuels—Fatty Acid

Methyl Esters(FAME)for Diesel Engines—Requirements

and Test Methods

1This test method is under the jurisdiction of ASTM Committee D02on

Petroleum Products,Liquid Fuels,and Lubricants and is the direct responsibility of

Subcommittee D02.J0.05on Fuel Cleanliness.

Current edition approved Dec.1,2018.Published January2019.Originally

approved be1710b61cd9ad51f01dc281e53a580216fc50a0st previous edition approved in2017as D7797–17.DOI:

10.1520/D7797-18.

2This standard has been developed through the cooperative effort between

ASTM International and the Energy Institute,London.The IP and ASTM logos

imply that the ASTM and IP standards are technically equivalent,but their use does

not imply that both standards are editorially identical.

3For referenced ASTM standards,visit the ASTM website,be1710b61cd9ad51f01dc281e53a580216fc50a0,or

contact ASTM Customer Service at service@be1710b61cd9ad51f01dc281e53a580216fc50a0.For Annual Book of ASTM

Standards volume information,refer to the standard’s Document Summary page on

the ASTM website.

4Available from American National Standards Institute(ANSI),25W.43rd St.,

4th Floor,New York,NY10036,be1710b61cd9ad51f01dc281e53a580216fc50a0.

*A Summary of Changes section appears at the end of this standard

Copyright?ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959.United States

This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards,Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade(TBT)Committee.

1

2.3Energy Institute Standards:5

IP583Test Method for Determination of the Fatty Acid Methyl Esters Content of Aviation Turbine Fuel Using Flow Analysis by Fourier Transform Infrared Spectroscopy—Rapid Screening Method

2.4Other Standards:6

Defence Standard91-91Issue7(DERD2494)Turbine Fuel, Aviation Kerosine Type,Jet A1

2.5ASTM Adjuncts:7

ADJD6300(D2PP)Determination of Precision and Bias Data for Use in Test Methods for Petroleum Products 3.Terminology

3.1De?nitions:

3.1.1F AME,n—Fatty acid methyl esters,also known as biodiesel.

3.1.1.1Discussion—Used as a component in automotive diesel fuel and the potential source of contamination in aviation turbine fuel due to multi-fuel tankers and pipelines.

3.2De?nitions of Terms Speci?c to This Standard:

3.2.1F A-FTIR,n—?ow analysis by Fourier Transform Infra red technique uses a?ow-through measurement cell to make a number of measurements on a stream of test specimen.

3.2.1.1Discussion—The test specimen is analyzed before and after passing through a sorbent that is designed to retard the FAME contamination to be measured.The results are compared to enable the amount of FAME present in the aviation fuel to be determined.

3.2.2sorbent cartridge,n—a cartridge,through which the test specimen?ows,containing a speci?c sorbent

3.2.2.1Discussion—The sorbent cartridge is discarded after each test.

4.Summary of Test Method

4.1A test specimen of aviation turbine(A VTUR)fuel is automatically analyzed,by an FTIR spectrometer,in a2mm effective path length?ow-through cell,before and after?ow-ing through a cartridge containing a sorbent designed to have a relatively long residence time for FAME.The spectroscopic absorbance differences of the IR spectra,between the measurements,are processed in conjunction with a PLS-1 model to determine the presence and amplitude of the carbonyl peak of FAME at approximately1749cm-1.Test time is typically20min.The?ow analysis by FTIR enables the FAME IR peak to be resolved from the bulk IR properties of the fuel.

5.Signi?cance and Use

5.1The present and growing international governmental requirements to add fatty acid methyl esters(FAME)to diesel fuel has had the unintended side-effect of leading to potential FAME contamination of jet turbine fuel in multifuel transport facilities such as cargo tankers and pipelines,and industry wide concerns.

5.2Analytical methods have been developed with the capa-bility of measuring down to<5mg?kg levels of FAME, however these are complex,and require specialized personnel and laboratory facilities.This Rapid Screening method has been developed for use in the supply chain by non specialized personnel to cover the range of10mg?kg to150mg?kg.

6.Interferences

6.1Chemical compounds,which can arise during production,storage,distribution or sampling,containing car-bonyl groups,whose spectral absorbances appear in the IR spectrum close to1749cm–1,can affect the reading.Plasticiz-ers:bis(2-ethyl hexyl)adipate;dibutyl-sebacate are known to increase measurement readings obtained by this test method.

N OTE5—In a limited study,bis(2-ethyl hexyl)adipate at a concentra-tion of30mg?kg in aviation fuel gave an increased reading of15mg?kg, and dibutyl-sebacate at50mg?L gave an increased reading of20mg?kg.

