高等数学方明亮版第十章答案

更新时间:2024-03-11 17:02:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

高等数学方明亮版第十章

习题10.1

1. 写出下列级数的前五项:

?1?3??(2n?1)n(1)?; (2)?; 2n?12?4??(2n)n?1(2?n)?n!(?1)n?1(3)?; (4)?. n10n(n?1)n?1n?112345解 (1)2?2?2?2?2??

3456711?31?3?51?3?5?71?3?5?7?9????? (2) ?22?42?4?62?4?6?82?4?6?8?1011111?????? (3)

10203040501!2!3!4!5!(4)1?2?3?4?5??.

23456??2. 写出下列级数的一般项: (1)

111????; 2461aa2a3?????; (2)

1?53?75?97?1135791113????; (3) ????149162536xxxxx2????? (x?0). (4) 22?42?4?62?4?6?8解(1)因为

1111111??,因此一般项un?,?,? 21?242?263?22n1a0aa1 (2) 因为 , ??1?5(2?1?1)?(2?1?3)3?7(2?2?1)?(2?2?3)a2a2an?1 ??因此一般项un?5?9(2?3?1)?(2?3?3)(2n?1)(2n?3)(3) 因为

3(2?1?1)572(2?2?1)3(2?3?1)?(?1)1??(?1)? ,?(?1),11?1492232n(2n?1)因此一般项un?(?1) 2n?

(4)因为

xxxxxxx???, ?,,

21?22?42?42?4?62?4?6122232因此一般项un?xxx?n?n.

2?4?6??(2n)2(1?2?3??n)2n!1;

(2n?1)(2n?1)n?1?n2n2n23. 判定下列级数的敛散性:

(1)?(n?1?n); (2)?n?1?111??????; 1?22?3n(n?1)π2πnπ???sin??; (4)sin?sin666(3)

(5)?(n?2?2n?1?n); (6)

n?1?1111??3?4??; 3333(7)(?)?(111111?)????(?n)??; 22n32323213572n?1??; (8)??????35792n?1(9)?(2n?1a?2n?1a) (a?0);

n?1?11解(1)因为

1?(10)

1?111??????. 12131n(1?)(1?)(1?)23nSn?(2?1)?(3?2)?(4?3)???(n?1?n)?n?1?1 当n??时,Sn??,故级数发散. (2)因为

1111?(?)

(2n?1)(2n?1)22n?12n?1Sn?1111????? 1?33?55?7(2n?1)(2n?1)111111?[(1?)?(?)??(?)] 23352n?12n?111?[1?], 22n?1

当n??时,Sn?(3) 因为

1,故级数收敛. 2111, ??n(n?1)nn?1Sn?1111 ?????1?22?33?4n(n?1)111111?(1?)?(?)??(?)?1?

223nn?1n?1当n??时,Sn?1,故级数收敛.

?2?3?n??sin?sin???sin 66661???2??3??n??(2sinsin?2sinsin?2sinsin???2sinsin)?1261261261262sin121?3?3?5?2n?12n?1?[(cos?cos)?(cos?cos)???(cos??cos?)]?1212121212122sin121?(2n?1)??[cos?cos]

?12122sin122n?1?不存在,所以limSn不存在,因而级数发散. 由于 limcosn??n??12(4)因为 Sn?sin(5)因为

n?2?2n?1?n?(n?2?n?1)?(n?1?n)

Sn?[(3?2)?(2?1)?(4?3)?(3?2)?(5?4)?(4?3)???(n?2?n?1)?(n?1?n)]

?(n?2?n?1)?(2?1)?1?(2?1)

n?2?n?1当n??时,Sn?1?2,故级数收敛. (6) 该级数的一般项un?可知,该级数发散.

1n3?3?1n故由级数收敛的必要条件?1?0(n??),

??1111111111(7) (?)?(2?2)?(3?3)???(n?n)??n??n

32323232n?13n?12?111q??1该级数为公比的等比级数,该级数收敛,而该级数为公比??nn332n?1n?1??111q??1的等比级数,该级数也收敛,故?n??n也为收敛级数.

2n?13n?12?(8) 该级数的一般项un?2n?12?1??1?0(n??),故由级数收敛的2n?12n?1必要条件可知,该级数发散.

(9) 因为 Sn?(3a?a)?(5a?3a)???(2n?1a?2n?1a)?2n?1a?a 当n??时,Sn?1?a,故该级数收敛. (10) 该级数的一般项un?111?[(1?)n]?1??0(n??),故由级数1ne(1?)nn收敛的必要条件可知,该级数发散. 4. 证明下列级数收敛,并求其和:

1111???????. 1?44?77?10(3n?2)(3n?1)证 Sn?1111????? 1?44?77?10(3n?2)?(3n?1)11111111?[(1?)?(?)???(?)]?(1?) 34473n?23n?133n?1当n??时,Sn??1,故该级数收敛,且 311. ??(3n?2)?(3n?1)3n?15.若级数

?un?1?n与

?vn?1?n都发散时,级数

?(un?1?n?vn)的收敛性如何?若其中一个

收敛,一个发散,那么,级数

?(un?1?n?vn)收敛性又如何?

解 若级数分别为

?un?1?n?1?1?1???(?1)n?1??;(发散)

?vn?1?n(发散) ??1?1?1???(?1)n??;

??则级数

?(un?1?n?vn)显然收敛;但是如果另外有级数?wn??un,则级数

n?1n?1?(un?1?n即两个发散的级数相加减所得级数可能收敛,也可能发散。 ?wn)显然发散。

???若其中一个级数

??un?1n收敛,另一个

???vn?1n发散,则

?(un?1n?vn)肯定发散.

若不然,?(un?vn)收敛,则?vn??(un?vn)??un应该收敛,与假设矛盾.同理,

n?1n?1n?1n?1?若?(un?vn)收敛, 则??vn??(un?vn)??un应该收敛,与假设矛盾.

n?1n?1n?1n?1????

