工业生产过程实验说明

更新时间:2024-06-17 22:41:02 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

第一章 实验装置说明

第一节 系统概述

一、概述

“THSA-1型过控综合自动化控制系统实验平台”是由实验控制对象、实验控制台及上位监控PC机三部分组成。它是本企业根据工业自动化及其他相关专业的教学特点,并吸收了国内外同类实验装置的特点和长处,经过精心设计,多次实验和反复论证而推出的一套全新的综合性实验装置。本装置结合了当今工业现场过程控制的实际,是一套集自动化仪表技术、计算机技术、通讯技术、自动控制技术及现场总线技术为一体的多功能实验设备。该系统包括流量、温度、液位、压力等热工参数,可实现系统参数辨识,单回路控制,串级控制,前馈-反馈控制,滞后控制、比值控制,解耦控制等多种控制形式。本装置还可根据用户的需要设计构成AI智能仪表,DDC远程数据采集,DCS分布式控制,PLC可编程控制,FCS现场总线控制等多种控制系统,它既可作为本科,专科,高职过程控制课程的实验装置,也可为教师、研究生及科研人员对复杂控制系统、先进控制系统的研究提供一个物理模拟对象和实验平台。

学生通过本实验装置进行综合实验后可掌握以下内容: 1.传感器特性的认识和零点迁移; 2.自动化仪表的初步使用;

3.变频器的基本原理和初步使用; 4.电动调节阀的调节特性和原理; 5.测定被控对象特性的方法; 6.单回路控制系统的参数整定; 7.串级控制系统的参数整定; 8.复杂控制回路系统的参数整定;

9.控制参数对控制系统的品质指标的要求;

10.控制系统的设计、计算、分析、接线、投运等综合能力培养; 11.各种控制方案的生成过程及控制算法程序的编制方法。 二、系统特点

? 真实性、直观性、综合性强,控制对象组件全部来源于工业现场。 ? 被控参数全面,涵盖了连续性工业生产过程中的液位、压力、流量及温度等典型参数。

? 具有广泛的扩展性和后续开发功能,所有I/O信号全部采用国际标准IEC信号。

? 具有控制参数和控制方案的多样化。通过不同被控参数、动力源、控制器、执行器及工艺管路的组合可构成几十种过程控制系统实验项目。

? 各种控制算法和调节规律在开放的实验软件平台上都可以实现。实验数据及图表在上位机软件系统中很容易存储及调用,以便实验者进行实验后的比较和分析。

? 多种控制方式:可采用AI智能仪表控制、DCS分布式控制、S7-200或S7-300PLC可编程控制、DDC远程数据采集控制等多种控制方式。

? 充分考虑了各大高校自动化专业的大纲要求,完全能满足教学实验、课程设计、毕业设计的需要,同时学生可自行设计实验方案,进行综合性、创造性

过程控制系统实验的设计、调试、分析,培养学生的独立操作、独立分析问题和解决问题的能力。

三、实验装置的安全保护体系

1.三相四线制总电源输入经带漏电保护装置的三相四线制断路器进入系统电源之后又分为一个三相电源支路和三个不同相的单相支路,每一支路都带有各自三相、单相断路器。总电源设有三相通电指示灯和380V三相电压指示表,三相带灯熔断器作为断相指示。

2.控制屏上装有一套电压型漏电保护和一套电流型漏电保护装置。 3.控制屏设有服务管理器(即定时器兼报警记录仪),为学生实验技能的考核提供一个统一的标准。

4.各种电源及各种仪表均有可靠的自保护功能。

5.强电接线插头采用封闭式结构,以防止触电事故的发生。 6.强弱电连接线采用不同结构的插头、插座,防止强弱电混接。

第二节 THSA-1型过控综合自动化控制系统对象

实验对象总貌图如图1-1所示:

图1-1 实验对象总貌图

本实验装置对象主要由水箱、锅炉和盘管三大部分组成。供水系统有两路:一路由三相(380V恒压供水)磁力驱动泵、电动调节阀、直流电磁阀、涡轮流量计及手动调节阀组成;另一路由变频器、三相磁力驱动泵(220V变频调速)、涡轮流量计及手动调节阀组成。

一、被控对象

由不锈钢储水箱、(上、中、下)三个串接有机玻璃水箱、4.5KW三相电加热模拟锅炉(由不锈钢锅炉内胆加温筒和封闭式锅炉夹套构成)、盘管和敷塑不锈钢管道等组成。

1.水箱:包括上水箱、中水箱、下水箱和储水箱。上、中、下水箱采用淡蓝色优质有机玻璃,不但坚实耐用,而且透明度高,便于学生直接观察液位的变化和记录结果。上、中水箱尺寸均为:D=25cm,H=20cm;下水箱尺寸为:D=35cm,H=20cm。水箱结构独特,由三个槽组成,分别为缓冲槽、工作槽和出水槽,进水时水管的水先流入缓冲槽,出水时工作槽的水经过带燕尾槽的隔板流入出水槽,这样经过缓冲和线性化的处理,工作槽的液位较为稳定,便于观察。水箱底部均接有扩散硅压力传感器与变送器,可对水箱的压力和液位进行检测和变送。上、中、下水箱可以组合成一阶、二阶、三阶单回路液位控制系统和双闭环、三闭环液位串级控制系统。储水箱由不锈钢板制成,尺寸为:长×宽×高=68cm×52㎝×43㎝,完全能满足上、中、下水箱的实验供水需要。储水箱内部有两个椭圆形塑料过滤网罩,以防杂物进入水泵和管道。

2.模拟锅炉:是利用电加热管加热的常压锅炉,包括加热层(锅炉内胆)和冷却层(锅炉夹套),均由不锈钢精制而成,可利用它进行温度实验。做温度实验时,冷却层的循环水可以使加热层的热量快速散发,使加热层的温度快速下降。冷却层和加热层都装有温度传感器检测其温度,可完成温度的定值控制、串级控制,前馈-反馈控制,解耦控制等实验。

3.盘管:模拟工业现场的管道输送和滞后环节,长37米(43圈),在盘管上有三个不同的温度检测点,它们的滞后时间常数不同,在实验过程中可根据不同的实验需要选择不同的温度检测点。盘管的出水通过手动阀门的切换既可以流入锅炉内胆,也可以经过涡轮流量计流回储水箱。它可用来完成温度的滞后和流量纯滞后控制实验。

