一轮复习函数的奇偶性和周期性

更新时间:2023-08-20 14:19:01 阅读量: 高等教育 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

高三、一轮复习、数学、函数、教案,习题,学习资料,

课题:函数的奇偶性和周期性

辅导时间:2010,7辅导学生:黄文韬 辅导教师:汪飞

★知识梳理

1.函数的奇偶性的定义:

①对于函数f(x)的定义域内任意一个x,都有f( x) f(x)〔或f( x) f(x) 0〕,则称f(x)为奇函数. 奇函数的图象关于原点对称。

②对于函数f(x)的定义域内任意一个x,都有f( x) f(x)〔或f( x) f(x) 0〕,则称f(x)为偶函数. 偶函数的图象关于y轴对称。

③通常采用图像或定义判断函数的奇偶性. 具有奇偶性的函数,其定义域原点关于对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称) 1. 函数的周期性命定义:

对于函数f(x),如果存在一个非零常数T,使得定义域内的每一个x值,都满足

f(x T) f(x),那么函数f(x)T

★重、难点突破

重点:函数的奇偶性和周期性,函数的奇偶性、单调性、周期性的综合应用

难点:函数的奇偶性的判断 函数的奇偶性与单调性、函数的奇偶性与周期性的综合应用 重难点:1.函数的奇偶性的判断:可以利用奇偶函数的定义判断或者利用定义的等价形式 f( x) f(x) f( x) f(x) 0

f( x)f(x)

1(f(x) 0),也可以利用函数图象的

对称性去判断函数的奇偶性.注意①若f(x) 0,则f(x)既是奇函数又是偶函数,若②若f(x)是奇函数且在x 0处有定义,则f(0) 0f(x) m(m 0),则f(x)是偶函数;

③若在函数f(x)的定义域内有f( m) f(m),则可以断定f(x)不是偶函数,同样,若在函数f(x)的定义域内有f( m) f(m),则可以断定f(x)不是奇函数。 2.奇偶函数图象的对称性

(1) 若y f(a x)是偶函数,则f(a x) f(a x) f(2a x) f(x) f(x)

的图象关于直线x a对称;

(2) 若y f(b x)是偶函数,则f(b x) f(b x) f(2b x) f(x)

学大教育 关注成长每一天

1

高三、一轮复习、数学、函数、教案,习题,学习资料,

f(x)的图象关于点(b,0)中心对称;

3.函数的周期性 周期性不仅仅是三角函数的专利,抽象函数的周期性是高考热点,主要难点是抽象函数周期的发现,主要有几种情况:

(1)函数值之和等于零型,即函数f(a x) f(b x) 0(a b)

对于定义域中任意x满足f(a x) f(b x) 0(a b),则有f[x (2b 2a)] f(x),故函数f(x)的周期是T 2(b a)

(2)函数图象有x a,x b(a b)两条对称轴型

函数图象有x a,x b(a b)两条对称轴,即f(a x) f(a x),

f(b x) f(b x),从而得f[x (2b 2a)] f(x),

故函数f(x)的周期是T 2(b a)

(3) 两个函数值之积等于 1,即函数值互为倒数或负倒数型

若f(x a) f(x b) 1(a b),则得f(x 2a) f[(x 2a) (2b 2a)],所以函数

f(x)的周期是T 2b 2a;同理若f(x a) f(x b) 1(a b),则f(x)的周期是T 2(b a)

(4) 分式递推型,即函数f(x)满足f(x a)

1 f(x b)1 f(x b)

1f(x 2b)

(a b)

由f(x a)

1 f(x b)1 f(x b)

(a b)得f(x 2a) ,进而得

f(x 2a) f(x 2b) 1,由前面的结论得f(x)的周期是T 4(b a)

学大教育 关注成长每一天

2

高三、一轮复习、数学、函数、教案,习题,学习资料,

★热点考点题型探析

考点1 判断函数的奇偶性及其应用 题型1:判断有解析式的函数的奇偶性 [例1] 判断下列函数的奇偶性:

(1)f(x)=|x+1|-|x-1|;(2)f(x)=(x-1)1 x1 x

(3)f(x)

x

2

|x 2| 2

;(4)f(x)

x(1 x) x(1 x)

(x 0),(x 0).

[思路点拨]判断函数的奇偶性应依照定义解决,但都要先考查函数的定义域。

1函数的奇偶性是函数的一个整体性质, 定义域具有对称性 ( 即若奇函数或【名师指引】○

偶函数的定义域为D, 则x D时 x D) 是一个函数为奇函数或偶函数的必要条件 2分段函数的奇偶性一般要分段证明.③○判断函数的奇偶性应先求定义域再化简函数解析式.