习题10.2

1. 用比较判别法或其极限形式判定下列各级数的敛散性: (1)

1111???????; 2?53?64?7(n?1)?(n?4)111????; 357(2)1+

(3)?1111??????; 222135(2n?1)2(sin2)2(sin4)2(sin2n)??????; (4)2n666(5)

111?????? (a?0). n1?a1?a21?a(6)sinππππ?sin?sin???sinn??. 2482

1n2(n?1)(n?4)?lim2?1 解(1)由于limn??n??n?5n?41n2而级数

1收敛,由比较判别法的极限形式,故原级数收敛. ?2n?1n?1n1(2) 由于lim2n?1?lim?,

n??n??2n?112n而级数

1发散,由比较判别法的极限形式,故原级数发散. ?nn?1?1n21(2n?1)2?lim()? (3)由于limn??n??2n?114n2而级数

1收敛,由比较判别法的极限形式,故原级数收敛. ?2nn?1??1(sin2n)211q??1的等比级数,该级数收? (4)un?,而为公比?nnn666n?16(sin2n)2敛,由比较判别法,故级数 ?也收敛. n6n?1???1111? (5)当 a?1时,un?,而收敛,故收敛 ??nnnn1?aan?1an?11?a?11?,a?1 当 0?a?1时,limun?lim ??2n??n??1?an??1,0?a?1

un?0,故 limn??1发散. ?nn?11?a?

??sinnn22 (6)由于 lim?lim????,

n??n??1?2n2nsin?1?而?n收敛,故?sinn也收敛.

2n?12n?1?2. 用比值判别法判别下列级数的敛散性: (1)1?(2)3?(3)sin?45n?2??????; 23n33332?2!22?33?3!313???3n?n!n1n??;

11?2?sin2?3?sin3???nsinn??; 2222?lnn(n!)2(4)?; (5); n(3n)!n2n?1n?1??nnn2(6)?; (7)?n.

n!n?1n?13?un?1n?2n?33n1n?31解(1)un?,lim?lim??lim???1,

n??un??3n?1n??3nn?23n?23n故该级数收敛.

3n?n! (2)un?,

nnun?13n?1(n?1)!nnnn1n3lim?lim??lim3()?3lim(1?)??1 nn??un??(n?1)n?1n??n??n?1n?1e3n!n故该级数发散. (3) un?nsin1, 2nulimn?1?limn??un??n故该级数收敛.

(n?1)sin12n?1?lim2n?1n??11nsinn22n?1sin11nn?112????1, 12n2sinn2(n!)2(4) un?,

(3n)!

un?1[(n?1)!]23n!(n?1)2lim?lim??lim?0?1, n??un??[3(n?1)]!(n!)2n??(3n?1)(3n?2)(3n?3)n故该级数收敛. (5)un?lnnn2n,

un?1ln(n?1)n2n1ln(n?1)n1lim?lim??lim???1, n?1n??un??n??lnn2lnnn?12n?12n故该级数收敛.

nn(6)un?,

n!un?1(n?1)n?1n!n?1n1lim?lim?n?lim()?lim(1?)n?e?1, n??un??(n?1)!n??n??nnnn故该级数发散.

n2(7)un?n,

3un?1(n?1)23n1n?121lim?limn?1?2?lim()??1, n??un??n??3n33nn故该级数收敛.

3. 用根值判别法判定下列各级数的敛散性:

?nn12(1) ?(); (2)?(1?)n;

nn?15n?2n?1?n?2n2)??3nn(3)? ; (4); nn1?e2n?1n?1?b(5)?()n,其中an?a(n??),an,b,a均为正数;

n?1an(??x?(6)???a??n?1?n??n(x?0,liman?a,an?0).

n??解(1)由于limnun?limn(n??n??nnn1)?lim??1,

n??5n?25n?25故该级数收敛.

1n21n(2) 由于limun?lim(1?)?lim(1?)?e?1,

n??n??n??nnnn故该级数发散.

(3) 由于

limnun?limn??n??n(n?2n22)(1?)n12ne2nn?lim?lim(1?)??1, nn??n??22n22故该级数发散.

n33(4) 由于limnun?limn??1,故该级数发散.

n??n??1?ene(5) limnun?limn(n??n??bnbb)?lim?

n??ananabb?1,即b?a,该级数收敛;当?1,即b?a,该级数发散; aab当?1,即b?a,不能判断. a当

(6) limnun?limn(n??n??xnxx)?lim?

n??aananxx?1,即x?a,该级数收敛;当?1,即x?a,aa1)当a?0时,该级数发散 2)当0?a??时,有当该级数发散;

x?1,即x?a,根值法不能判断. a4. 判别下列级数的敛散性:

??3323334n(1)?2()?3()?4()??; (2)(n?1)sinn;

44442n?1?1111?sin)???(?sin)??; 22nn222(4)ln(1?2)?ln(1?2)?ln(1?2)??;

123???2n(5)2?sin?2?sin2???2?sinn??;

333(3)(1?sin1)?(

(6)

?n?1?ncos22n34n?11??3; (7)(en?en?2).

?n?1nn解(1)un?n(),limnun?limnn()?limnn?n??n??n??3433??1, 44故该级数收敛. (2)un?(n?1)nsin?2n,limnun???,,所以发散.

n??11113!1?sin??3?o(3)11n?limnnnn?0,故该级数收敛. (3) un??sin,limnn??11nnn??n2n2(4) un?ln(1?222)ln(1?)~(n??), ,因 222nnn22ln(1?2)2nn故lim?lim?2,

n??n??11n2n2而

1收敛,故该级数收敛. ?2n?1nn??2n2n(5) un?2sinn,因sinn?n,有2sinn?()?,?()?收敛,

33333n?13n????由比较收敛法,故该级数收敛.

ncos2(6) un?n?n?ncos23?n,limnn?1?1, 3,因

2n2n2nn??2n2而级数

n收敛,由比较收敛法,故该级数收敛. ?n2n?11?n?(7) un?e?e1n?2, lime?e?2?1(由罗比达法则),故该级数收敛.

n??1n21n?1n5.判别下列级数是否收敛?若收敛的话,是绝对收敛还是条件收敛? (1)

?(?1)n?1?n?11n; (2)

?(?1)n?1n?1?1; nn8

(3)

?(?1)n?1?n?1?n?11; sin3; (4)?(?1)n?1lnnnn?11111?????(a不为负整数); 1?a2?a3?a4?a1111(6)?????;

ln2ln3ln4ln51?212?213?214?21?????????; (7)?1?112?123?134?14(5)?(8)

1?1?1?sin?sin?sin??; ?22?33?44112(9)sin?sin122?sin132?sin?142??.

为交错级数,且un?un?1,limun?0,

n??解 (1)un?(?1)n?11n,显然

??un?1?n故该级数收敛,又因为

?un??n?1n?11n??n?1?1n12是p?级数,p?1?1, 2故

?un?1?n发散,即原级数是条件收敛.