4.管道及阀门:整个系统管道由敷塑不锈钢管连接而成,所有的手动阀门均采用优质球阀,彻底避免了管道系统生锈的可能性。有效提高了实验装置的使用年限。其中储水箱底部有一个出水阀,当水箱需要更换水时,把球阀打开将水直接排出。

二、检测装置

1.压力传感器、变送器:三个压力传感器分别用来对上、中、下三个水箱的液位进行检测,其量程为0~5KP,精度为0.5级。采用工业用的扩散硅压力变送器,带不锈钢隔离膜片,同时采用信号隔离技术,对传感器温度漂移跟随补偿。采用标准二线制传输方式,工作时需提供24V直流电源,输出:4~20mADC。

2.温度传感器:装置中采用了六个Pt100铂热电阻温度传感器,分别用来检测锅炉内胆、锅炉夹套、盘管(有3个测试点)以及上水箱出口的水温。Pt100测温范围:-200~+420℃。经过调节器的温度变送器,可将温度信号转换成4~20mA直流电流信号。Pt100传感器精度高,热补偿性较好。

3.流量传感器、变送器:三个涡轮流量计分别用来对由电动调节阀控制的动力支路、由变频器控制的动力支路及盘管出口处的流量进行检测。它的优点是测量精度高,反应快。采用标准二线制传输方式,工作时需提供24V直流电源。流量范围:0~1.2m3/h;精度:1.0%;输出:4~20mADC。

三、执行机构

1.电动调节阀:采用智能直行程电动调节阀,用来对控制回路的流量进行调节。电动调节阀型号为:QSVP-16K。具有精度高、技术先进、体积小、重量

轻、推动力大、功能强、控制单元与电动执行机构一体化、可靠性高、操作方便等优点,电源为单相220V,控制信号为4~20mADC或1~5VDC,输出为4~20mADC的阀位信号,使用和校正非常方便。

2.水泵:本装置采用磁力驱动泵,型号为16CQ-8P,流量为30升/分,扬程为8米,功率为180W。泵体完全采用不锈钢材料,以防止生锈,使用寿命长。本装置采用两只磁力驱动泵,一只为三相380V恒压驱动,另一只为三相变频220V输出驱动。

3.电磁阀:在本装置中作为电动调节阀的旁路,起到阶跃干扰的作用。电磁阀型号为:2W-160-25 ;工作压力:最小压力为0Kg/㎝2,最大压力为7Kg/㎝2 ;工作温度:-5~80℃;工作电压:24VDC。

4.三相电加热管:由三根1.5KW电加热管星形连接而成,用来对锅炉内胆内的水进行加温,每根加热管的电阻值约为50Ω左右。

第三节 THSA-1型过控综合自动化控制系统实验平台

“THSA-1型过控综合自动化控制系统实验平台”主要由控制屏组件、智能仪表控制组件、远程数据采集控制组件、DCS分布式控制组件、PLC控制组件等几部分组成。

一、控制屏组件

1.SA-01电源控制屏面板

充分考虑人身安全保护,装有漏电保护空气开关、电压型漏电保护器、电流型漏电保护器。图1-2为电源控制屏示意图。合上总电源空气开关及钥匙开关,此时三只电压表均指示380V左右,定时器兼报警记录仪数显亮,停止按钮灯亮。此时打开照明开关、变频器开关及24V开关电源即可提供照明灯,变频器和24V电。按下启动按钮,停止按钮灯熄,启动按钮灯亮,此时合上三相电源、单相Ⅰ、单相Ⅱ、单相Ⅲ空气开关即可提供相应电源输出,作为其他设备的供电电源。

图1-2 电源控制屏示意图

2.SA-02 I/O信号接口面板

该面板的作用主要是通过航空插头(一端与对象系统连接)将各传感器检测信号及执行器控制信号同面板上自锁紧插孔相连,便于学生自行连线组成不同的控制系统。

3.SA-11交流变频控制挂件

采用日本三菱公司的FR-S520S-0.4K-CH(R)型变频器,控制信号输入为4~20mADC或0~5VDC,交流220V变频输出用来驱动三相磁力驱动泵。有关变频器的使用请参考变频器使用手册中相关的内容。

变频器常用参数设置:

P 30=1;P 53=1;P 62=4;P 79=0。

4.三相移相SCR调压装置、位式控制接触器

采用三相可控硅移相触发装置,输入控制信号为4~20mA标准电流信号,其移相触发角与输入控制电流成正比。输出交流电压用来控制电加热器的端电压,从而实现锅炉温度的连续控制。

位式控制接触器和AI-708仪表一起使用,通过AI-708仪表输出继电器触点

的通断来控制交流接触器的通断,从而完成锅炉水温的位式控制实验。

二、智能仪表控制组件 1.AI智能调节仪表挂件

采用上海万迅仪表有限公司生产的AI系列全通用人工智能调节仪表,其中SA-12智能调节仪控制挂件为AI-818型,SA-13智能位式调节仪为AI-708型。AI-818型仪表为PID控制型,输出为4~20mADC信号;而AI-708型仪表为位式控制型,输出为继电器触点型开关量信号。AI系列仪表通过RS485串口通信协议与上位计算机通讯,从而实现系统的实时监控。

AI仪表常用参数设置:

CtrL:控制方式。CtrL=0,采用位式控制;CtrL=1,采用AI人工智能调节/PID调节;CtrL=2,启动自整定参数功能;CtrL=3,自整定结束。

Sn:输入规格。Sn=21,Pt100热电阻输入;Sn=32,0.2~1VDC电压输入;Sn=33,1~5VDC电压输入。

DIL:输入下限显示值,一般DIL=0。

DIH:输入上限显示值。输入为液位信号时,DIH=50.0;输入为热电阻信号时,DIH=100;输入为流量信号时,DIH=100。

OP1:输出方式,一般OP1=4为4~20mA线性电流输出。

CF:系统功能选择。CF=0为内部给定,反作用调节;CF=1为内部给定,正作用调节;CF=8为外部给定,反作用调节;CF=9为外部给定,正作用调节。

Addr:通讯地址。单回路实验Addr=1;串级实验主控为Addr=1,副控为Addr=2;三闭环实验主控为Addr=1,副控为Addr=2,内环为Addr=3。实验中各仪表通讯地址不允许相同。