7.Apparatus

7.1Automatically controlled,closely integrated,instrument comprising FTIR spectrometer with a2mm effective optical path length?ow-through cell,computer controlled pump, sorbent cartridge holder,control and interface electronics,test specimen and waste containers,and solenoid valves.

7.2The processing computer can be integrated into the instrument.

7.3This apparatus and the required sorbent cartridge are described in more detail in Annex A1.

7.4Density Measuring Device(optional)—According to Test Methods D1298,or D4052,or equivalent national standards,to determine the density of the aviation fuel test sample if required.

8.Reagents and Materials

8.1Cleaning Solvent,heptane,reagent grade.

8.2Veri?cation Fluids:8

8.2.1100mg?kg,containing100mg?kg610mg?kg of FAME,with a certi?ed value and uncertainty.

8.2.230mg?kg,containing30mg?kg65mg?kg of FAME, with a certi?ed value and uncertainty.

8.3Calibration Fluids:8

8.3.1Set of Five Fluids,containing amounts of FAME with certi?ed values and uncertainty.

8.4Lint-free Cloth,for cleaning and drying the sample input tube.

9.Sampling

9.1Unless otherwise speci?ed,take a sample of at least 60mL in accordance with Practices D4057or D4177or in

5Available from the Energy Institute,61New Cavendish St.,London,WIG7AR,

U.K.,be1710b61cd9ad51f01dc281e53a580216fc50a0.

6Available from Procurement Executive DF5(air),Ministry of Defence, be1710b61cd9ad51f01dc281e53a580216fc50a0.

7ADJD6300is no longer available from ASTM International Headquarters.

8The following reagents and materials were used to develop the precision statements:Seta Veri?cation and Calibration?uids for Seta FIJI,Stanhope-Seta, Chertsey,Surrey,KT168AP,UK.This is not an endorsement or certi?cation by ASTM.

D7797?18 2

accordance with the requirements of national standards or regulations for the sampling of petroleum products,or both.

9.2Use new,opaque glass or epoxy lined metal containers with inert closures.

9.2.1Used sample containers are permitted provided it can be con?rmed they have not been used for unknown?uids or for ?uids containing>5%FAME.

N OTE6—New sample containers are strongly recommended due to concerns over the difficulty in removing all traces of FAME retained from previous samples.

9.2.2Rinse all sample containers with heptane(8.1)or another suitable solvent and drain.Then rinse with the product to be sampled at least three times.Each rinse shall use product with a volume of10%to20%of the container volume.Each rinse shall include closing and shaking the container for a minimum of5s and then draining the product.

10.Preparation of Apparatus

10.1Follow the manufacturer’s instructions and on-screen instructions for the correct set up and shut down of the apparatus.

10.2Run a?ushing sequence using heptane(8.1)in accor-dance with the manufacturer’s instructions if the last test sample contained FAME in excess of150mg?kg.

10.3Wipe dry the sample input tube with a lint free cloth (8.4)before commencing a test.

10.4Ensure that the veri?cation and calibration of the instrument are in accordance with Section11.

10.5Gently swirl the sample for homogeneity before draw-ing the test specimen.

10.6Determine the density of the sample using the density measuring device(7.4)if the density is not known.

10.7Use a new test specimen container,or if there is enough test sample available it is permissible to clean and dry the test specimen container thoroughly before each test using heptane and then partially?ll with the test sample,swirl and drain,repeat three times.

N OTE7—New specimen containers are strongly recommended due to concerns over the difficulty in removing all traces of FAME retained from previous test specimens.

11.Calibration and Standardization

11.1Veri?cation:

11.1.1Follow the apparatus and test specimen preparation instructions(10)and check the validity of the veri?cation?uids to be used.

11.1.2Verify the correct operation of the instrument using the veri?cation?uid(8.2.1),in accordance with the manufac-turer’s instructions,at least every six months.More frequent performance checks shall be carried out according to local quality control requirements.

11.1.3Verify the correct operation of the instrument using both veri?cation?uids(8.2.1and8.2.2)in accordance with the manufacturer’s instructions at least every12months or imme-diately after any maintenance on the measurement system. 11.1.4If the result is not within R/√2plus the uncertainty of the veri?cation?uid’s certi?ed value or within the tolerances supplied with the veri?cation?uid,recheck the validity date of the veri?cation?uid and run a?ushing sequence(10.2)and repeat the veri?cation.

N OTE8—In11.1.4,R is the reproducibility of the test method at 100mg?kg or30mg?kg,respectively.