?111(2) 因为?un??n,nun?n??1,故?un收敛,即原级数是绝n8n8n8n?1n?1n?1??对收敛。

1????311n(3) 因为?un??sin3,lim?1,而?3收敛,故?un收敛,即原

n??1nn?1n?1n?1nn?13nsin级数是绝对收敛。 (4) un?(?1)n?1?n?1ln,显然?un为交错级数,且

nn?1n?1n?2?ln?un?1,limun?0,故该级数收敛。

n??nn?11ln(1?)???n?1?11n又因为 ?un??ln??ln(1?),lim?1而?发散,故

n??1nnn?1n?1n?1n?1nnun?ln

?un?1?n发散,即原级数是条件收敛.

?1(5) un?(?1),显然?un为交错级数,且

n?an?1nun?11??un?1,limun?0,故该级数收敛;

n??n?a(n?1)?a1????11n?a又因为 ?un??,lim?1而?发散,故?un发散,即原级

n??1n?an?1n?1n?1nn?1n数是条件收敛. (6) un?(?1)n?1?1,显然?un为交错级数,且

ln(1?n)n?1un?11??un?1,limun?0,故该级数收敛,

n??ln(1?n)ln(2?n)又因为

?un??n?1?111?,因un?,由比较收敛法,而

ln1(?n)1?n1?n)n?1ln(??1发散,故?un发散,即原级数是条件收敛. ?1?nn?1n?1?n?21?(7) un?(?1),显然?un为交错级数,且 n?1nn?1n?un?n?21n?31????un?1,limun?0,故该级数收敛,又因为

n??n?1nn?2n?1?n?2111,因limu???(1?)????nn??n?1nn?1nn?1n?1n?1??(1?11)?n?1n?1,由比较

1n收敛法,而

?n?1?1n发散,故

?un?1?n发散,即原级数是条件收敛.

(8) 因为

?un??n?1n?1???1?sinn?1?n?1,因sin?n?1?1 ,而

1?sinn?1?n?1?1?n?1,

??n?1?1n?1收敛,故

?un?1n收敛,即原级数是绝对收敛。

1???21n(9) 因为 ?un??sin2,lim?1,故?un收敛,即原级数是绝对收

n??1nn?1n?1n?1n2sin敛。

习题 10.3 1. 求下列幂级数的收敛域:

xx2x3x4(1)x?2x?3x??; (2)??2?2?2??;

123422223xx2x32???; (4)2x?2x?2x3??; (3)?22?42?4?61?12?13?1xx2x3x4?????; (5)

2?1!22?2!23?3!24?4!23xx2x3x4?????; (6)

1?32?323?334?34(7)

?(?1)n?1??n?1n?x2n?1n?1(x?1); (8)?(?1); (2n?1)!nn?1?(x?5)n2n?12n?2(9)?; (10)?. xn2nn?1n?1解 (1)un?nxn,an?n,??liman?1n?1?lim?1,

n??an??nn所以收敛半径R?1??1

?当x?1时,原级数为

?n,limn???0,该级数发散

n?1n??当x??1时,原级数为

nnlim(?1)n???0,该级数发散 ,(?1)n??n?1n??因而该级数的收敛域为 (?1,1).

an?1xnn2n1,an?(?1)2,??lim(2) un?(?1)?lim?1, 22n??n??nnan(n?1)n所以收敛半径R?1??1.

?(?1)n当x?1时,原级数为?,为交错级数,该级数收敛. 2n?1n当x??1时,原级数为

1,该级数也收敛, ?2nn?1?因而该级数的收敛域为 [?1,1].

xn1(3)un?,an?,

2?4?6?(2n)2?4?6?(2n)??liman?12?4?6?(2n)1?lim?lim?0,

n??an??2?4?6?(2n)?(2n?2)n??2n?2n1故收敛半径R?????,因而该级数的收敛域为 (??,??).

2n2nnx,an?2, (4) un?2n?1n?1an?12n?1n2?12(n2?1)??lim?lim?n?lim?2, 2n??an??(n?1)2?1n??2(n?1)?1n所以收敛半径R?1??1. 2??12n1n1当x?时,原级数为?2,该级数收敛. ?()??222n?1n?1n?1n?1?1(?1)n当x??时,原级数为?,该级数也收敛, 22n?1n因而该级数的收敛域为 [?11,]. 22

xn1,an?n,, (5)un?n2?n!2?n!an?12n?n!1??lim?limn?1?lim?0,

n??an??2n??2(n?1)?(n?1)!n故收敛半径R?1????,因而该级数的收敛域为 (??,??).

an?111n?3n1nx,a?,(6) un?, ??lim?lim?nn??an??(n?1)?3n?1n?3nn?3n3n所以收敛半径R?1??3.

当x?3时,原级数为

1,该级数发散. ?nn?1??(?1)n当x??3时,原级数为?,该级数为交错级数,收敛,

nn?1因而该级数的收敛域为 [?3,3).

(7) 因为该级数缺少偶次幂,我们根据比值审敛法来求收敛半径

un?1x2n?1(2n?1)!x2lim?lim??2n?1?lim?0, n??un??(2n?1)!n??2n?(2n?1)xn因而该级数的收敛域为 (??,??).

n(x?1)n1n?1t,an?(?1)n?1, ,令t?x?1,则un?(?1)nnn(8) un?(?1)n?1??liman?1n1?lim?1,收敛半径R??1,有 x?1?1,即0?x?2

n??an??n?1?n?(?1)2n?1?(?1)当x?0时,原级数为?,该级数发散. ??nn?1n?1n

(?1)n?1当x?2时,原级数为?,该级数为交错级数,收敛.

nn?1?因而该级数的收敛域为 (0,2]

(9) 因为该级数缺少奇次幂,我们根据比值审敛法来求收敛半径

un?1(2n?1)x2n2n(2n?1)x2x2. lim?lim???lim?n?12n?2n??un??n??2?(2n?1)22(2n?1)xnx2?1,即?2?x?2时,该级数收敛. 当2x2?1,即x?2时,该级数发散. 当2当 x?2时,原级数为?2n?1,该级数发散. 2n?12n?1,该级数发散. ?2n?1??当 x??2时,原级数也为

因而该级数的收敛域为 (?2,2). (10) un?(x?5)nn,令t?x?5,则un?tnn,an?1n

??liman?11n?lim?1,收敛半径R??1,有 x?5?1,即4?x?6

n??an???n?1n当x?4时,原级数为

?n?1??(?1)nn1n,该级数为交错级数,收敛.

当x?6时,原级数为

?n?1,该级数发散.

因而该级数的收敛域为 [4,6).

2. 利用逐项求导或逐项积分,求下列级数在收敛区间内的和函数: (1)1?2x?3x?4x??; (2)

23?(?1)n?1?n?1nxn?1;

?)?x4n?1(31.

n?14n?(4)x?x33?x55???,并求?1的和n?1(2n?1)2n.

