Finite-time Lyapunov exponents of Strange Nonchaotic Attractors
更新时间:2023-06-11 03:48:01 阅读量: 实用文档 文档下载
The probability distribution of finite-time Lyapunov exponents provides an important characterization of dynamical attractors. We study such distributions for strange nonchaotic attractors (SNAs) created through several different mechanisms in quasiperiodi
8
9
9
1
an
J
5
1
1
v
1
2
1
8
/9
n
y
d
-o
a
ch
:v
i
X
r
aFinite–timeLyapunovexponentsofStrangeNonchaoticAttractorsAwadheshPrasadandRamakrishnaRamaswamySchoolofPhysicalSciencesJawaharlalNehruUniversity,NewDelhi110067.(February5,2008)Theprobabilitydistributionof nite–timeLyapunovexponentsprovidesanimportantcharac-terizationofdynamicalattractors.Westudysuchdistributionsforstrangenonchaoticattractors(SNAs)createdthroughseveraldi erentmechanismsinquasiperiodicallyforcednonlineardynam-icalsystems.StatisticalpropertiesofthedistributionssuchasthevarianceandtheskewnessalsodistinguishbetweenSNAsformedbydi erentbifurcationroutes.
The probability distribution of finite-time Lyapunov exponents provides an important characterization of dynamical attractors. We study such distributions for strange nonchaotic attractors (SNAs) created through several different mechanisms in quasiperiodi
I.INTRODUCTION
Thecharacterizationofattractorsinnonlineardynamicalsystemsisaproblemthathasseenconsiderableprogressinthepastdecade[1,2].Beyondclassi cationassimpleorstrange,thecalculationoffractaldimensionsandthedescriptionofthemeasureintermofamultifractalspectrumofsingularitieshasbecomeanimportantmeansofdescribingthestructureofdynamicalattractors[1].Forhyperbolicattractorstherearerigorousresultsconnectingthemultifractalstructure,throughthethermodynamicformalism,withdynamicalinformationasembodiedin nite–timeLyapunovexponents[2,3].
Grebogietal.[4] rstdescribeddynamicalsystemswhereintheattractorsthatresultarefractal,butthedynamicsisnotchaotic,inthatthelargestLyapunovexponentisnotgreaterthanzero.Thesestrangenonchaoticattractors(SNAs)aregenericinquasiperiodicallyforcedsystems.Subsequently,considerablee orthasbeendirectedtowardthecharacterizationandstudyofSNAs[5–11],whichhavealsobeenobservedexperimentally[12–14].ApotentialuseofSNAsisintheareaofsecurecommunications,andrecentapplications[15,16]exploittheeaseofsynchronizationofsuchsystems.
Thestrangenonchaoticstateisonlyoneofthepossibledynamicalstatesrealizedinquasiperiodicallydrivensystems;periodic,quasiperiodicandchaoticattractorscanalsobeobtainedasparametersarevaried.SNAsaretypicallyfoundforparametervaluesveryclosetotheboundariesofthechaoticregions,andthedi erentbifurcationmechanismsthroughwhichtheyarecreatedisaproblemofinterest.ThereareanumberofroutesorscenariosforthecreationofSNAs,someofwhichcanbecorrelatedwithbifurcations.Theseinclude
(i)theHeagy–Hammel(HH)[8]mechanisminvolvingacollisionbetweenaperiod-doubledtorusanditsunstableparent,
(ii)theblowoutbifurcationroute[11],and
(iii)intermittency[17],whenasafunctionofdrivingparameterachaoticstrangeattractordisappearsandiseventuallyreplacedbyatorusthroughananalogueofthesaddle-nodebifurcation.