11.1.5If it is not possible to meet the criteria in11.1.4to verify the correct operation of the instrument,follow the manufacturer’s instructions regarding fault?nding and calibra-tion.

11.2Calibration:

11.2.1Calibrate the instrument according to the manufac-turer’s instructions when it is not possible to meet the criteria in11.1.4to verify the correct operation of the instrument. 11.2.1.1Calibration uses?ve(5)calibration standards(8.3) covering the scope of the test method,containing known amounts(mg/kg)of FAME in a known?uid.

12.Procedure(see Fig.1)

12.1Commence the test measurement sequence(see Sec-tion10),and input the sample density in kilograms per cubic metre(kg/m3)and sample identi?cation in accordance with the manufacturer’s instructions and the on-screen instructions.

N OTE9—If the density of the aviation fuel is not known,a nominal value of807.5kg?m3is assumed.This could affect the result by a maximum of4%.

12.2Insert a new sorbent cartridge(A1.1.3)and attach a new?lter(A1.1.9)to the exit(bottom)of the sorbent cartridge; follow the manufacturer’s instructions to?t the input tube to the cartridge.

12.3Pour approximately50mL of sample into the test specimen container(A1.1.4),that has been prepared as de-scribed in10.7,locate in position and attach the container lid and sample input tube.

12.4Ensure that an empty waste container,lid and output tube(A1.1.5)are in position.

FIG.1Test Sequence

D7797?18

3

12.5Start the test to commence the following automatic sequences as the test specimen is drawn through the instrument by the programmed pump:(see Fig.1and Fig.A1.1):

12.5.1Prime and?ush the tubing and the?ow-through measurement cell with the test specimen.

12.5.2Measure the spectrum of the test specimen to check for contamination and to obtain a reference spectrum.

12.5.3Measure the spectra of the output from the sorbent cartridge until a stable value is reached and compares with the reference spectrum.

12.5.4Re-measure the spectrum of the test specimen to obtain a second reference spectrum.

12.5.5Analyze and compare the?ow analysis spectra(see 12.5.3)with the reference spectrum and determines the FAME peak amplitude using a PLS-1model(see A1.1.10)over the nominal1660cm-1to1800cm-1range.

12.5.6Calculate the FAME concentration in mg/kg using the calibration curve,the determined peak,the stored value of the calibrant material’s density and the sample’s density(see 10.6).

12.5.7Flush the system with the remainder of the test specimen and?nally purges with air.

12.5.8Display the result numerically and graphically(see Fig.A1.1for a typical example).

12.6Record the test result and follow the manufacturer’s instructions to remove and dispose of the used sorbent car-tridge and?lter.

13.Calculation

13.1

FAME mg/kg5~C m!3~P c?P s!(1) where:

C m=value directly from the integral calibration curve mg/

kg,

P s=density of the sample in kg/m3,

P c=density of the calibrant material in kg/m3.

Report the amount of FAME in the sample to the nearest 0.1mg?kg.

14.Report

14.1The test report shall contain at least the following information:

14.1.1A reference to this standard,

14.1.2All details necessary for complete identi?cation of the product tested,

14.1.3The result of the test(see Section13),

14.1.4Any deviations,by agreement or otherwise,from the procedures speci?ed,and

14.1.5The time and date of the test.

15.Precision and Bias9

15.1General—The precision was obtained from a2013 Energy Institute ILS carried out in Europe using eight instruments/operators,located in separate laboratories,and a sample set comprising13aviation turbine fuel samples in duplicate blended with known amounts of FAME.Samples included hydro-treated fuel,non-hydro-treated fuel,and syn-thetic fuel and were sourced from the U.S.,U.K.,and Europe. The precision values given in13.1were derived from statistical analysis of these test results.

15.1.1The precision was obtained by statistical examina-tion of the ILS test results according to Practice D6300using ADJD6300D2PP.

15.2Repeatability—The difference between successive test results obtained by the same operator with the same apparatus under constant operating conditions on nominally identical test material would,in the normal and correct operation of the test method,exceed the value below only in one case in20:

r54.589mg/kg(2) See Table1for a tabular illustration of precision.