解(1)由于

?x??n?1?xn?1?0nxdx???nxdx??xn?xn?1n?10n?11?x. 故有

??nxn?1?(x1?x)??1(1?x)2(?1?x?1).

n?1?x?(?1)n?1nxn?1?dx?x?(2) 由于

0?1)n?1nxn?1dx??1)n?1xn?xn?1?n?1?0(??(n?11?x. ?故有

?(?1)n?1nxn?1?(x?1(?1?x?1).

n?11?x)?(1?x)2?x4n?1?x4n?1?(3) 由于 (?)???()??4nx4(?1?x?1).

n?14n?1n?14n?1?x?n?11?x4?x4n?1?xx4故有 ?11?x1n?14n?1?01?x4dx?4ln1?x?2arctanx?x(?1?x?1).

?(?x2n?1?)??(?1?x?1),

n?12n?1?(x2n?1?(4) 由于 )??n?12n?1?x2n?2?1n?11?x2?故有 ?x2n?12n?1??x111?x01?x2dx?2ln1?x(?1?x?1),令x?1, 得

n?1212n?1??1?(1)2n?()n?1(2n?1)2n??2n?1(2n?1)?12??2n?1(2n?1) 1?1?1122?2ln?2ln(1?2)(?1?x?1)1?122习题 10.4

1. 求下列函数的麦克劳林公式:

.

(1)f(x)?xex; (2)f(x)?cos2x;

x2x3xn?1e?xn解 (1)e?1?x??????x2!3!(n?1)!n!xx2(0???1).

x3x4xne?xn?1f(x)?xe?x?x??????x2!3!(n?1)!n!(0???1).

1214(?1)n2n(2) 因为 cosx?1?x?x???x?o(x2n).

2!4!(2n)!11(?1)n24则有 cos2x?1?(2x)?(2x)???(2x)2n?o(x2n)

2!4!(2n)!24(?1)n22n2n?1?2x?x???x?o(x2n).

3(2n)!22. 求下列函数展开成关于x的幂级数,并求收敛区域:

(1)ln(a?x)(a?0); (2) ax; (3)

12; (4)sinx; 2x?3x?2x; 2(5)cos解 (1) ln(a?x)?ln[a(1??xx)]?lna?ln(1?) aa(?1)n?1n由于 ln(1?x)??x,

nn?1?x(?1)n?1xn()则有 ln(a?x)?lna?ln(1?)?lna??anan?1x?(?a,a]

?xn(xlna)nxxlna(2) 因为 e??,a?e??n!n?0n!n?0x?x?(??,??)

(3)

11111?????2(x?1)(x?2)x?1x?2x?1x?3x?2?nn1 x2(?1)2(?1?x?1).

?1?1nxnnn ??(?1)x??(?1)()??(?1)(1?n?1)x2n?022n?0n?0

2n1111?n2(4)sinx??cos2x???(?1)x2n 2222n?0(2n)!222n?12n??(?1)x(2n)!n?1?nx?(??,??).

?1214(?1)n2n(?1)n2n (5) 因为 cosx?1?x?x???x????x

2!4!(2n)!cosx1x21x4(?1)nx2?1?2!(2)?4!(2)???(2n)!(2)2n?????(?1)n(x)2nx???).

n?0(2n)!2(???3. 将f(x)?lgx展开为关于x?1的幂级数. 解 lgx?lg[1?(x?1)]?ln[1?(x?1)]ln10

?1?(?1)n?1ln10?(x?1)n(0?x?2).

n?1n4. 将f(x)?1x2?5x?6展开为x?2泰勒级数. 解 f(x)?1111x2?5x?6?(x?2)(x?3)?x?2?x?3?14?(x?2)?15?(x?2)

114?(x?2)?14[]?11?(x?2)4??(?1)n(x?2)n

n?0441???(?1)n1n(x?2)n4x?2?4);

n?04(115?(x?2)5[1]?11?(x?2)5???(?1)n(x?2)nn?055

n?0(2n)!

1?1??(?1)nn(x?2)n5n?05(x?2?5);

?111因此 f(x)?2??(?1)n(n?1?n?1)(x?2)nx?5x?6n?045(x?2?4).

5. 将函数cosx展开成x?解 cosx?cos[(x??的幂级数. 3?)?]?cos(x?)cos?sin(x?)sin 333333?????1?3??cos(x?)?sin(x?) 23231(?1)n?2n?0?(x???3(2n)!)2n?33(?1)n?1 ?2n?1(2n?1)!3(x??(x??)2n?1?6. 将

13(?1)n[?2n?0(2n)!?(x??)2n??3(2n?1)!)2n?1](???x???).

1展开成关于x?4的幂级数. x21111111?x?4n?()??()???(), 解 ?x?4xx?4?44x?444n?04?11?44给上式左右两边同时求导数,得

11?x?4n1?x?4n1?n ?2??[?()]????[()]????n(x?4)n?1

4n?044n?044n?14x?1nn?1所以 2??n?1(x?4)xn?14xa(x?4?4).

7. 将e展开为x?a的幂级数.(a?0). 解 因为

e?exax?a?1a?e?ex?aa?e??1x?an?()n!an?0?

eee2?e?(x?a)?(x?a)???(x?a)n??(???x???) 2na2!an!a

习题10.5

1. 求下列各数的近似值,精确到10: (1)e;(2)5240;(3)

0.5sinx1dx;(4)?0x? 01?x4dx. 1?4x2x3xn?????? 解(1)e?1?x?2!3!n!xe?1?1?111111??????2.71828 2!3!4!5!6!7!11(2)5240?5243?3?3(1?4)5

31114111240?3(1??4?2??8??)?3(1??4)?2.9926

535352!31sinx11111dx??(x?x3?x5?x7??)dx (3) ?00xx3!5!7!1111??(1?x2?x4?x6??)dx03!5!7!11111??(1?x2?x4)dx?1???0.9461 03!5!3!?35!?50.51dx (4) ?01?x4即得

5

?1因为 ??(?1)nx4n, 41?xn?0??x?x1(?1)nx4n?1n4nn4n ? dx???(?1)xdx???(?1)xdx??01?x4004n?1n?0n?0n?0xn14n?1(?1)()?0.512dx? ??01?x44n?1n?0

计算得

1111?5?0.00625 ?9?0.00028 5292?0.5011dx??0.00625?0.00028?0.4940.