ThesignatureofthesebifurcationsintermsofthebehaviourofthelargestLyapunovexponenthasbeendiscussedindetail[18].Theblowoutbifurcationmechanism[11]requiresthatthequasiperiodictorusofasystemwithaninvariantsubspacelossesitstransversestabilityasaparameterchangesacrossthetransitionandleadtothebirthofanSNA.InthisprocessthetransverseLyapunovexponentbecomespositivewhilethenontrivialLyapunovexponentforthewholesystemremainsnegative.IntheHHmechanism[8],assystemparametersarevaried,theperiod-doubledtorusgetsprogressivelymorewrinkledandcollideswithaparentunstabletorus;thisscenarioislikeanattractormergingcrisis[19].ThedistinctivesignatureoftheintermittencyroutetoSNAisasharpchangeintheLyapunovexponentwhichshowslargevarianceandscalingbehavior[17]atthebifurcation.
Ageneralmechanismthatisfrequentlyobservedbutforwhichthereisnowell-identi edbifurcationistheso–calledfractalizationroute[9],wherebyasmoothtorusgetsincreasinglywrinkledandtransformsintoaSNAwithoutanyinteractionwithanearbyunstableperiodicorbit(incontrasttoHH).ThisisprobablythemostcommonroutetoSNAinanumberofmapsand ows[6,7].
ThepresentpaperaddressestheissueofdistinguishingamongSNAsformedbydi erentroutesthroughtheuseof nite–time(orlocal)Lyapunovexponents.Weshowthatthemorphologiesofdi erentSNAsdi erincrucialways,particularlyforintermittentSNAs[17,18].ThisisseenmostdramaticallyinthecharacteristicdistributionsoflocalLyapunovexponentsandthestatisticalpropertiesofthedistributionssuchasthevarianceandtheskewness.
InSec.II,webrie yintroducethedynamicalsystemsthatarestudiedhere.ResultsarediscussedinSecIII.ThisisfollowedbyasummaryinSec.IV.
II.DYNAMICALSYSTEMS
Severalquasiperiodicallydrivensystems—bothmapsand ows[6–11]—havebeenshowntohaveSNAs.Weconsiderthequasiperiodicallyforcedlogisticmap[8]whereinthreeoftheroutestoSNAscanbeobserved.Thissystemisde nedbytheequations
xn+1=α[1+ cos(2πφn)]xn(1 xn),
φn+1=φn+ω(mod1),
√wherex∈R1,φ∈S1,ω=((1)
The probability distribution of finite-time Lyapunov exponents provides an important characterization of dynamical attractors. We study such distributions for strange nonchaotic attractors (SNAs) created through several different mechanisms in quasiperiodi
λN(xn)=1
5 1)/2)whichisboundedandhasnootherstableattractorsotherthanthe
invariantsubspace(
x=0,φ).Asparameterschangesacrossthecriticalvalues,thedynamicsofxleadstoastrangenonchaoticattractor[11].OurinterestisincontrastingthismechanismforSNAformationwhichisalsoaccompaniedbyon–o intermittency,withtheintermittentSNA[17].
III.RESULTS
AlthoughλNdependsoninitialconditions,theprobabilitydensity,de nedthrough
P(N,λ)dλ=ProbabilitythatλNliesbetweenλandλ+dλ,(5)
doesnot.Thisdistributioncanbeobtainedbytakingan(in nitely)long,ergodictrajectory,anddividingitinsegmentsoflengthN,fromwhichthelocalLyapunovexponentcanbecalculatedthroughEq.(2).
Forchaoticmotionithasbeenargued[2,3]thatsincethelocalLyapunovexponentscanbetreatedasindependentrandom uctuations,thecentrallimittheoremisvalid,leadingtoanormaldistributionforλN,
P(N,λ)≈1
2πNG′′(Λ)exp[ NG′′(Λ)(λ Λ)2/2](6)
withthefunctionG,thespectrumofe ectiveLyapunovexponents[3],beingappropriatelyde ned[2].
Theseexpectationsarenotalwayssatis edsincetherecanbeimportantcorrelationsinthedynamics.Wehaverecentlydescribedthecharacteristicdistributionsfor nitetimeLyapunovexponentsinlowdimensionalchaoticsystemswheretherearesigni cantdeparturesfromcentral–limitbehaviour[20].