P、I、D参数可根据实验需要调整,其他参数请参考默认设置。 有关AI系列仪表的使用请参考说明书上相关的内容。 2.SA-14比值、前馈补偿及解耦装置挂件

比值、前馈补偿装置同调节器一起使用,其原理如图1-3所示。上面一路作为比值器,输入电压经过电压跟随器、反相比例放大器、反相器输出0~5V电压,可以实现流量的单闭环比值、双闭环比值控制系统实验;当上面一路作为干扰输入,下面一路作为调节器输出时,两路相加或相减(通过钮子开关切换),再经过I/V变换输出4~20mA电流,这部分构成一个前馈补偿器,可以实现液位与流量、温度与流量的前馈-反馈控制系统实验。

图1-3 比值、前馈补偿器原理图

解耦装置同调节器一起使用,其原理如图1-4所示。上面一路的输入对输出的影响,以及下面一路的输入对输出的影响均为1:1的关系;两路之间相互的影响通过可调比例放大器及加法器实现。值得注意的是上面一路对下面一路的影响可通过钮子开关选择相加或相减,可以实现锅炉内胆与锅炉夹套的温度、上水箱液位与出口水温的解耦控制系统实验。

图1-4 解耦装置原理图

三、远程数据采集控制组件

远程数据采集控制即我们通常所说的直接数字控制(DDC),它的特点是以计算机代替模拟调节器进行控制,并通过数据采集板卡或模块进行A/D、D/A转换,控制算法全部在计算机上实现。在本装置中远程数据采集控制系统包括SA-21远程数据采集热电阻输入模块挂件、SA-22远程数据采集模拟量输入模块挂件、SA-23远程数据采集模拟量输出模块挂件。采用台湾鸿格R8000系列智能采集模块,其中R8017是8路模拟量输入模块,R8024是4路模拟量输出模块,

R8033是3路热电阻输入模块。R8000系列智能采集模块通过RS485等串行口通讯协议与PC相连,由PC中的算法及程序控制并实现数据采集模块对现场的模拟量、开关量信号的输入和输出、脉冲信号的计数和测量脉冲频率等功能。图1-5所示即为远程数据采集控制系统框图。图中输入输出通道即为R8000智能采集模块。关于R8000智能模块的具体使用请参考装置附带的光盘中的相关内容。

图1-5 远程数据采集系统框图

四、PLC控制组件

可编程控制器(简称PLC)是专为在工业环境下应用的一种数字运算操作的电子系统。目前国内外PLC品种繁多,生产PLC的厂商也很多,其中德国西门子公司在S5系列PLC的基础上推出了S7系列PLC,性能价格比越来越高。S7系列PLC有很强的模拟量处理能力和数字运算功能,具有许多过去大型PLC才有的功能,其扫描速度甚至超过了许多大型的PLC,S7系列 PLC功能强、速度快、扩展灵活,并具有紧凑的、无槽位限制的模块化结构,因而在国内工控现场得到了广泛的应用。

图1-6 S7-300PLC控制系统框图

S7-300PLC控制系统:S7-300是采用模块化结构的中小型PLC,包括一个CPU315-2DP主机模块、一个SM331模拟量输入模块和一个SM332模拟量输出模块,以及一块西门子CP5611专用网卡和一根MPI网线。其中SM331为8路模拟量输入模块, SM332为4路模拟量输出模块。图1-6所示为S7-300PLC控制系统结构图。

第四节 软件介绍

一、MCGS组态软件

本装置中智能仪表控制方案、远程数据采集控制方案和S7-200PLC控制方案均采用了北京昆仑公司的MCGS组态软件作为上位机监控组态软件。MCGS(Monitor and Control Generated System)是一套基于Windows平台的,用于快速构造和生成上位机监控系统的组态软件系统,可运行于Microsoft Windows95/98/NT/2000等操作系统。

MCGS 5.1为用户提供了解决实际工程问题的完整方案和开发平台,能够完成现场数据采集、实时和历史数据处理、报警和安全机制、流程控制、动画显示、趋势曲线和报表输出以及企业监控网络等功能。

有关MCGS软件的使用请参考配套的手册及光盘。 二、门子S7系列PLC编程软件

本装置中PLC控制方案采用了德国西门子公司的S7-200和S7-300PLC,其中西门子S7-200PLC采用的是Step 7-MicroWIN 32编程软件,而西门子S7-300PLC采用的是Step 7编程软件。利用这两个软件可以对相应的PLC进行编程、调试、下装、诊断。

有关软件使用请参考光盘中相应的内容。 三、西门子WinCC监控组态软件

S7-300PLC控制方案采用WinCC软件作为上位机监控组态软件,WinCC是结合西门子在过程自动化领域中的先进技术和Microsoft的强大功能的产物。作为一个国际先进的人机界面(HMI)软件和SCADA系统,WinCC提供了适用于工业的图形显示、消息、归档以及报表的功能模板;并具有高性能的过程耦合、快速的画面更新、以及可靠的数据;WinCC还为用户解决方案提供了开放的界面,使得将WinCC集成入复杂、广泛的自动化项目成为可能。

关于WinCC软件的使用请参考配套光盘中的电子文档。 四、7000 Utility软件

远程数据采集控制方案采用台湾鸿格R8000系列智能采集模块,7000 Utility是其配套的模块调试软件。软件安装完以后,会在桌面创建快捷方式,双击“7000 Utility”图标,运行程序自动检测模块,当检测到模块后,可双击模块进行模块参数的显示及修改。若模块通讯失败,请检查通讯线是否已按实验要求连接;若上位机MCGS组态与模块通讯失败,请用7000 Utility检查模块地址,并作正确修改。

第五节 实验要求及安全操作规程

一、实验前的准备

实验前应复习教科书有关章节,认真研读实验指导书,了解实验目的、项目、方法与步骤,明确实验过程中应注意的问题,并按实验项目准备记录等。

实验前应了解实验装置中的对象、水泵、变频器和所用控制组件的名称、作用及其所在位置。以便于在实验中对它们进行操作和观察。熟悉实验装置面板图,要求做到:由面板上的图形、文字符号能准确找到该设备的实际位置。熟悉工艺管道结构、每个手动阀门的位置及其作用。

认真作好实验前的准备工作,对于培养学生独立工作能力,提高实验质量和保护实验设备都是很重要的。

二、实验过程的基本程序 1.明确实验任务; 2.提出实验方案; 3.画实验接线图;

4.进行实验操作,做好观测和记录;

5.整理实验数据,得出结论,撰写实验报告。

在进行本书中的综合实验时,上述程序应尽量让学生独立完成,老师给予必要的指导,以培养学生的实际动手能力,要做好各主题实验,就应做到:实验前有准备;实验中有条理,实验后有分析。