21?x4x2. 利用欧拉公式将esinx展开成x的幂级数.

x2x3xn?????? 解 e?1?x?2!3!n!xsinx?x?x131517x?x?x?? 3!5!7!x2x311e?sinx?(1?x????)?(x?x3?x5??)2!3!3!5! 3x15?x?x2??x??(???x???)330

习题10.6 1. 证明下列各式:

?0, m?n, cosnxcosmxdx????π?π,m?n;π?0,m?n,(2) ?sin nxsimxnxd???ππ,m?n.??1?证明 ?cosnxcosmxdx??[cos(n?m)x?cos(n?m)xdx

??2??1sin(n?m)xsin(n?m)x??[?]???0(m?n) 2n?mn?m(1) π1????cosnxcosnxdx????cosnxdx?2???(cos2nx?1)dx????2(m?n).

1????sinnxsinmxdx?2???[cos(n?m)x?cos(n?m)xdx

?1sin(n?m)xsin(n?m)x??[?]???0(m?n). 2n?mn?m????sinnxsinnxdx??sin2nxdx????1?(1?cos2nx)dx?????2(m?n).

2. 将下列函数展开成以2?为周期的傅立叶级数:

(1)f(x)??x??? , ?π?x?π; (2)f(x)??解 (1) 由于该函数为偶函数,可利用积分的性质:

? ? , ?π?x?? ,

?sinx , ??x?π .a0?an?????1?f(x)dx?????1?(3x2?1)dx?1?22?(?3??)?2(?2?1);

f(x)cosnxdx??(3x???????1??1)cosnxdx

?2???0(?1)n12(3x?1)cosnxdx?n22n?1,2?n?1,2?

bn?1?????f(x)sinnxdx?1?????(3x2?1)sinnxdx?0?a0?(?1)n2故f(x)???(ancosnx?bnsinnx)???1?12?2cosnx.

2n?1n?1n(2) a0?????1?f(x)dx????1?0sinxdx?2?

an?1???f(x)cosnxdx?????10n为奇数?0?; sinx?cosnxdx??21()n为偶数???1?n2?b1?bn?1?1????f(x)sinxdx?1??10sin2xdx??1; 2???f(x)sinnxdx?????0sinx?sinnxdx?0n?2,3?;

a0?112?1故f(x)???ancosnx?bnsinnx??sinx??2cos2nx.

2n?1?2?n?14n?13.将下列函数展开成以2?为周期的傅立叶级数,并分别作出原函数与傅立叶

级数的和函数在 ??π,π?上的图形. (1)f(x)??sinx? 0 , ???x?0 , , ?π?x?π ; (2)f(x)??

sinx , 0?x?? .??解 (1)设F(x)为f(x)周期延拓而得到的新函数,F(x)在(??,?)中连续,

x???是f(x)的间断点,且

[F(???0)?F(???0)]2?f(??),[F(??0)?F(??0)]2?f(?),

故在(??,?)中F(x)的傅里叶级数收敛于f(x),在x???,F(x)的傅里叶级数不收敛于f(x),计算傅里叶系数如下:

因为 f(x)?2sinx3(???x??)是奇函数,所以an?0(n?0,1,2?)

bn?1???f(x)sinnxdx?????4?0x183?(?1)n?1nsin?sinnxdx??3?n?19n2?1n?1,2,3?故f(x)?183?1(?1)n?1nsinnxx?(??,?). ?2n?19n?1?(2) a0??????f(x)dx????1?0sinxdx?2?

an?1???f(x)cosnxdx?????10n为奇数?0?; sinx?cosnxdx??21()n为偶数???1?n2?b1?bn?1?1????f(x)sinxdx?1??10sin2xdx??1; 2???f(x)sinnxdx?????0sinx?sinnxdx?0n?2,3?;

a0?112?1故f(x)???ancosnx?bnsinnx??sinx??2cos2nx.

2n?1?2?n?14n?124.将函数f(x)?2x( 0?x??)分别展开成正弦级数和余弦级数.

解(1)正弦级数

?2x2,x?[0,?]?对f(x)作奇延拓,得 F(x)?? 0,x?0??2x2,x?(??,0)?再周期延拓F(x)到(??,??),易见x??是一个间断点,

F(x)的傅里叶系数为 an?0n?0,1,2?

1bn????f(x)sinnxdx?????2?02?222xsinnxdx?[(3?)(?1)n?3]n?1,2?

?nnn24由于x??处,f(?)?2?2?F(??0)?F(??0),

2(0?x??).

2?22n故f(x)??[(?)(?1)?]sinnx?n?1n3nn34?(2)余弦级数

2对f(x)作偶延拓,得 F(x)?2x,x?(??,?),再周期延拓F(x)到(??,??),

则F(x)在(??,??)内处处连续,且F(x)?f(x),x?[0,?],F(x)的傅里叶系数为:

a0?an?1?1????f(x)dx?2???02x2dx?2?42? 38n2n?1,2?

?????f(x)cosnxdx???02x2cosnxdx?(?1)nbn?0n?1,2?

?(?1)n22故 f(x)???8?2cosnx3n?1n(0?x??).

?

? x , ?1?x?0 ;?

1?

5.设f(x)的周期为2,且f(x)?? 1 , 0?x? ; 使将其展开成傅立

2?

1??1 , ?x?1 .??2

叶级数.

解 a0?1, f(x)dx?xdx?1?dx?(?1)dx??1??1??1??22101120an??f(x)cosn?xdx??xcosn?xdx??cosn?xdx??1(?1)cosn?xdx?1?12101201

?1n?12n[1?(?1)]?22n?sinn?20n?1,2,?.

120bn??f(x)sinn?xdx??xsinn?xdx??sinn?xdx??1(?1)sinn?xdx?1?121??2n?1cos?n?2n?n?1,2,?.

1,k?0,?1,?2,?, 2而在(??,??)上,f(x)的间断点为x?2k,2k?1?1?(?1)n?故f(x)????{[4n?1n2?22sinn?n?1?2cos2]cosn?x?2sinn?x}, n?n?1(x?2k,x?2k?,k?0,?1,?2,?).

2?11?6.将f(x)?x,在(?,)上展开成傅立叶级数,并求级数?的?22(?k??)n??和.

121?2120解 a0?2?f(x)dx?4?xdx?1, 2

an?2?f(x)cos2n?xdx?4?121?2120??2n为奇数?xcos2n?xdx??(n?)2 , ?0n为偶数?bn?0,n?1,2,?,

12故f(x)??24?cos2(2n?1)?x?(2n?1)2n?0??(?11?x?). 2212令上式x?0,有?24??1?0, ?2(2n?1)n?01?2因此 ?. ?28k?0(2k?1) 习题10.7

1. 设篮球架上的篮筐到地面的距离为3.05m,一学生投篮未进,篮球落到地面后

反弹到原来高度的40%处,落地后又反弹,后一次反弹的高度总是前一次高度 的40%. 这样一直反弹下去,试求篮球反弹的高度之和. 解 设第n次的反弹高度为xn,根据题意

x1?3.05,x2?3.05?44?2,x3?3.05?()2?2,?, 10104xn?3.05?()n?1?2,?