学大教育 关注成长每一天

3

高三、一轮复习、数学、函数、教案,习题,学习资料,

题型2:证明抽象函数的奇偶性

[例2] (09年山东梁山)定义在区间( 1,1)上的函数f (x)满足:对任意的x,y ( 1,1),

x y1 xy

都有f(x) f(y) f(求证f (x)为奇函数;

).

[思路点拨]欲证明f(x)为奇函数,就要证明f( x) f(x),但这是抽象函数,应设法充

x y1 xy

分利用条件“对任意的x,y ( 1,1),都有f(x) f(y) f(“赋值”

[新题导练]

)”中的x,y进行合理

2

1.(09广东电白一中)设函数f x x 1 x a 为奇函数,则a ___________。

2.(高州中学09届训练题)已知函数f(x) ax2 bx 3a b是定义域为[a 1,2a]的偶函数,则a b的值是( )

A.0;B.

13

;C.1;D. 1

a b,a b

2

2

3.定义两种运算:a b (a b),则f(x)

2

2 x(x 2) 2

是______________函数,(填奇、偶、非奇非偶,既奇又偶四个中的一个)

学大教育 关注成长每一天

4

高三、一轮复习、数学、函数、教案,习题,学习资料,

4.已知函数f(x) 的值.

ax

2

1

bx c

(a、b、c∈Z)是奇函数,又f(1) 2,f(2) 3,求a、b、c

考点2 函数奇偶性、单调性的综合应用

[例3] (普宁市城东中学09)已知奇函数f(x)是定义在( 2,2)上的减函数,若

f(m 1) f(2m 1) 0,求实数m的取值范围。

[思路点拨]欲求m的取值范围,就要建立关于m的不等式,可见,只有从

f(m 1) f(2m 1) 0出发,所以应该利用f(x)的奇偶性和单调性将外衣“f”脱去。

【名师指引】利用函数的奇偶性可以求对称区间上的函数的表达式

5

学大教育 关注成长每一天

高三、一轮复习、数学、函数、教案,习题,学习资料,

[例4]设函数f(x)是定义在R上的偶函数,并在区间(-∞,0)内单调递增,f(2a2+a+1)<f(3a2-2a+1).求a的取值范围,并在该范围内求函数y=(

2

2

12

)a

2

3a 1

的单调递减区间.

[思路点拨]欲由f(2a+a+1)<f(3a-2a+1)求a的取值范围,就要设法利用函数f(x)的单调性。 而函数y=(

【名师指引】偶函数在关于原点对称的两个区间上的单调性相反,而奇函数在关于原点对称的两个区间上的单调性相同。 [新题导练]

12

)a

2

3a 1

是一个复合函数,应该利用复合函数单调性的判定方法解决

5.(普宁市城东中学09届高三模拟)若f(x)是奇函数,且在 0, 内是增函数,又f(3) 0,则xf(x) 0的解集是( ) A.{x 3 x 0或x 3};B.{xx 3或0 x 3}

C.{xx 3或x 3}; D.{x 3 x 0或0 x 3}

6.(2007·天津改编)在R上定义的函数f x 是奇函数,且f x f 2 x ,若f x 在区间 1,2 是减函数,则函数f x ( )

A.在区间 3, 2 上是增函数,区间 3,4 上是增函数 B.在区间 3, 2 上是增函数,区间 3,4 上是减函数 C.在区间 3, 2 上是减函数,区间 0,1 上是增函数 D.在区间 2, 1 上是减函数,区间 3,4 上是减函数

学大教育 关注成长每一天

6

高三、一轮复习、数学、函数、教案,习题,学习资料,

7.(普宁市城东中学09届高三模拟)定义在R上的奇函数f(x)有最小正周期4,且

3

xx

x 0,2 时,f(x)

9 1

。求f(x)在 2,2 上的解析式

考点3 函数奇偶性、周期性的综合应用

[例5] (09年惠州第三次调研考)已知定义在R上的偶函数f(x)满足f(x 2) f(x) 1

于x R恒成立,且f(x) 0,则f(119) ________

[思路点拨]欲求f(119),应该寻找f(x)的一个起点值,发现f(x)的周期性

【名师指引】近年将函数的奇偶性、周期性综合在一起考查逐步成为一个热点,解决问题的关键是发现函数的周期性(奇偶性)。

学大教育 关注成长每一天

7

高三、一轮复习、数学、函数、教案,习题,学习资料,

[新题导练]