三、实验安全操作规程

1.实验之前确保所有电源开关均处于“关”的位置。

2.接线或拆线必须在切断电源的情况下进行,接线时要注意电源极性。完成接线后,正式投入运行之前,应严格检查安装、接线是否正确,并请指导老师确认无误后,方能通电。

3.在投运之前,请先检查管道及阀门是否已按实验指导书的要求打开,储水箱中是否充水至三分之二以上,以保证磁力驱动泵中充满水,磁力驱动泵无水空转易造成水泵损坏。

4.在进行温度试验前,请先检查锅炉内胆内水位,至少保证水位超过液位指示玻璃管上面的红线位置,无水空烧易造成电加热管烧坏。

5.实验之前应进行变送器零位和量程的调整,调整时应注意电位器的调节方向,并分清调零电位器和满量程电位器。

6.仪表应通电预热15分钟后再进行校验。 7.小心操作,切勿乱扳硬拧,严防损坏仪表。

第二章 对象特性测试实验

被控对象数学模型的建立通常采用下列二种方法。一种是分析法,即根据过程的机理,物料或能量平衡关系求得它的数学模型;另一种是用实验的方法确定。本装置采用实验方法通过被控对象对阶跃信号的响应来确定它的参数及数学模型。由于此法较简单,因而在过程控制中得到了广泛地应用。

第一节 单容自衡水箱液位特性测试实验

一、实验目的

1.掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线; 2.根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K、T和传递函数;

3.掌握同一控制系统采用不同控制方案的实现过程。 二、实验设备

1.实验对象及控制屏、SA-11挂件一个、SA-13挂件一个、SA-14挂件一个、计算机一台(DCS需两台计算机)、万用表一个;

2.SA-12挂件一个、RS485/232转换器一个、通讯线一根; 3.SA-21挂件一个、SA-22挂件一个、SA-23挂件一个;

4.SA-31挂件一个、SA-32挂件一个、SA-33挂件一个、主控单元一个、数据交换器两个,网线四根;

5.SA-41挂件一个、CP5611专用网卡及网线; 6.SA-42挂件一个、PC/PPI通讯电缆一根。 三、实验原理

所谓单容指只有一个贮蓄容器。自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。图2-1所示为单容自衡水箱特性测试结构图及方框图。阀门F1-1、F1-2和F1-8全开,设下水箱流入量为Q1,改变电动调节阀V1的开度可以改变Q1的大小,下水箱的流出量为Q2,改变出水阀F1-11的开度可以改变Q2。液位h的变化反映了Q1与Q2不等而引起水箱中蓄水或泄水的过程。若将Q1作为被控过程的输入变量,h为其输出变量,则该被控过程的数学模型就是h与Q1之间的数学表达式。

根据动态物料平衡关系有

dhQ1-Q2=A (2-1)

dt将式(2-1)表示为增量形式

d?hΔQ1-ΔQ2=A (2-2)

dt式中:ΔQ1,ΔQ2,Δh——分别为偏 离某一平衡状态的增量;

A——水箱截面积。

dh在平衡时,Q1=Q2,=0;当Q1

dt发生变化时,液位h随之变化,水箱出 图2-1 单容自衡水箱特性测试系统 口处的静压也随之变化,Q2也发生变化 (a)结构图 (b)方框图

。由流体力学可知,流体在紊流情况下,液位h与流量之间为非线性关系。但为了简化起见,经线性化处理后,可近似认为Q2与h成正比关系,而与阀F1-11的阻力R成反比,即

ΔQ2=

?h?h 或 R= (2-3) R?Q2式中:R——阀F1-11的阻力,称为液阻。

将式(2-2)、式(2-3)经拉氏变换并消去中间变量Q2,即可得到单容水箱的数学模型为

W0(s)=

RKH(s)== (2-4) RCs?1Ts?1Q1(s)式中T为水箱的时间常数,T=RC;K为放大系数,K=R;C为水箱的容量系数。若令Q1(s)作阶跃扰动,即Q1(s)=

Kx0xxK/T×0=K0- 11sss?s?TTx0,x0=常数,则式(2-4)可改写为 sH(s)=

对上式取拉氏反变换得

h(t)=Kx0(1-e-t/T) (2-5)

当t—>∞时,h(∞)-h(0)=Kx0,因而有

K=

当t=T时,则有

h(T)=Kx0(1-e-1)=0.632Kx0=0.632h(∞) (2-7)

式(2-5)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图2-2(a)所示,该曲线上升到稳态值的63%所对应的时间,就是水箱的时间常数T。也可由坐标原点对响应曲线作切线OA,切线与稳态值交点A所对应的时间就是该时间常数T,由响应曲线求得K和T后,就能求得单容水箱的传递函数。

图2-2 单容水箱的阶跃响应曲线

h(?)?h(0)输出稳态值= (2-6)

阶跃输入x0如果对象具有滞后特性时,其阶跃响应曲线则为图2-2(b),在此曲线的拐

点D处作一切线,它与时间轴交于B点,与响应稳态值的渐近线交于A点。图

中OB即为对象的滞后时间τ,BC为对象的时间常数T,所得的传递函数为:

Ke??sH(S)= (2-8)

1?Ts四、实验内容与步骤

本实验选择下水箱作为被测对象(也可选择上水箱或中水箱)。实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-8全开,将下水箱出水阀门F1-11开至适当开度,其余阀门均关闭。

具体实验内容与步骤按五种方案分别叙述,这五种方案的实验与用户所购的硬件设备有关,可根据实验需要选做或全做。

(一)、智能仪表控制

1.将“SA-12智能调节仪控制” 挂件挂到屏上,并将挂件的通讯线插头插入屏内RS485通讯口上,将控制屏右侧RS485通讯线通过RS485/232转换器连接到计算机串口2,并按照下面的控制屏接线图连接实验系统。将“LT3下水箱液位”钮子开关拨到“ON”的位置。

图2-3 仪表控制单容水箱特性测试实验接线图

2.接通总电源空气开关和钥匙开关,打开24V开关电源,给压力变送器上电,按下启动按钮,合上单相Ⅰ、单相Ⅲ空气开关,给智能仪表及电动调节阀上电。

3.打开上位机MCGS组态环境,打开“智能仪表控制系统”工程,然后进入MCGS运行环境,在主菜单中点击“实验一、单容自衡水箱对象特性测试”,进入实验一的监控界面。