ForSNAsthereareadditionalcomplications.AlthoughΛisbyde nitionnonpositive,P(N,λ)canhaveasigni cantcontributionfromλ>0:forsomeofthetime,thesesystemsbehavechaoticallybecauseofthefractalstructureoftheattractors[7].InthelimitoflargeN,thecontributionfrompositiveλdecreasesandthedensitycollapsestoaδ–function,limN→∞P(N,λ)→δ(Λ λ).
ShowninFigs.2and3arelocalLyapunovdistributionsforthefourroutestoSNAs(parametersarespeci edinthecaption),forshort(N=50)andlongbut nite(N=1000)times.ThefractalizedandHHSNAsbothshowagradualapproachtothenormaldistribution(agaussianis ttothedatainFig.3),whiletheblowoutSNAs,andmorespectacularly,theintermittentSNAsshowadistinctivedeparturefromthegaussiandistribution.
TheintermittentSNAismorphologicallyanddynamicallyverydi erentfromtheotherSNAs,andtheshapeofthecharacteristicdistribution,P(N,λ)isacombinationofagaussianandanexponential[20].IncontrasttotheotherSNAs,thedistributionisasymmetric,andthelargeλtaildecaysveryslowly.
ItappearsthattheintermittentSNAisinadistinctuniversalityclass[20]andanumberofquantitativemeasurescanbedevisedinordertoshowthisdistinction.Consider,forexample,thefractionofexponentslyingaboveλ=0,
The probability distribution of finite-time Lyapunov exponents provides an important characterization of dynamical attractors. We study such distributions for strange nonchaotic attractors (SNAs) created through several different mechanisms in quasiperiodi
F+(N)= ∞
P(N,λ)dλ,(7)
F+(N)vsNforthedi erentSNAsareshowninFig.4.ExceptfortheintermittentSNA,forwhichF+(N)~N β,thisquantitydecaysexponentially,F+(N)~exp( γN),withtheexponentsβandγdependingstronglyontheparametersofthesystem.Wefoundthatthevaluesoftheexponentsareβ=0.72fortheintermittentSNAandγ=0.02,0.007and0.042respectivelyforHH,fractalized,andblowoutSNAs.Similarly,otherstatisticalpropertiesofthethesedistributionscanbestudied.Wecalculatethe rsttwomomentsaboutthearithmeticmeanofalldistributionsandobtainthevariance,
∞
σ2=(λ Λ)2P(N,λ)dλ,(8)
∞
andthecoe cientofskewness,namely
γ1= ∞
(λ Λ)3P(N,λ)dλ/(σ3),(9)
∞
whichareshowninFig.5(a)andFig.5(b)respectively.GenerallyforalltypesofSNAs,thevarianceofP(N,λ)decreasesasapowerofN,σ2~1/Nδwheretheexponentδisdi erentforeachSNA.ThevarianceforintermittentSNAsdecreasesveryslowlycomparedtootherSNAs,andournumericalresultsfortheexponents,fortheexam-plesshownhereare=0.97,1.71,1.63,and1.7forintermittent,fractalized,HH,andblowoutSNAs.Thedegreeofasymmetryinthedistributionisquanti edbythesigni cantlylargerskewnessγ1(seeFig.5(b)).
IV.SUMMARY
Inthepresentpaperwehavestudiedthedynamicalstructureofstrangenonchaoticattractorsformedbydi erentbifurcationmechanismsinquasiperiodicallydrivensystems,byexaminingthedistributionof nite–timeLyapunovexponents.AlthoughtheLyapunovexponentisnegativeonaSNA,overshorttimes,nearbytrajectoriescanseparatefromoneanothersincetheattractorisstrange:thiscorrespondstoalocalpositiveLyapunovexponent.Themannerinwhichthisdistributionchangesasafunctionoftimeischaracteristicoftheattractor,andofthebifurcationroutesthroughwhichattractorsarecreated:intermittentdynamicsleadstoverydistinctivedistributionsoflocalLyapunovexponents[20].