8.(执信中学09届训练题)设f x 是定义在R上的正值函数,且满足 f x 1 f x 1 f x .若f x 是周期函数,则它的一个周期是( )

A.3;B.2;C.6;D.4

9.(06年安徽改编)函数f x 对于任意实数x满足条件f x 2 f(x) 1,若f 1 5,则f 5 __________ 备选例题:(05年广东)设函数

f(x)在( , )上满足f(2 x) f(2 x),f(7 x) f(7 x),且在闭区间[0,7]上,

只有f(1) f(3) 0.

(Ⅰ)试判断函数y f(x)的奇偶性;

(Ⅱ)试求方程f(x) 0在闭区间[ 2005,2005]上的根的个数,并证明你的结论.

学大教育 关注成长每一天

8

高三、一轮复习、数学、函数、教案,习题,学习资料,

★抢分频道

基础巩固训练:

1.(普宁市城东中学09届月考)已知f(x)是定义在R上的函数,且满足

则“f(x)为偶函数”是( )“2为函数f(x)的一个周期”的 ( )f(1 x) f(1 x),

A.充分不必要条件;B.必要不充分条件;C.充要条件;D.既不充分也不必要条件

2.(汕头市金山中学09年模拟)若偶函数f(x)在( , 1)上是增函数,则下列关系式中成立的是( ) A.f(

32

) f( 1) f(2);B.f( 1) f(

32

);D.f(2) f(

32

32

) f(2); ) f( 1)

12

C.f(2) f( 1) f(

3.(09年深圳翠园、宝安中学)设函数f(x) (x∈R)为奇函数,f(1)

f(x 2) f(x) f(2),则f(5) ( )

A.0;B.1; C.

52

;D.5

3 3

x

x

4.(湛江市09年高三调研)函数f(x)

在其定义域内是( )

2

A. 是增函数又是偶函数;B. 是增函数又是奇函数 C. 是减函数又是偶函数;D. 是减函数又是奇函数

5.(中山市09年高三统考)偶函数f(x)(x R)满足:f( 4) f(1) 0,且在区间[0,3]与[3, )上分别递减和递增,则不等式xf(x) 0的解集为( ) A.( , 4) (4, );B.( 4, 1) (1,4) C.( , 4) ( 1,0);D.( , 4) ( 1,0) (1,4)

6.(09年深圳九校联考)已知f(x)是定义域为R的奇函数,若当x (0, )时,

f(x) lgx,则满足f(x) 0的x的取值范围是

学大教育 关注成长每一天

9

高三、一轮复习、数学、函数、教案,习题,学习资料,

综合提高训练:

7.设f(x)是( , )上的奇函数,f(x 2) f(x) 0,当0 x 1时,f(x) x,则f(7.5)为

8.(四会中学高三09年月考)符号[x]表示不超过x的最大整数,如[ ] 3,[ 1.08] 2,定义函数{x} x [x].给出下列四个命题:①函数{x}的定义域是R,值域为[0,1];②方程{x}

12

有无数个解;③函数{x}是周期函数;④函数{x}是增函数.其中正确命题的序号

有( )

A.①④;B.③④;C.②③;D.②④

9.(08年辽宁改编)设f(x)是连续的偶函数,且当x 0时f(x)是单调函数, 求满足f(x) f(

x 4x 5

) 0的所有x之和

学大教育 关注成长每一天

10

高三、一轮复习、数学、函数、教案,习题,学习资料,

第一章综合检测

一、选择题(本大题共8小题,每小题5分,共40分)

1.集合M {0,2},P {x|x M},则下列关系中,正确的是( ) A.

M

;B.

PP

M;C. P M;D. P M

2.(09年山东梁山二中)若 是 xx2 a,a R 的真子集,则实数a的取值范围是( )

A. 0, ;B. 0, ;C. ,0 ;D. ,0

3.(09年重庆南开中学)已知集合M { 1,0,1},N {y|y cosx,x M},则集合N的真子集个数为( )

A.3;B.4;C.7;D.8 4. 下列判断正确的是( ) A.函数f(x)

x 2xx 2

2

是奇函数;B

.函数f(x) (1 x

C

.函数f(x) x D.函数f(x) 1既是奇函数又是偶函数

5. (恩城中学09届高三上中段考)已知定义在正整数集上的函数f(x)满足条件:f(1) 2,

f(2) 2,f(n 2) f(n 1) f(n),则f(2009)的值为( )