4.在上位机监控界面中将智能仪表设置为“手动”控制,并将输出值设置为一个合适的值,此操作需通过调节仪表实现。

5.合上三相电源空气开关,磁力驱动泵上电打水,适当增加/减少智能仪表的输出量,使下水箱的液位处于某一平衡位置,记录此时的仪表输出值和液位值。

6.待下水箱液位平衡后,突增(或突减)智能仪表输出量的大小,使其输出有一个正(或负)阶跃增量的变化(即阶跃干扰,此增量不宜过大,以免水箱中水溢出),于是水箱的液位便离开原平衡状态,经过一段时间后,水箱液位进入新的平衡状态,记录下此时的仪表输出值和液位值,液位的响应过程曲线将如图2-4所示。

图2-4 单容下水箱液位阶跃响应曲线

7.根据前面记录的液位值和仪表输出值,按公式(2-6)计算K值,再根据图2-2中的实验曲线求得T值,写出对象的传递函数。

(二)、远程数据采集控制

1.将“SA-22远程数据采集模拟量输出模块”、“SA-23远程数据采集模拟量输入模块”挂件挂到屏上,并将挂件上的通讯线插头插入屏内RS485通讯口上,将控制屏右侧RS485通讯线通过RS485/232转换器连接到计算机串口2,并按照下面的控制屏接线图连接实验系统。将“LT3下水箱液位”钮子开关拨到“ON”的位置。

2.接通总电源空气开关和钥匙开关,打开24V开关电源,给智能采集模块及压力变送器上电,按下启动按钮,合上单相Ⅰ空气开关,给电动调节阀上电。

3.打开上位机MCGS组态环境,打开“远程数据采集系统”工程,然后进入MCGS运行环境,在主菜单中点击“实验一、单容自衡水箱对象特性测试”,进入实验一的监控界面。

4.以下步骤请参考前面“(一)智能仪表控制”的步骤4~7。

图2-5 远程数据采集控制单容水箱特性测试实验接线图

(三)、S7-300PLC控制

1.将“SA-41 S7-300PLC控制”挂件挂到屏上,并用MPI通讯电缆线将S7-300PLC连接到计算机CP5611专用网卡,并按照下面的控制屏接线图连接实验系统。将“LT3下水箱液位”钮子开关拨到“ON”的位置。

2.接通总电源空气开关和钥匙开关,打开24V开关电源,给S7-300PLC及压力变送器上电,按下启动按钮,合上单相Ⅰ空气开关,给电动调节阀上电。

3.打开Step 7软件,打开“S7-300”程序进行下载,然后将S7-300PLC置于运行状态,然后运行WinCC组态软件,打开“S7-300PLC控制系统”工程,然后激活WinCC运行环境,在主菜单中点击“实验一、单容自衡水箱对象特性测试”,进入实验一的监控界面。

4.以下步骤请参考前面“(一)智能仪表控制”的步骤4~7。

图2-8 S7-300PLC控制单容水箱特性测试实验接线图

五、实验报告要求

1.画出单容水箱液位特性测试实验的结构框图。

2.根据实验得到的数据及曲线,分析并计算出单容水箱液位对象的参数及传递函数。

六、思考题

1.做本实验时,为什么不能任意改变出水阀F1-11开度的大小? 2.用响应曲线法确定对象的数学模型时,其精度与那些因素有关?

3.如果采用中水箱做实验,其响应曲线与下水箱的曲线有什么异同?并分析差异原因。

第二节 双容水箱特性的测试

一、实验目的

1.掌握双容水箱特性的阶跃响应曲线测试方法;

2.根据由实验测得双容液位的阶跃响应曲线,确定其特征参数K、T1、T2及传递函数;

3.掌握同一控制系统采用不同控制方案的实现过程。 二、实验设备(同前) 三、原理说明

图2-9 双容水箱对象特性测试系统

(a)结构图 (b)方框图

由图2-9所示,被测对象由两个不同容积的水箱相串联组成,故称其为双容对象。自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。根据本章第一节单容水箱特性测试的原理,可知双容水箱数学模型是两个单容水箱数学模型的乘积,即双容水箱的数学模型可用一个二阶惯性环节来描述:

G(s)=G1(s)G2(s)=

k1k2K (2-9) ??T1s?1T2s?1(T1s?1)(T2s?1)式中K=k1k2,为双容水箱的放大系数,T1、T2分别为两个水箱的时间常数。 本实验中被测量为下水箱的液位,当中水箱输入量有一阶跃增量变化时,两水箱的液位变化曲线如图2-10所示。由图2-10可见,上水箱液位的响应曲线为一单调上升的指数函数(图2-10 (a));而下水箱液位的响应曲线则呈S形曲线(图2-10 (b)),即下水箱的液位响应滞后了,它滞后的时间与阀F1-10和F1-11的开度大小密切相关。

图2-10 双容水箱液位的阶跃响应曲线 (a)中水箱液位 (b)下水箱液位

双容对象两个惯性环节的时间常数可按下述方法来确定。在图2-11所示的阶跃响应曲线上求取:

(1) h2(t)|t=t1=0.4 h2(∞)时曲线上的点B和对应的时间t1; (2) h2(t)|t=t2=0.8 h2(∞)时曲线上的点C和对应的时间t2。

图2-11 双容水箱液位的阶跃响应曲线

然后,利用下面的近似公式计算式

K?h2(?)输入稳态值? (2-10) xO阶跃输入量T1?T2?t1?t2 (2-11) 2.16 T1T2t1?(1.74?0.55) (2-12)

(T1?T2)2t20.32〈t1/t2〈0.46

由上述两式中解出T1和T2,于是得到如式(2-9)所示的传递函数。

在改变相应的阀门开度后,对象可能出现滞后特性,这时可由S形曲线的拐点P处作一切线,它与时间轴的交点为A,OA对应的时间即为对象响应的滞后时间?。于是得到双容滞后(二阶滞后)对象的传递函数为:

G(S)=

Ke??S (2-13)

(T1S?1)(T2S?1)四、实验内容与步骤

本实验选择中水箱和下水箱串联作为被测对象(也可选择上水箱和中水箱)。实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-7全开,将中水箱出水阀门F1-10、下水箱出水阀门F1-11开至适当开度(要求F1-10开度稍大于F1-11的开度),其余阀门均关闭。

具体实验内容与步骤按五种方案分别叙述,这五种方案的实验与用户所购的硬件设备有关,可根据实验需要选做或全做。

(一)、智能仪表控制

1.将SA-12挂件挂到屏上,并将挂件的通讯线插头插入屏内RS485通讯口

上,将控制屏右侧RS485通讯线通过RS485/232转换器连接到计算机串口2,并按照本章第一节控制屏接线图2-3连接实验系统。将“LT3下水箱液位”钮子开关拨到“ON”的位置。