Ourpresentresultsfurtherunderscoretheutilityof nite–timeLyapunovexponentsindescribingthelocalstructureofdynamicalattractors[2,3,20]ingeneral.Forthecaseofhyperbolicattractors,thetheoryconnectingthesetotheinvariantmeasureiswell–developed.Thepresentpaperispartofapreliminarysteptowardsunderstandingtheconnectionbetweenanunderlyingfractalstructureandgloballynonchaoticdynamicsonstrangenonchaoticattractors.
ACKNOWLEDGMENT
ThisresearchwassupportedbygrantNo.SP/S2/E07/96fromtheDepartmentofScienceandTechnology,India.WethankVishalMehrafordiscussions.
The probability distribution of finite-time Lyapunov exponents provides an important characterization of dynamical attractors. We study such distributions for strange nonchaotic attractors (SNAs) created through several different mechanisms in quasiperiodi
[1][2][3][4][5][6]
[7][8][9][10][11][12][13][14][15][16][17][18][19][20]
C. Beck and F. Schl¨gl, Thermodynamics of Chaotic systems, (Cambridge University Press, Cambridge, 1993) o E. Ott, Chaos in dynamical systems, (Cambridge University Press, Cambridge, 1994). P. Grassberger, R. Badii, and A. Politi, J. Stat. Phys. 51, 135 (1988). C. Grebogi, E. Ott, S. Pelikan, and J.A. Yorke, Physica D 13, 261 (1984). F.J. Romeiras, A. Bondeson, E. Ott, T.M. Antonsen, and C. Grebogi, Physica D 26, 277 (1987). T. Kapitaniak, E. Ponce, and J. Wojewoda, Phys. Lett. A 154, 249 (1991); S.P. Kuznetsov, A.S. Pikovsky, and U. Feudel, Phys. Rev. E 51, R1629 (1995); U. Feudel, J. Kurths and A. Pikovsky,Physica D 88, 176 (1995); O. Sosnovtseva, U. Feudel, J. Kurths, and A. Pikovsky, Phys. Lett. A 218, 255 (1996); A. Venkatesan and M. Lakshmanan, Phys. Rev. E 55, 5134 (1997). A. Pikovsky and U. Feudel, Chaos, 5, 253 (1995). J.F. Heagy and S.M. Hammel, Physica D 70, 140 (1994). K. Kaneko, Prog. Theor. Phys., 71, 1112 (1984); T. Nishikawa and K. Kaneko, Phys. Rev. E 54, 6114 (1996). T. Yal¸inkaya and Y.C. Lai, Phys. Rev. Lett. 77, 5039 (1996), Phys. Rev. E 56, 1623 (1997). c Y.C. Lai, Phys. Rev. E 53, 57 (1996); Y.C. Lai, U. Feudel, and C. Grebogi, ibid. 54, 6070 (1996). W. L. Ditto, M. L. Spano, H. T. Savage, S. N. Rauseo, J. Heagy, and E. Ott, Phys. Rev. Lett. 65, 533 (1990). T. Zhou, F. Moss, and A. Bulsara, Phys. Rev. A 45, 5394 (1992). W.X. Ding, H. Deutsch, A. Dinklage, and C. Wilke, Phys. Rev. E 55, 3769 (1997). R. Ramaswamy, Phys. Rev. E 56, 7294–96 (1997) C. Zhou and T. Chen, Europhys. Lett., 38, 261 (1997). A. Prasad, V. Mehra, and R. Ramaswamy, Phys. Rev. Lett. 79, 4127 (1997). A. Prasad, V. Mehra and R. Ramaswamy, Phys. Rev. E, in press (1998). C. Grebogi, E. Ott, F.J. Romeiras, and J.A. Yorke, Phys. Rev. A 36, 5365 (1987); V. Mehra and R. Ramaswamy, Phys. Rev. E 53, 3420 (1996). A. Prasad and R. Ramaswamy, to be published.
