BasicRF 简析

更新时间:2023-11-15 02:02:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

BasicRF 简析(四:appSwitch()简析)

appSwitch()在SI中的函数关系如图1所示,其中basicRfInit()和

basicRfSendPacket()两个函数比较有内容的,本文主要针对这两个函数进行展开。

图1

开始之前先介绍三个比较重要的结构体: basicRfRxInfo_t、basicRfTxState_t和 basicRfPktHdr_t

//接收帧信息 typedef struct {

uint8 seqNumber; //帧序号; uint16 srcAddr; //源地址;

uint16 srcPanId; //源节点的PANID; int8 length; //帧长度;

uint8* pPayload; //该指针指向帧数据即:净载荷数据; uint8 ackRequest; //帧控制域的应答位信息; int8 rssi; //接收信号强度指示;

volatile uint8 isReady; //通过CRC校验,数据接收完成,该标志位进行后续读取操作;

uint8 status; //待定???? } basicRfRxInfo_t;

//发送状态信息 typedef struct {

uint8 txSeqNumber; //帧序号;

volatile uint8 ackReceived; //ACK是否接收完成; uint8 receiveOn; //是否处于接收状态; uint32 frameCounter; //发送帧计数; } basicRfTxState_t;

//BasicRf 帧头(IEEE 802.15.4) typedef struct {

uint8 packetLength; //帧长度;

uint8 fcf0; // Frame control field LSB uint8 fcf1; // Frame control field MSB uint8 seqNumber; //帧序号; uint16 panId; //PANID; uint16 destAddr; //目的地址; uint16 srcAddr; //源地址; #ifdef SECURITY_CCM //安全选项; uint8 securityControl; uint8 frameCounter[4]; #endif

} basicRfPktHdr_t;

(一) 关于basicRfInit()

/*********************************************************************************** * @fn basicRfInit *

* @brief Initialise basic RF datastructures. Sets channel, short address and

* PAN id in the chip and configures interrupt on packet reception * 初始化BasicRF数据结构,如:通道选择、短地址、PANID及接收中断的配置;

* @param pRfConfig - pointer to BASIC_RF_CONFIG struct.

* This struct must be allocated by higher layer

* txState - file scope variable that keeps tx state info //发送状态信息;

* rxi - file scope variable info extracted from the last incoming * frame //最新的所接收帧信息; *

* @return none */

uint8 basicRfInit(basicRfCfg_t* pRfConfig) {

if (halRfInit()==FAILED) //Rf初始化,启用Rf的推荐简单配置,可选的PA模块配置,始终返回Success; return FAILED;

halIntOff(); //关闭总中断; // Set the protocol configuration

pConfig = pRfConfig; //指向相关配置信息;

rxi.pPayload = NULL; //清空本节点的接收载荷数据;

txState.receiveOn = TRUE; //halRfInit()中开启接收; txState.frameCounter = 0; //发送帧计数值;

txState.txSeqNumber = 0x88; //自行修改第一个发送帧序号初始值;

// Set channel

halRfSetChannel(pConfig->channel); //将定义的通道号写入相关寄存器;

// Write the short address and the PAN ID to the CC2520 RAM halRfSetShortAddr(pConfig->myAddr); //将定义的本节点地址写入相关寄存器;

//#define SHORT_ADDR0 XREG( 0x6174 )

//#define SHORT_ADDR1 XREG( 0x6175 )

halRfSetPanId(pConfig->panId); //将定义的PANID写入相关寄存器;

//#define PAN_ID0 XREG( 0x6172 )

//#define PAN_ID1 XREG( 0x6173 )

// if security is enabled, write key and nonce #ifdef SECURITY_CCM basicRfSecurityInit(pConfig); #endif

// Set up receive interrupt (received data or acknowlegment)

halRfRxInterruptConfig(basicRfRxFrmDoneIsr); //对函数指针进行赋值,关联相应的中断函数,即:声明中断程序;

halIntOn(); //开启总中断; //为什么要开闭总中断一次????先启用发送节点后启用接收节点时,意外的接收中断?

return SUCCESS; }

basicRfInit()如上代码所示,该函数仅对RF做简单初始化、通道选择、PANID、本节点地址进行配置,最后为RF接收中断 声明一个函数指针basicRfRxFrmDoneIsr;

/*********************************************************************************** * @fn halRfRxInterruptConfig *

* @brief Configure RX interrupt.