10则篮球反弹的高度之和

S?x1?x2?x3???xn??

444?2?3.05?()2?2???3.05?()n?1?2?? 1010104444?2?[1??()2???()n?1??] ?3.05?3.05?10101010 ?3.05?3.05? ?3.05?3.05?2?4?10141?10?7.12.

即篮球的反弹高度之和为7.12m.

2. 2000年保险公司可以保证预定年利率一直是6.5%,几十年不变. 某人每年在保险公司存入1000元(每年按复利计算). 试求(1)10年后,投资额累积(即本息和)是多少?(2)要存入多少年后才能存到10万元? 解(1)由题意可知

2001年本息和是1000(1?0.065)?1000

2002年本息和是1000(1?0.065)?1000(1?0.0065)?1000 …

922010年本息和是1000n(1?0.065)?14371.56(元) ?n?0(2) 由题意可知

k 1000?(1?0.065)n?0kn?10?104

?(1?0.065)n?0n?100 k?31.2(年)

本章复习题四、计算题

1.判断下列级数的敛散性:

A

?n?2n?(1)?(1?cos) (p?0); (2)?n; nn3?2n?1n?1πsin??n3n?1k?n (3)?(?1)(k?0); (4)?; 2nnn?1n?1?p(?1)n (5)?; (6)

n?sinnn?1?n?1??2nn!nn.

?(?1)n?1π(7)?; (8)?n?tann.

2n?1n?1n?lnn? 2. 求下列级数的收敛域:

?(?1)nx?1n12n?3(1); (2)?(?1)n. x()n2x?12nn?2n?1n3. 求下列级数的收敛区间:

??x2n12(1)?; (2)?(1?)?nxn.

nn?1(2n?1)(2n)n?14. 求下列幂级数的收敛区间和收敛半径:

??(1)??(x?1)2nn?32nn?13n?(?2)n; (3)?(x?1)n;

nn?1?5. 将函数f(x)?6. 将函数f(x)?11?x1ln?arctanx?x展成为关于x的幂级数. 41?x2x29?x7. 求下列幂级数的收敛域及和函数.

?n展成x的幂级数.

?n2n(1)?n(n?1)x; (2)?x.

n?1n?1n!四.计算题解答

1.判断下列级数的敛散性: (1)因为1?cos?n?2sin2?2n,而n??时,sin?2n~?2n,

当p?11时,该级数收敛,当0?p?时,该级数发散。

22n2nnn2nu?lim?lim??1 (2)un?n,nnn??n??n3333?2()n?1()n?122故该级数收敛。

?(3)

?(?1)n?1n?1k?n(k?0) n2

该级数为交错级数,且un?故该级数收敛,

k?nk?(n?1)??un?1,limun?0,

n??n2(n?1)2????k?n111又因为 ?un??2?k?2??,而?发散,故?un发散,

n?1n?1nn?1nn?1nn?1nn?1??即原级数是条件收敛.

sin(4)由于un??3n,

nsin?nn?1un?13lim?lim?n??un??n?1nn?1n1n133?lim????1,

?n????3n?13sinnsin33n?13nsin??故该级数收敛。

(5)该级数为交错级数,且un?11??un?1,

n?sinn(n?1)?sin(n?1)limun?0,故该级数收敛,

n?????111又因为 ?un????,而?发散,故?un发散,即原级

n?sinnn?1n?1n?1nn?1nn?1??数是条件收敛.

un?12nn!2n?1(n?1)!nnnn2(6)由于un?n, lim?lim??lim2?()??1,n?1nn??n??n??nunn?1e(n?1)2n!故该级数收敛。

(7)该级数为交错级数,且un?11??un?1,

n?lnn(n?1)?ln(n?1)limun?0,故该级数收敛,

n?????111又因为 ?un????,而?发散,故?un发散,即原级

n?1n?1n?lnnn?1nn?1nn?1??数是条件收敛.

(8)由于un?ntan?2n,

ulimn?1?limn??un??n(n?1)tanntan?2n?1?limn??tan?2n?1??2ntan????1n?11??1,

2n22n2n?12n故该级数收敛。

(?1)nx?1nx?1(?1)n),令t?,an?, 2.(1) un?2(2x?1n?x?1nan?11x?1n2R??1,故收敛半径, ?1,即x?0 ??lim?lim?1n??an??(n?1)2?x?1n当x?0时,原级数为

1,该级数收敛 ?2n?1n?因而该级数的收敛域为 [0,??)

(2)因为该级数缺少偶次幂,我们根据比值审敛法来求收敛半径

un?1x2n?12n?nx2 lim?lim?n?1?2n?3?n??un??22?(n?1)xnx2?1,即?2?x?2时,该级数收敛 当2x2?1,即x?2时,该级数发散 当2(2)?3当 x?2时,原级数为?(?1),该级数收敛

nn?1?n当 x??2时,原级数也为

?(?1)n?1?3n?3(2)?3,该级数也收敛 n因而该级数的收敛域为 [?2,2]

tn13.(1)令t?x,则有un?, ,an?(2n?1)(2n)(2n?1)(2n)2

??liman?11(2n?1)(2n)?lim?1,故收敛半径R??1, 即x2?1,

n??an??(2n?1)(2n?2)?n故收敛区间为(?1,1)

1?n2n1?n2u?(1?)x,a?(1?) (2)nnnn1?(n?1)2(1?)an?11n?1??lim?lim?e?1,故收敛半径R??e n??an??12?n(1?)?nn故收敛区间为(?e,e)

tn1,a?4.(1)令t?(x?1),则有un? n2n2nn?3n?32an?12n?32n1x?1?9, ,,即??lim?lim?n??an??(n?1)?32n?29nx?1?3,故收敛半径R?1??3,故收敛区间为(?2,4)

3n?(?2)nn3n?(?2)nt,an?(2)令t?(x?1),则有un? nnan?1113n?1?(?2)n?1nR??, ,故收敛半径??lim?lim?n?3nn??an???3n?13?(?2)n142,故收敛区间为(?,?) 33311?x1?arctanx?x 5. 解:f(x)?ln41?x2即x?1???1111114n4n f?(x)?(?)??1??1?x?1?x??2441?x1?x21?x1?xn?0n?1且f(0)?0于是

f(x)??f?(x)dx?f(0)??0xx0x4n?1f?(x)dx???xdx??(?1?x?1)