The probability distribution of finite-time Lyapunov exponents provides an important characterization of dynamical attractors. We study such distributions for strange nonchaotic attractors (SNAs) created through several different mechanisms in quasiperiodi
Fig. 1. Phase diagram for the quasiperiodically forced logistic map (schematic) 18], corresponding to the period 3 window of the unforced case. In order to obtain this diagram, is calculated in a 100 100 grid. The shaded region (S) along the boundary (the= 0 contour) shows the region of SNAs. Intermittent SNAs are found on the edge of the C1 region marked I, while the right boundary, denoted C1 has fractalized SNAs. The left boundary between the periodic region and C1 does not show any SNA. The boundaries of the attractors can be interwoven in complicated manner (especially along C1).0 0
The probability distribution of finite-time Lyapunov exponents provides an important characterization of dynamical attractors. We study such distributions for strange nonchaotic attractors (SNAs) created through several different mechanisms in quasiperiodi
λ
λ
λln P(N,)
The probability distribution of finite-time Lyapunov exponents provides an important characterization of dynamical attractors. We study such distributions for strange nonchaotic attractors (SNAs) created through several different mechanisms in quasiperiodi
λ
λ
λln P(N,)
The probability distribution of finite-time Lyapunov exponents provides an important characterization of dynamical attractors. We study such distributions for strange nonchaotic attractors (SNAs) created through several different mechanisms in quasiperiodi
-5
ln F+ (N)-10-15
-20
-25024
Ln N68
The probability distribution of finite-time Lyapunov exponents provides an important characterization of dynamical attractors. We study such distributions for strange nonchaotic attractors (SNAs) created through several different mechanisms in quasiperiodi
)
σ
(1 γn
l
ln N
ln N2
正在阅读:
Finite-time Lyapunov exponents of Strange Nonchaotic Attractors06-11
《领导科学与艺术》教学大纲09-18
2022云南文山三支一扶考试-时政热点:当好党的助手和后备军04-10
转子允许不平衡量的计算04-29
择日与年命04-04
体育课标细化解读10-27
油气储运如何加强安全管理11-08
- 1REFLECTED BROWNIAN BRIDGE LOCAL TIME CONDITIONED ON ITS LOCAL TIME AT THE ORIGIN
- 2Discrete-Time Integrator
- 3《TIME》周刊经典词汇
- 4《What time is it? 》试讲稿
- 5How to manage time in college
- 606 Spare time Activities
- 7大学英语语法-Exercises for non-finite verbs-key
- 8有限Abel群的结构定理(Fundamental Theorem of Finite Abelian Groups)
- 9Chapter 4 Time Series Analysis
- 10Unit 1What a wonderful time!
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Attractors
- Nonchaotic
- exponents
- Lyapunov
- Strange
- Finite
- time
- 践行群众路线 用群众观点指导精神文明建设工作
- 地理信息系统与相关学科的关系
- 西昌生态区紫花苜蓿引种适应性的灰色关联度分析
- 人教版竞赛考点二年级上学期小学语文期末模拟试卷C卷课后练习
- 重庆江合煤矿国家矿山公园矿业遗迹特征及建园意义探析
- JAVASCRIPT不间断滚动
- 供应商考核管理办法
- 山西寺河不同煤体结构煤萃取后的族组成特征
- 2014-2020年中国酱腌菜行业供需调查及投资咨询报告(最新版)
- 高校教务管理系统的分析与设计
- EXCEL数据透视表之从入门到精通
- 北师大版数学一年级下册第六章第2节摘苹果同步检测A卷
- 江阴公交线路一览表(2011-1)
- 2010级金融学专业人才培养方案
- 湘潭地区槟榔消费者健康意识调查方案
- 苏教版小学语文二年级下册教学反思集
- 漳州市质量技术监督局党组中心组学习计划表(20061~200
- 恒流源及差动放大器
- 二年级数学(下册)二单元试卷及答案(通用)
- 868-苏州赛格数码广场定位、招商、运营管理策划案(33)页