* //配置接收中断,将RX中断 指向 一段可执行程序; * @param none *

* @return none

*/

void halRfRxInterruptConfig(ISR_FUNC_PTR pf) {

uint8 x;

HAL_INT_LOCK(x); //保存EA并将其清零;

pfISR= pf; //将函数指针赋值,而 pfISR将在RX中断时被执行;

HAL_INT_UNLOCK(x); //恢复之前EA的值; }

/************************************************************************************

* @fn rfIsr *

* @brief Interrupt service routine that handles RFPKTDONE interrupt. * //RX中断服务程序; * @param none *

* @return none */

HAL_ISR_FUNCTION( rfIsr, RF_VECTOR )

{ uint8 x;

HAL_INT_LOCK(x);

if( RFIRQF0 & IRQ_RXPKTDONE ) {

if(pfISR){

(*pfISR)(); // Execute the custom ISR

//如果pfISR不为空则将调用 函数指针所指向的函数basicRfRxFrmDoneIsr(); }

S1CON= 0; // Clear general RF interrupt flag

RFIRQF0&= ~IRQ_RXPKTDONE; // Clear RXPKTDONE interrupt }

HAL_INT_UNLOCK(x); }

RF中断采用了宏声明的方式(协议栈中多采用宏来声明中断,而非常规C语言函数),其声明语句如下:

#define HAL_ISR_FUNC_DECLARATION(f,v) _PRAGMA(vector=v) __near_func __interrupt void f(void) //中断函数声明的宏;

#define HAL_ISR_FUNC_PROTOTYPE(f,v) _PRAGMA(vector=v) __near_func __interrupt void f(void) //中断函数原型的宏;

#define HAL_ISR_FUNCTION(f,v) HAL_ISR_FUNC_PROTOTYPE(f,v); HAL_ISR_FUNC_DECLARATION(f,v) //中断函数定义宏,包括

//原型和声明;

其中rfIsr对应于宏中的 f(void),类似于指向其自身HAL_ISR_FUNCTION()。

(二)关于basicRfSendPacket()

/*********************************************************************************** * @fn basicRfSendPacket *

* @brief Send packet *

* @param destAddr - destination short address //目的地址; * pPayload - pointer to payload buffer. This buffer must be

* allocated by higher layer. //需要MAC层以上产生要发送的数据(指针或数组); * length - length of payload //要发送数据的长度;

* txState - file scope variable that keeps tx state info //发送状态信息; * mpdu - file scope variable. Buffer for the frame to send //对数据进行封包为物

理层协议数据单元; *

* @return basicRFStatus_t - SUCCESS or FAILED */

uint8 basicRfSendPacket(uint16 destAddr, uint8* pPayload, uint8 length) {

uint8 mpduLength; uint8 status;

// Turn on receiver if its not on

//保证设备处于接收状态,其初始值在halRfInit()中开启接收并在basicRfInit()中被赋值为TRUE;

if(!txState.receiveOn) { halRfReceiveOn(); }

// Check packet length

//取最小的有效数据长度,类似与可变长度域,可变长度值是很有用的例如:串口透传的数据长度;

//最大数据载荷为

//#define BASIC_RF_MAX_PAYLOAD_SIZE (127 -

BASIC_RF_PACKET_OVERHEAD_SIZE - BASIC_RF_AUX_HDR_LENGTH - BASIC_RF_LEN_MIC)

//后面两项为安全选项的附加信息,可根据需要自行调整; length = min(length, BASIC_RF_MAX_PAYLOAD_SIZE);

// Wait until the transceiver is idle

//根据SFD和TX_Active 状态位来判定设备是否处于空闲状态; //SFD状态位为0说明设备目前无发送无接收;

halRfWaitTransceiverReady();