0n?1n?14n?1x?4n?x1??6. 解 f(x)?9?x29xx?x???(?1)n()2n x9n?031?()232n?1x2n?1?n?1x x?(?3,3) ??(?1)2n?2??(?1)2n33n?0n?1?n7.(1)解 un?n(n?1)xn,an?n(n?1),

??liman?11(n?1)(n?2)?lim?1,故收敛半径R??1,

n??an???n(n?1)n当x?1时,原级数为

?n(n?1),该级数发散;

n?1?当x??1时,原级数为

?(?1)n?1?nn(n?1),该级数发散,故收敛域为(?1,1)

?n(n?1)xn?1?n?(?xn?1?n?1x22x )???x?()???x?31?x(1?x)n2nn2x,an?(2) 解 un?, n!n!an?1(n?1)2n!n?1??lim?lim?2?lim2?0,

n??an??(n?1)!nn??nn故收敛半径R?1????,故该级数的收敛域为(??,??)

??n2nnnnx?x?xxn?1???n?1n!n?1(n?1)!n?1(n?1)!??n?1?1n?1n?1n?1?1?x?x?x(?x??xn?1)n?1(n?1)!n?1(n?1)!n?1(n?1)!?

xn?xn?x(x???)?x(xex?ex)?xex(x?1)。

n?0n!n?0n!?五、证明题

1.设an?0且limnan?A?0,证明

n???an?1?n发散.

2.证明:若

?a收敛,则?2nn?1?an绝对收敛. nn?1?3.设

an?1bn?1?(an, bn?0, n?1, 2, ?),试证: anbn(1)如果

?bn?1??n收敛,则

?an?1??n收敛;

(2)如果

?an?1n发散,则

?bn?1n发散.

五.证明解答

1.因为limnan?A?0,所以由极限定义,对任意给定的??0,存在正整

n??数N,使得当n?N时,有|nan?A|??成立,即

A???nan?A??

?A??A??A??A???an??an,而级数?也就是说,有,此即发散,所nnnnn?1?以级数

?an?1n发散.

12??ann2an122.因为都绝对收敛,所以级数??,而级数?2和级数?an2nn22n?1n?1

an绝对收敛. ?n?1n?3.(略)

六、傅里叶级数的计算

1.将f(x)?x在(0,2)上展开成正弦级数和余弦级数.

2.将c并在?? π?x?? πosx在0?x??内展开成以2?为周期的正弦级数,写出该级数的和函数.

3.将f(x)??? x ( ???x?? )展开成以2为周期的傅立叶级数,并由此求

?的和. ??n??n? 1 , 0?x?h ;4.把函数f(x)??分别展开成正弦级数和余弦级数.

0 , h?x????级数

六.傅里叶级数的计算解答 1.解:f(x)?x正弦级数

?x?(0,2)

?x,x?(0,2]?对f(x)作奇延拓,得 F(x)??0,x?0

?x,x?[?2,0)?再周期延拓F(x)到(??,??),易见x??2是一个间断点,F(x)的傅里叶系数为

an?0n?0,1,2?

2(?1)n?1412n?xn?xbn??f(x)sindx??xsindx?02?222n?n?1,2?

f(x)??4n?x(?1)n?1sin2n?1n??(0?x?2)

余弦级数

?x,x?(0,2]?对f(x)作偶延拓,得F(x)??0,x?0,再周期延拓F(x)到(??,??),

??x,x?[?2,0)?则F(x)在(??,??)内处处连续,且F(x)?f(x),x?(0,2),F(x)的傅里叶系数为:

212a0??f(x)dx??xdx?2

02?2212n?xn?x4f(x)cosdx?xcosdx?[(?1)n?1]n?1,2? ??2202?222n?an?bn?0n?1,2?

(2n?1)?x1cos?2?2n?1(2n?1)28?故 f(x)?1?(0?x?2)

2.解 f(x)?cosx正弦级数

x?(0,?)

?cosx,x?(0,?)?0,x?0对f(x)作奇延拓,得 F(x)?? ??cosx,x?(??,0)?再周期延拓F(x)到(??,??),易见x?0,是一个间断点

F(x)的傅里叶系数为 an?0n?0,1,2?

f(x)sinnxdx???????bn?1?2?011?(?1)n1?(?1)ncosxsinnxdx?[?]n?1,2?

?n?1n?1f(x)?8nsin2nx??n?14n2?11?

?cosxx?(0,?)?(?2?,??)?s(x)??0x?0,??,?2?

??cosxx?(??,0)?(?,2?)??2?x0?x?1?2x?03.解 f(x)?2?x?? ?2?x?1?x?0?a0??f(x)dx??(2?x)dx??(2?x)dx?5

?10?1110an??f(x)cosn?xdx??(2?x)cosn?xdx??(2?x)cosn?xdx

?10?11102[(?1)n?1]?n?1,2? 22n?bn?0n?1,2? 54故f(x)??22?1?2 ??26n?1n?1cos(2n?1)?x ?2n?1(2n?1)??14.解 f(x)???0正弦级数

0?x?hh?x??

对f(x)作奇延拓到[??,?],再作周期延拓到整个数轴上,x?h为间断点

an?0n?0,1,2?

bn?1?????f(x)sinnxdx???02hsinnxdx?2(1?cosnh)n?1,2? n?f(x)?1?cosnh?nsinnxx?(0,h)?(h,?) ?n?12?余弦级数

对f(x)作偶延到[??,?],再作周期延拓到整个数轴上,x?h为间断点

a0?an?2?1???h0f(x)dx???02hdx?2h2h?

???f(x)cosnxdx???0cosnxdx?2sinnhn?n?1,2?

bn?0n?1,2?

h2sinnhcosnxnn?1?故 f(x)?????x?(0,h)?(h,?)

本章复习题B

1.略

2.略

3.设正项级数{an}单调减少,且敛?并说明理由.