A.-2;B.2;C.4;D.-4

6.(08年陕西)为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关

1,2)ai {0,数据组成传输信息.设定原信息为a0a1a2,,传输信息为h0a0a1a2h1,1}(i 0, 运算规则为:0 0 0,0 1 1,1 0 1,1 1 0,其中h0 a0 a1,h1 h0 a2,

例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是( ) A.11010;B.01100;C.10111;D.00011

7.(07年安徽)定义在R上的函数f(x)既是奇函数,又是周期函数,T是它的一个正周期.若将方程f(x) 0在闭区间 T,T 上的根的个数记为n,则n可能为( ) A.0;B.1;C.3;D.5

2007

8. (广东南海中学09届模拟)函数f(x)

n 1

x n的最小值为( )

A. 1003×1004 B. 1004×1005 C. 2006×2007 D. 2005×2006

学大教育 关注成长每一天

11

高三、一轮复习、数学、函数、教案,习题,学习资料,

二、填空题:本大题共7小题,每小题5分,满分30分,其中13~15题是选做题,考生只能选做二题,三题全答的,只计算前两题得分. 9.(韶关市田家炳中学09届测试)在实数集R上定义运算 :a b a b 4 ,并定义:若R存在元素e使得对 a R,有e a a,则e称为R上的零元,那么,实数集上的零元e之值是

10.设P 3,4,5 ,Q 4,5,6,7 ,定义P※Q= (a,b)|a P,b Q ,则 P※Q中元素的个数为 .

11.(金山中学09届)已知函数y f(x)是以2为周期的偶函数,且当x (0,1)时,

72

f(x) x 1,则f()的值_______.

2

12.设a,b R,集合 1,a b,a 0,

b

b

,b ,则的值是

aa

▲选做题:在下面三道小题中选做两题,三题都选的只计算前两题的得分。

13.f(x)是定义在R上的以3为周期的偶函数,且f(2) 0,则方程f(x) 0在区间(0,6)内解的个数的最小值是

14.设f(x)是定义在R上的奇函数,且y f(x)的图象关于直线x

f(1) f(2) f(3) f(4) f(5)

12

对称,则

15. 若一系列函数的解析式相同、值域相同,但其定义域不同,则称这些函数为“同族函数”,

2

那么函数解析式为y=x,值域为{0,4}的“同族函数”共有_________个.

三、解答题:(本大题共6小题,共80分,解答时应写出文字说明、证明过程或演算步骤) 16.(本题满分13分)(高州中学09届模拟)设全集U R,集合

B {x|A {x|6 x x 0,集合}

2

2x 1x 3

1}

(Ⅰ)求集合A与B; (Ⅱ)求A B、(CUA) B.

学大教育 关注成长每一天

12

高三、一轮复习、数学、函数、教案,习题,学习资料,

18.(14分) 已知函数y=f(x)=2,其中b∈N且f(1)<

52

ax

2

1

bx c

(a,b,c∈R,a>0,b>0)是奇函数,当x>0时,f(x)有最小值

.试求函数f(x)的解析式

19. (高州中学09届模拟14分)已知函数y f(x),若存在x0,使得f(x0) x0,则x0 称是函数y f(x)的一个不动点,设f(x) (Ⅰ)求函数y f(x)的不动点;

f(x) af(x) b

x ax b

2x 32x 7

.

(Ⅱ)对(Ⅰ)中的二个不动点a、b(假设a b),求使恒成立的常数k的值;

k

学大教育 关注成长每一天

13

高三、一轮复习、数学、函数、教案,习题,学习资料,

20.(14分)设函数f(x)是定义在[ 1,0)∪(0,1]上的奇函数,当x [ 1,0)时,

f(x)=2ax

1x

2

.

(1) 求当x (0,1]时,f(x)的表达式;

(2) 若a>-1,判断f(x)在(0,1]上的单调性,并证明你的结论.

21. (12分)若函数y=f(x)是周期为2的偶函数,当x∈[2,3]时,f(x)=x-1.在y=f(x)的图象上有两点A、B,它们的纵坐标相等,横坐标都在区间[1,3]上,定点C的坐标为(0,a)(其中2<a<3), (1) 求当x∈[1,2]时,f(x)的解析式;

(2) 定点C的坐标为(0,a)(其中2<a<3),求△ABC面积的最大值.

学大教育 关注成长每一天

14

本文来源:https://www.bwwdw.com/article/oa3j.html

Top