15.3Reproducibility—The difference between two test re-sults independently obtained by different operators using different apparatus on nominally identical test material would, in the normal and correct operation of the test method,exceed the value below only in one case in20:

R50.04967~X1100!(3) where X is the average of two results being compared,in mg/kg.See Table1for a tabular illustration of precision. 15.4Bias—Since there is no accepted reference material for determining the bias for the procedure in this test method,a bias cannot be determined.A sample-speci?c bias may be present for some samples.The evaluation of100separate fuel samples to determine potential fuel effects is reported in “IP583FAME in Jet Worldwide Test Programme Research Report.”9

16.Keywords

16.1A VTUR;biodiesel in jet fuel;contamination;FAME; FTIR:FA-FTIR;methyl esters

9Supporting data have been?led at the Energy Institute,UK,be1710b61cd9ad51f01dc281e53a580216fc50a0 and may be obtained by requesting the IP583Round Robin Research Report or IP583FAME in Jet Worldwide Test Programme Research Report.TABLE1Tabulated Repeatability(r)and Reproducibility(R) Level of Result

mg/kg

r

mg/kg

R

mg/kg

10.0 4.6 5.5

20.0 4.6 6.0

30.0 4.6 6.5

40.0 4.67.0

50.0 4.67.5

60.0 4.68.0

70.0 4.68.4

80.0 4.68.9

90.0 4.69.4

100.0 4.69.9

150.0 4.612.4

D7797?18 4

ANNEX (Mandatory Information) A1.APPARATUS DETAILS

A1.1Apparatus

A1.1.1See Fig.A1.1and Fig.A1.2.10

A1.1.2Fourier Transform Infrared(FTIR)Spectrometer, meeting the requirements of Table A1.1.

A1.1.2.1Flow-through Cell Assembly,including Calcium Fluoride transparent windows with an effective optical path length of2.0mm60.2mm.

A1.1.3Sorbent Cartridge,10see Fig.A1.2,inpidually packed in a sealed envelope,one per test.

A1.1.4Test Specimen Container,with approximately50mL volume marked,with a lid and provision for holding the input tube at approximately5mm above the bottom of the container. A1.1.5Waste Container,50mL with a lid and provision for the waste outlet tube.

A1.1.6Solenoid Valves,computer controlled,small dead volume and ori?ce size.

A1.1.7Connecting Tubing,narrow bore nylon or other suitable material resistant to aviation turbine fuel and FAME.

N OTE A1.1—Tubing containing plasticizers is not suitable as esters can be released.

A1.1.8Pump,computer controlled,?ow rate nominally 5mL?min.

A1.1.9Filter,105micron nylon?lter30mm nominal diameter,?tted to the exit of the sorbent cartridge,with luer ?ttings,one per test.

A1.1.10PLS-1Model—This“frozen”model is built into the apparatus software,is unaffected by calibration and is not user adjustable.It has been derived in accordance with the math-ematics outlined in Practices E1655.It uses?ve loading vectors and is based on over900data points from measure-ments of A VTUR(Merox and hydrotreated)from over20 locations at re?neries,airports and storage facilities.

10The sole source of supply of the apparatus,Seta FIJI SA5000and cartridge

(including?lter)SA5005,known to the committee at this time is Stanhope-Seta,

Chertsey,Surrey,KT168AP,UK.If you are aware of alternative suppliers,please

provide this information to ASTM International Headquarters.Your comments will

receive careful consideration at a meeting of the responsible technical committee,1

which you may attend.

FIG.A1.1Apparatus Schematic

D7797?18

5

SUMMARY OF CHANGES

Subcommittee D02.J0has identi?ed the location of selected changes to this standard since the last issue (D7797–17)that may impact the use of this standard.(Approved Dec.1,2018.)

(1)Revised subsection 4.1.(2)Added new Section 6.1and new Note 5.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this be1710b61cd9ad51f01dc281e53a580216fc50a0ers of this standard are expressly advised that determination of the validity of any such patent rights,and the risk of infringement of such rights,are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every ?ve years and if not revised,either reapproved or withdrawn.Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters.Your comments will receive careful consideration at a meeting of the responsible technical committee,which you may attend.If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards,at the address shown below.

This standard is copyrighted by ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA 19428-2959,United States.Inpidual reprints (single or multiple copies)of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585(phone),610-832-9555(fax),or service@be1710b61cd9ad51f01dc281e53a580216fc50a0 (e-mail);or through the ASTM website (be1710b61cd9ad51f01dc281e53a580216fc50a0).Permission rights to photocopy the standard may also be secured from the Copyright Clearance Center,222Rosewood Drive,Danvers,MA 01923,Tel:(978)646-2600;be1710b61cd9ad51f01dc281e53a580216fc50a0/

FIG.A1.2Sorbent Cartridge

TABLE A1.1Speci?cation of the FTIR Spectrometer

Spectral Range (at least)

4000cm -1to 650cm -1Wave-number precision

0.1cm -1Resolution

<4cm -1Cell path length (optical)

2.0mm Flow-through sample cell

Single beam re?ective Sealed Yes

D7797?18

6

本文来源:https://www.bwwdw.com/article/ogvl.html

Top