// Turn off RX frame done interrupt to avoid interference on the SPI interface

//防止2591冲突??? halRfDisableRxInterrupt();

mpduLength = basicRfBuildMpdu(destAddr, pPayload, length); //根据目的地址、载荷数据及长度信息进行封包;

#ifdef SECURITY_CCM

halRfWriteTxBufSecure(txMpdu, mpduLength, length, BASIC_RF_LEN_AUTH, BASIC_RF_SECURITY_M);

txState.frameCounter++; // Increment frame counter field #else

halRfWriteTxBuf(txMpdu, mpduLength); //使用ISFLUSHTX()清空TXFIFO 并清除IRQ_TXDONE中断溢出标志位,将MPDU一个字节一个字节的写入RFD; #endif

// Turn on RX frame done interrupt for ACK reception

//仅仅是始能接收中断,为发送完成后自动进入接收模式 接收 ACK做准备性工作;

//仅作为发送节点且不启用ACK的话,这部分语句都可以省略去; halRfEnableRxInterrupt();

// Send frame with CCA. return FAILED if not successful

//仅仅进行数据发送并没有进行CCA(比较坑爹的注释,事实是自己也没怎么仔细看- -!);

//若发送前进行CCA,需要ISSAMPLECCA 再进行ISTXONCCA 判断CCA标志位的值进行后续操作;

if(halRfTransmit() != SUCCESS) { status = FAILED; }

// Wait for the acknowledge to be received, if any //如果启用ACK,则在发送完成后进行进行等待580μs

//实际测试中发送7个字节的数据,两个节点先后发送A和B两个数据帧,两个数据帧的间隔大概需要不小于440μs+580μs+330μs (粗略估计^_^)的时间间隔Sniffer才能捕捉到A的应答帧(这些多出的时间 由节点程序准备和结束时间?)可以确定的是接受节点接收先后两个数据帧的时间间隔要大于580μs,时间间隔太短不能正确接收后一个数据帧,可以通过启用CCA解决这个冲突;

if (pConfig->ackRequest) { txState.ackReceived = FALSE;

// We'll enter RX automatically, so just wait until we can be sure that the ack reception should have finished

// The timeout consists of a 12-symbol turnaround time, the ack packet duration, and a small margin

halMcuWaitUs((12 * BASIC_RF_SYMBOL_DURATION) +

(BASIC_RF_ACK_DURATION) + (2 * BASIC_RF_SYMBOL_DURATION) + 10);

// If an acknowledgment has been received (by RxFrmDoneIsr), the ackReceived flag should be set

status = txState.ackReceived ? SUCCESS : FAILED;

} else { status = SUCCESS; }

// Turn off the receiver if it should not continue to be enabled //如果不需要继续接收则关闭接收 if (!txState.receiveOn) { halRfReceiveOff(); }

if(status == SUCCESS) { txState.txSeqNumber++; }

#ifdef SECURITY_CCM

halRfIncNonceTx(); // Increment nonce value #endif

return status; }

根据以上basicRfSendPacket()基本流程:确保设备处于接收状态→确认数据有效长度→等待设备处于发送空闲状态→构建

LEN+MPDU→LEN+MPDU写入TXFIFO→始能接收中断→执行发送选通命令进行数据发送→如果要求有ACK应答,则延时等待ACK→关闭接收状态; 另外从上述流程中可以看出,将数据写入TXFIFO并不进行数据的发送,需要通过相关的选通命令在启动发送!!

其中basicRfSendPacket()调用basicRfBuildMpdu()对上层(通常为应用层)产生的数据进行封包操作,介绍basicRfBuildMpdu()之前简单介绍下802.15.4数据帧结构。

图2

以数据帧为例:

MAC的上层产生Payload作为 MAC Payload,即:MSDU; MPDU = MHR + MAC Payload + MFR,即:PSDU;

PPDU = SHR + PHR + MPDU ;//PHR+MHR+MAC Payload 需要写入TXFIFO,SHR和MFR(AUTOCRC = 1时)硬件自动完成;

802.15.4数据帧结构简单介绍完毕,更具体的参见802.15.4协议文档,下面恢复正题;

/*********************************************************************************** * @fn basicRfBuildMpdu *