2.接通总电源空气开关和钥匙开关,打开24V开关电源,给压力变送器上电,按下启动按钮,合上单相Ⅰ、单相Ⅲ空气开关,给智能仪表及电动调节阀上电。

3.打开上位机MCGS组态环境,打开“智能仪表控制系统”工程,然后进入MCGS运行环境,在主菜单中点击“实验二、双容自衡水箱对象特性测试”,进入实验二的监控界面。

4.在上位机监控界面中将智能仪表设置为“手动”输出,并将输出值设置为一个合适的值(一般为最大值的40~70%,不宜过大,以免水箱中水溢出),此操作需通过调节仪表实现。

5.合上三相电源空气开关,磁力驱动泵上电打水,适当增加/减少智能仪表的输出量,使下水箱的液位处于某一平衡位置,记录此时的仪表输出值和液位值。

6.液位平衡后,突增(或突减)仪表输出量的大小,使其输出有一个正(或负)阶跃增量的变化(即阶跃干扰,此增量不宜过大,以免水箱中水溢出),于是水箱的液位便离开原平衡状态,经过一段时间后,水箱液位进入新的平衡状态,记录下此时的仪表输出值和液位值,液位的响应过程曲线将如图2-13所示。

图2-12 双容水箱液位阶跃响应曲线

7.根据前面记录的液位和仪表输出值,按公式(2-10)计算K值,再根据图2-11中的实验曲线求得T1、T2值,写出对象的传递函数。

(二)、远程数据采集控制

1.将挂件SA-22远程数据采集模拟量输出模块、SA-23远程数据采集模拟量输入模块挂到屏上,并将挂件上的通讯线插头插入屏内RS485通讯口上,将控制屏右侧RS485通讯线通过RS485/232转换器连接到计算机串口2,并按照本章第一节的控制屏接线图2-5连接实验系统。将“LT3下水箱液位”钮子开关拨到“ON”的位置。

2.接通总电源空气开关和钥匙开关,打开24V开关电源,给智能采集模块及压力变送器上电,按下启动按钮,合上单相Ⅰ空气开关,给电动调节阀上电。

3.打开上位机MCGS组态环境,打开“远程数据采集系统”工程,然后进入MCGS运行环境,在主菜单中点击“实验二、双容自衡水箱对象特性测试”,进入实验二的监控界面。

4.以下步骤请参考前面“(一)智能仪表控制”的步骤4~7。 (三)、S7-300PLC控制

1.将挂件SA-41 S7-300PLC控制挂件挂到屏上,并用MPI通讯电缆线将S7-300PLC连接到计算机CP5611专用网卡,并按照本章第一节的控制屏接线图2-8连接实验系统。将“LT3下水箱液位”钮子开关拨到“ON”的位置。

2.接通总电源空气开关和钥匙开关,打开24V开关电源,给S7-300PLC及

压力变送器上电,按下启动按钮,合上单相Ⅰ空气开关,给电动调节阀上电。

3.打开Step 7软件,打开“S7-300”程序进行下载,然后将S7-300PLC置于运行状态,然后运行WinCC组态软件,打开“S7-300PLC控制系统”工程,然后激活WinCC运行环境,在主菜单中点击“实验二、双容自衡水箱对象特性测试”,进入实验二的监控界面。

4.以下步骤请参考前面“(一)智能仪表控制”的步骤4~7。 五、实验报告要求

1.画出双容水箱液位特性测试实验的结构框图。

2.根据实验得到的数据及曲线,分析并计算出双容水箱液位对象的参数及传递函数。

3.综合分析以上五种控制方案的实验效果。 六、思考题

1.做本实验时,为什么不能任意改变两个出水阀门开度的大小? 2.用响应曲线法确定对象的数学模型时,其精度与那些因素有关?

3.如果采用上水箱和中水箱做实验,其响应曲线与用中水箱和下水箱做实验的曲线有什么异同?并分析差异原因。

4.引起双容对象滞后的因素主要有哪些?

第三章 单回路控制系统实验

第一节 单回路控制系统的概述

一、单回路控制系统的概述

图3-1为单回路控制系统方框图的一般形式,它是由被控对象、执行器、调节器和测量变送器组成一个单闭环控制系统。系统的给定量是某一定值,要求系统的被控制量稳定至给定量。由于这种系统结构简单,性能较好,调试方便等优点,故在工业生产中已被广泛应用。

图3-1 单回路控制系统方框图

二、干扰对系统性能的影响

1.干扰通道的放大系数、时间常数及纯滞后对系统的影响。

干扰通道的放大系数Kf会影响干扰加在系统中的幅值。若系统是有差系统,则干扰通道的放大系数愈大,系统的静差也就愈大。

如果干扰通道是一惯性环节,令时间常数为Tf,则阶跃扰动通过惯性环节后,其过渡过程的动态分量被滤波而幅值变小。即时间常数Tf越大,则系统的动态偏差就愈小。

通常干扰通道中还会有纯滞后环节,它使被调参数的响应时间滞后一个τ值,但不会影响系统的调节质量。

2.干扰进入系统中的不同位置。

复杂的生产过程往往有多个干扰量,它们作用在系统的不同位置,如图3-2所示。同一形式、大小相同的扰动作用在系统中不同的位置所产生的静差是不一样的。对扰动产生影响的仅是扰动作用点前的那些环节。

图3-2 扰动作用于不同位置的控制系统

三、控制规律的选择

PID控制规律及其对系统控制质量的影响已在有关课程中介绍,在此将有关结论再简单归纳一下。

1.比例(P)调节

纯比例调节器是一种最简单的调节器,它对控制作用和扰动作用的响应都很快。由于比例调节只有一个参数,所以整定很方便。这种调节器的主要缺点是系统有静差存在。其传递函数为:

GC(s)= KP =

1? (3-1)

式中KP为比例系数,δ为比例带。

2.比例积分(PI)调节

PI调节器就是利用P调节快速抵消干扰的影响,同时利用I调节消除残差,但I调节会降低系统的稳定性,这种调节器在过程控制中是应用最多的一种调节器。其传递函数为:GC(s)=KP(1+

式中TI为积分时间。

3.比例微分(PD)调节

这种调节器由于有微分的超前作用,能增加系统的稳定度,加快系统的调节过程,减小动态和静态误差,但微分抗干扰能力较差,且微分过大,易导致调节阀动作向两端饱和。因此一般不用于流量和液位控制系统。PD调节器的传递函