解 因为{an}单调下降且有下界0,则有liman?a?0,若a?0,由莱布尼茨法

n???(?1)an发散,试问级数?(nn?1??n?11n)是否收an?1则,交错级数

?(?1)n?1?nan收敛,与假设矛盾,于是a?0,现在对正项级数

?(n?1?1n1n11)可用根式判别法:limn()?lim??1,故

n??n??an?1an?1an?1a?1

?(n?1?1n)收敛。 an?14. 设an??π4 01tanxdx.(1)求?(an?an?2)的值;(2)试证:对任意的常数

nn?1n???0,级数?an收敛. ?n?1n?解 (1)不必先求出an,只须先求出an?an?2

?n20?n20?0an?an?2??4tanx(1?tanx)dx??4tanxsecxdx??4tannxdtanx???1111(a?a)??(?)?1 ???nn?2nn(n?1)nn?1n?1n?1n?1?1n?1?(2)证明 显然an?对an作出估计:

?40n?40tanxdx?0(n?1,2,?),为了证明正项级数?nan收敛,?n?1n?an??tanxdx?1t?tanx10?tndarctant

1tn11n??dt?tdt???001?t2n?1n(n?1,2,?)

??anan11于是 0?????1,由于??1?1,???1收敛,故??也收敛。

nnn?1nn?1n1xn5.求幂级数?n的收敛区间,并讨论级数在该区间端点处的收敛性. ?nn3?(?2)n?1?

an3n?1?(?2)n?1n?1解 收敛半径为:R??lim?limn??3 nn??n???an?1n3?(?2)1收敛区间为(?3,3).

3n13n11当x?3时,原级数为正项级数 ?n,因?~,且nnnn3?(?2)nnn?13?(?2)?1发散,故正项级数 ?nn?1?3n1发散。 ??nnn3?(?2)n?1??(?1)n3n1当x??3时,原级数为?n?,该级数为交错级数,且满足莱布尼nnn?13?(?2)(?1)n3n1茨法则,故该级数 ?n?收敛. nnn?13?(?2)??1?x2?arctanx6.设函数f(x)??x??1x?0,试将f(x)展开成的幂级数,并求级

xx?0(?1)n数?的和. 21?4nn?1??1n2n解 (arctanx)???(?1)x?21?xn?0(x?1)

x2n?1积分得 arctanx??(arctant)?dt??(?1)?tdt??(?1).

002n?1n?0n?0x?nx2n?n当x??1时,右端级数均收敛,又arctanx在x??1连续,所以收敛域为[?1,1],

1?x21?x2f(x)?arctanx?xxx2n?1 (?1)?2n?1n?0?n

x2n ?(1?x)?(?1)2n?1n?02?n2n?2?x2nnx ??(?1)??(?1)2n?1n?02n?1n?0?n2n?x2nn?1x ??(?1)??(?1)2n?1n?12n?1n?0?n?1??(?1)n[n?1??11?]x2n2n?12n?1x?[?1,1],x?0

?1??(?1)nn?12x2n21?4n当x?0时,f(x)?1,于是

f(x)?1??(?1)nn?1?22nx1?4n2x?[?1,1],

(?1)n1?1上式令x?1,??[f(1)?1]??. 2242n?11?4n?7.设In??π4 0sinxcosxdx,n?0,1,2,?,求?In.

n?n?0??sinn?1?解 In??40sinnxcosxdx??4sinnxdsinx?04?n?1(2n?1)2, n?1?xx?x1xn?11nn因为 ????tdt???tdt??dt?ln(),

0001?tn?11?xn?0n?0n?0?

?In?1?n??n?0?(2n?1)12?ln()?ln(2?2).

n?121?2n8.求函数y?2x的麦克劳林公式中x项的系数.

解 y?2?exxln2?(xln2)n(ln2)nn????x

n!n!n?0n?0?(ln2)n故x的系数为.

n!nx2n9. 求幂级数1??(?1)(|x|?1)的和函数f(x)及其极值.

2nn?1?n?解 f?(x)??(?1)nx2n?1?n?1?x, 21?x?t12dt??ln(1?x)

01?t22x积分得f(x)?f(0)??x0f?(t)dt??因为 f(0)?1,故 f(x)?1?1ln(1?x2)(x?1), 21?x2令f?(x)?0,得驻点x?0,又f??(x)??,f??(0)??1?0, 22(1?x)故f(x)在x?0处有极大值,且极大值为f(0)?1.

10.设有幂级数

?anx与?bnxn,若limnn?1n?1??an?1b3?,limn?1?3,试求幂级数

n??a5n??bnn2ann的收敛半径. x?2n?1bn?

2an解 令cn?2,则收敛半径为

bncababR?limn?limn2?n?12?limn2?n?12n??cn??bn??aan?1bnn?1nn?12222

?lim(n??an2b5)?lim(n?1)2??9?5. an?1n??bn911.设函数f(x)在闭区间[?1,1]上具有三阶连续微商,且f(?1)?0,f(1)?1,

f?(0)?0. 证明:在开区间(?1,1)内至少存在一点?,使f???(?)?3.

证明 由于f(x)在闭区间[?1,1]上具有连续三阶导数,

则 f(x)?f(0)?f?(0)x?f??(0)2f???(?)3x?x(??(?1,1)) 2!3!f??(0)f???(?), ?2!3!又因为f?(0)?0,f(1)?f(0)?f(?1)?f(0)?f??(0)f???(?)?2!3!.

上面两式相减,有f(1)?f(?1)?2f???(?)?1,即f???(?)?3 ??(?1,1). 3!(n)212.求函数f(x)?xln(1?x)在x?0处的n阶微商f(0)(n?3).

?(?1)n?1xn(?1)n?1xn?2解 f(x)?xln( 1?x)?x???nnn?1n?122?f??(0)2f(n)(0)nx???x?? 而f(x)?f(0)?f?(0)x?2!n!(?1)n?3f(n)(0)(?1)n?3n!(n)?x的系数为,故f(0)?.

n?2n!n?2n

13.设函数f(x)在区间[?a,a](a?0)上具有二阶连续微商,f(0)?0, (1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式; (2)证明在[?a,a]上至少存在一点?,使

af??(?)?3?f(x)dx.

?a3 a解 (1)对任意x?[?a,a],

f(x)?f(0)?f?(0)x?f??(?)2f??(?)2x?f?(0)x?x 其中?在0与x之间 2!2!a(2)

?a?af(x)dx??a?ax21af?(0)xdx??f??(?)dx??x2f??(?)dx

?a22?am?f??(x)?M,其中

因为f??(x)在[?a,a]上连续,故对任意的x?[?a,a],有

M,m分别为 f??(x)在[?a,a]上的最大、最小值,所以有

aaa1a2f(x)dx??xf??(x)dx?M?x2dx,

02?am?xdx??02?a即 m?3a3?a?af(x)dx?M.

3a3a所以,由介值定理,至少存在一点??[?a,a],使f??(?)???af(x)dx,

即 a3f??(?)?3?a?af(x)d. x

本文来源:https://www.bwwdw.com/article/oc08.html

Top