* @brief Builds mpdu (MAC header + payload) according to IEEE 802.15.4

* frame format //根据802.15.4协议的帧结构 构建 MPDU(MAC帧头+净载荷数据,而由于AUTOCRC = 1则FCS不必手动写入TXFIFO,可以忽略但空间长度需要保留);

*

* @param destAddr - Destination short address //目的地址; * pPayload - pointer to buffer with payload //净载荷数据buffer; * payloadLength - length of payload buffer //净载荷数据长度; *

* @return uint8 - length of mpdu //MPDU的长度= MAC Hdr + MAC Payload;

*/

static uint8 basicRfBuildMpdu(uint16 destAddr, uint8* pPayload, uint8 payloadLength)

{

uint8 hdrLength, n;

hdrLength = basicRfBuildHeader(txMpdu, destAddr, payloadLength); //构建lEN+MHR,见下面代码;

//将净载荷数据放置于 MHR 后 组成MPDU; for(n=0;n

txMpdu[hdrLength+n] = pPayload[n]; }

return hdrLength + payloadLength; // total mpdu length }

/***********************************************************************************

* @fn basicRfBuildHeader *

* @brief Builds packet header according to IEEE 802.15.4 frame format

* //根据802.15.4 协议构建 帧头;

* @param buffer - Pointer to buffer to write the header //MPDU的buffer;

* destAddr - destination short address //目的短地址; * payloadLength - length of higher layer payload //载荷数据长度;

*

* @return uint8 - length of header //帧头长度; */

static uint8 basicRfBuildHeader(uint8* buffer, uint16 destAddr, uint8 payloadLength)

{

basicRfPktHdr_t *pHdr; //帧头指针; uint16 fcf; //存储帧控制域相关信息 变量;

pHdr= (basicRfPktHdr_t*)buffer; //帧头buffer 指向 MPDU buffer;

// Populate packet header //将相关信息 存至 帧头buffer; //帧头长度定义为

//#define BASIC_RF_PACKET_OVERHEAD_SIZE ((2 + 1 + 2 + 2 + 2) + (2))

//其对应关系为((FCF+SeqNum+PANID+DestAddr+SrcAddr)+(FCS)) //然后将帧头信息 赋值给帧头 buffer; pHdr->packetLength = payloadLength + BASIC_RF_PACKET_OVERHEAD_SIZE;

//pHdr->frameControlField = pConfig->ackRequest ? BASIC_RF_FCF_ACK : BASIC_RF_FCF_NOACK;

fcf= pConfig->ackRequest ? BASIC_RF_FCF_ACK : BASIC_RF_FCF_NOACK;

pHdr->fcf0 = LO_UINT16(fcf); pHdr->fcf1 = HI_UINT16(fcf);

pHdr->seqNumber= txState.txSeqNumber; pHdr->panId= pConfig->panId; pHdr->destAddr= destAddr; pHdr->srcAddr= pConfig->myAddr;

#ifdef SECURITY_CCM

// Add security to FCF, length and security header pHdr->fcf0 |= BASIC_RF_SEC_ENABLED_FCF_BM_L; pHdr->packetLength += PKT_LEN_MIC;

pHdr->packetLength += BASIC_RF_AUX_HDR_LENGTH;

pHdr->securityControl= SECURITY_CONTROL;

pHdr->frameCounter[0]= LO_UINT16(LO_UINT32(txState.frameCounter));

pHdr->frameCounter[1]= HI_UINT16(LO_UINT32(txState.frameCounter));

pHdr->frameCounter[2]= LO_UINT16(HI_UINT32(txState.frameCounter));

pHdr->frameCounter[3]= HI_UINT16(HI_UINT32(txState.frameCounter));

#endif

// Make sure bytefields are network byte order

//高低位变换;无线电数据传输为先低位后高位,这样做是在为无线传输做准备??

UINT16_HTON(pHdr->panId); UINT16_HTON(pHdr->destAddr); UINT16_HTON(pHdr->srcAddr);

return BASIC_RF_HDR_SIZE; }

阅读(441)| 评论(0)

本文来源:https://www.bwwdw.com/article/ogmv.html

Top