1数为: GC(s)=KP(1+TDs)=(1+TDs) (3-3)

?式中TD为微分时间。

4.比例积分微分(PID)调节器

PID是常规调节器中性能最好的一种调节器。由于它具有各类调节器的优点,因而使系统具有更高的控制质量。它的传递函数为

GC(s)=KP(1+

111+TDs)=(1++TDs) (3-4)

?TIsTIs111)=(1+) (3-2) ?TIsTIs图3-3表示了同一对象在相同阶跃扰动下,采用不同控制规律时具有相同衰

减率的响应过程。

图3-3 各种控制规律对应的响应过程

四、调节器参数的整定方法

调节器参数的整定一般有两种方法:一种是理论计算法,即根据广义对象的数学模型和性能要求,用根轨迹法或频率特性法来确定调节器的相关参数;另一种方法是工程实验法,通过对典型输入响应曲线所得到的特征量,然后查照经验表,求得调节器的相关参数。工程实验整定法有以下四种:

(一)经验法

若将控制系统按照液位、流量、温度和压力等参数来分类,则属于同一类别的系统,其对象往往比较接近,所以无论是控制器形式还是所整定的参数均可相互参考。表3-1为经验法整定参数的参考数据,在此基础上,对调节器的参数作

进一步修正。若需加微分作用,微分时间常数按TD=(

表3-1 经验法整定参数 系 统 温 度 流 量 压 力 液 位 (二)临界比例度法 参 数 δ(%) 20~60 40~100 30~70 20~80

TI(min) 3~10 0.1~1 0.4~3 11~)TI计算。 34TD(min) 0.5~3 图3-4 具有周期TS的等幅振荡

这种整定方法是在闭环情况下进行的。设TI=∞,TD=0,使调节器工作在纯比例情况下,将比例度由大逐渐变小,使系统的输出响应呈现等幅振荡,如图3-4所示。根据临界比例度δ

k和振荡周期

TS,按表3-2所列的经验算式,求取

调节器的参考参数值,这种整定方法是以得到4:1衰减为目标。

表3-2 临界比例度法整定调节器参数 调节器参数 δ TI(S) TD(S) 调节器名称 P 2δk PI 2.2δk TS/1.2 PID 1.6δk 0.5TS 0.125TS 临界比例度法的优点是应用简单方便,但此法有一定限制。首先要产生允许受控变量能承受

等幅振荡的波动,其次是受控对象应是二阶和二阶以上或具有纯滞后的一阶以上环节,否则在比例控制下,系统是不会出现等幅振荡的。在求取等幅振荡曲线时,应特别注意控制阀出现开、关的极端状态。

(三)衰减曲线法(阻尼振荡法)

图3-5 4:1衰减曲线法图形

在闭环系统中,先把调节器设置为纯比例作用,然后把比例度由大逐渐减小,加阶跃扰动观察输出响应的衰减过程,直至出现图3-5所示的4:1衰减过程为

止。这时的比例度称为4:1衰减比例度,用δ为4:1衰减周期TS。根据δ

S和

S表示之。相邻两波峰间的距离称

TS,运用表3-3所示的经验公式,就可计算出

调节器预整定的参数值。

表3-3 衰减曲线法计算公式 调节器参数 调节器名称 P PI δ(%) δS 1.2δS TI(min) 0.5TS TD(min) PID 0.8δS 0.3TS 0.1 TS (四)动态特性参数法 所谓动态特性参数法,就是根据系统开环广义过程阶跃响应特性进行近似计算的方法,即根据第二章中对象特性的阶跃响应曲线测试法测得系统的动态特性参数(K、T、τ等),利用表3-4所示的经验公式,就可计算出对应于衰减率为4:1时调节器的相关参数。如果被控对象是一阶惯性环节,或具有很小滞后的一阶惯性环节,若用临界比例度法或阻尼振荡法(4:1衰减)就有难度,此时应采用动态特性参数法进行整定。

表3-4 经验计算公式

调节器参

数 δ(%) TI TD 调节器名称

K?P ×100%

T

K?PI 1.1×100% 3.3τ

T

K?PID 0.85×100% 2τ 0.5τ

T

第二节 单容液位定值控制系统

一、实验目的

1.了解单容液位定值控制系统的结构与组成。

2.掌握单容液位定值控制系统调节器参数的整定和投运方法。 3.研究调节器相关参数的变化对系统静、动态性能的影响。 4.了解P、PI、PD和PID四种调节器分别对液位控制的作用。 5.掌握同一控制系统采用不同控制方案的实现过程。 二、实验设备(同前) 三、实验原理

图3-6 中水箱单容液位定值控制系统

(a)结构图 (b)方框图

本实验系统结构图和方框图如图3-6所示。被控量为中水箱(也可采用上水箱或下水箱)的液位高度,实验要求中水箱的液位稳定在给定值。将压力传感器LT2检测到的中水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制中水箱液位的目的。为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。

四、实验内容与步骤

本实验选择中水箱作为被控对象。实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-7、F1-11全开,将中水箱出水阀门F1-10开至适当开度,其余阀门均关闭。

具体实验内容与步骤按五种方案分别叙述,这五种方案的实验与用户所购的硬件设备有关,可根据实验需要选做或全做。

(一)、智能仪表控制

1.将“SA-12智能调节仪控制”挂件挂到屏上,并将挂件的通讯线插头插入屏内RS485通讯口上,将控制屏右侧RS485通讯线通过RS485/232转换器连接到计算机串口2,并按照下面的控制屏接线图连接实验系统。将“LT2中水箱液位”钮子开关拨到“ON”的位置。

图3-7 智能仪表控制单容液位定值控制实验接线图

2.接通总电源空气开关和钥匙开关,打开24V开关电源,给压力变送器上电,按下启动按钮,合上单相Ⅰ、单相Ⅲ空气开关,给智能仪表及电动调节阀上电。

3.打开上位机MCGS组态环境,打开“智能仪表控制系统”工程,然后进入MCGS运行环境,在主菜单中点击“实验三、单容液位定值控制系统”,进入实验三的监控界面。

4.在上位机监控界面中点击“启动仪表”。将智能仪表设置为“手动”,并将设定值和输出值设置为一个合适的值,此操作可通过调节仪表实现。

5.合上三相电源空气开关,磁力驱动泵上电打水,适当增加/减少智能仪表的输出量,使中水箱的液位平衡于设定值。

6.按本章第一节中的经验法或动态特性参数法整定调节器参数,选择PI控制规律,并按整定后的PI参数进行调节器参数设置。

7.待液位稳定于给定值后,将调节器切换到“自动”控制状态,待液位平衡后,通过以下几种方式加干扰:

(1)突增(或突减)仪表设定值的大小,使其有一个正(或负)阶跃增量的变化;(此法推荐,后面三种仅供参考)

(2)将电动调节阀的旁路阀F1-3或F1-4(同电磁阀)开至适当开度; (3)将下水箱进水阀F1-8开至适当开度;(改变负载)

(4)接上变频器电源,并将变频器输出接至磁力泵,然后打开阀门F2-1、F2-4,用变频器支路以较小频率给中水箱打水。

以上几种干扰均要求扰动量为控制量的5%~15%,干扰过大可能造成水箱中水溢出或系统不稳定。加入干扰后,水箱的液位便离开原平衡状态,经过一段

调节时间后,水箱液位稳定至新的设定值(采用后面三种干扰方法仍稳定在原设定值),记录此时的智能仪表的设定值、输出值和仪表参数,液位的响应过程曲线将如图3-8所示。

图3-8 单容水箱液位的阶跃响应曲线

8.分别适量改变调节仪的P及I参数,重复步骤7,用计算机记录不同参数时系统的阶跃响应曲线。

9.分别用P、PD、PID三种控制规律重复步骤4~8,用计算机记录不同控制规律下系统的阶跃响应曲线。

(二)、远程数据采集控制

1.将“SA-22远程数据采集模拟量输出模块”、“SA-23远程数据采集模拟量输入模块”挂件挂到屏上,并将挂件上的通讯线插头插入屏内RS485通讯口上,将控制屏右侧RS485通讯线通过RS485/232转换器连接到计算机串口2,并按照下面的控制屏接线图连接实验系统。将“LT2中水箱液位”钮子开关拨到“ON”的位置。

图3-9 远程数据采集控制单容液位定值控制实验接线图

2.接通总电源空气开关和钥匙开关,打开24V开关电源,给智能采集模块及压力变送器上电,按下启动按钮,合上单相Ⅰ空气开关,给电动调节阀上电。

3.打开上位机MCGS组态环境,打开“远程数据采集系统”工程,然后进入MCGS运行环境,在主菜单中点击“实验三、单容液位定值控制”,进入实验三的监控界面。

4.以下步骤请参考前面“(一)智能仪表控制”的步骤4~9。

(三)、S7-300PLC控制

1.将挂件SA-41 S7-300PLC控制挂件挂到屏上,并用MPI通讯电缆线将S7-300PLC连接到计算机CP5611专用网卡,并按照下面的控制屏接线图连接实验系统。将“LT2中水箱液位”钮子开关拨到“ON”的位置。

图3-12 S7-300PLC控制单容液位定值控制实验接线图

2.接通总电源空气开关和钥匙开关,打开24V开关电源,给S7-300PLC及压力变送器上电,按下启动按钮,合上单相Ⅰ空气开关,给电动调节阀上电。

3.打开Step 7软件,打开“S7-300”程序进行下载,然后将S7-300PLC置于运行状态,然后运行WinCC组态软件,打开“S7-300PLC控制系统”工程,然后激活WinCC运行环境,在主菜单中点击“实验三、单容液位定值控制”,进入实验三的监控界面。

4.以下步骤请参考前面“(一)智能仪表控制”的步骤4~9。 五、实验报告要求

1.画出单容水箱液位定值控制实验的结构框图。

2.用实验方法确定调节器的相关参数,写出整定过程。

3.根据实验数据和曲线,分析系统在阶跃扰动作用下的静、动态性能。 4.比较不同PID参数对系统的性能产生的影响。

5.分析P、PI、PD、PID四种控制规律对本实验系统的作用。 6.综合分析五种控制方案的实验效果。 六、思考题

1.如果采用下水箱做实验,其响应曲线与中水箱的曲线有什么异同?并分析差异原因。

2.改变比例度δ和积分时间TI对系统的性能产生什么影响?

第五章 串级控制系统实验

第一节 串级控制系统概述

一、串级控制系统的概述

图5-1是串级控制系统的方框图。该系统有主、副两个控制回路,主、副调节器相串联工作,其中主调节器有自己独立的给定值R,它的输出m1作为副调节器的给定值,副调节器的输出m2控制执行器,以改变主参数C1。

图5-1 串级控制系统方框图

R-主参数的给定值; C1-被控的主参数 ; C2-副参数; f1(t)-作用在主对象上的扰动; f2(t)-作用在副对象上的扰动。

二、串级控制系统的特点

串级控制系统及其副回路对系统控制质量的影响已在有关课程中介绍,在此将有关结论再简单归纳一下。

1.改善了过程的动态特性;

2.能及时克服进入副回路的各种二次扰动,提高了系统抗扰动能力; 3.提高了系统的鲁棒性; 4.具有一定的自适应能力。

三、主、副调节器控制规律的选择

在串级控制系统中,主、副调节器所起的作用是不同的。主调节器起定值控制作用,它的控制任务是使主参数等于给定值(无余差),故一般宜采用PI或PID调节器。由于副回路是一个随动系统,它的输出要求能快速、准确地复现主调节器输出信号的变化规律,对副参数的动态性能和余差无特殊的要求,因而副调节器可采用P或PI调节器。

四、主、副调节器正、反作用方式的选择

正如单回路控制系统设计中所述,要使一个过程控制系统能正常工作,系统必须采用负反馈。对于串级控制系统来说,主、副调节器的正、反作用方式的选择原则是使整个系统构成负反馈系统,即其主通道各环节放大系数极性乘积必须为正值。

各环节的放大系数极性是这样规定的:当测量值增加,调节器的输出也增加,则调节器的放大系数Kc为负(即正作用调节器),反之,Kc为正(即反作用调节器);本装置所用电动调节阀的放大系数Kv恒为正;当过程的输入增大时,

即调节器开大,其输出也增大,则过程的放大系数K0为正,反之K0为负。 五、串级控制系统的整定方法

在工程实践中,串级控制系统常用的整定方法有以下三种: (一) 逐步逼近法 所谓逐步逼近法,就是在主回路断开的情况下,按照单回路的整定方法求取副调节器的整定参数,然后将副调节器的参数设置在所求的数值上,使主回路闭合,按单回路整定方法求取主调节器的整定参数。而后,将主调节器参数设在所求得的数值上,再进行整定,求取第二次副调节器的整定参数值,然后再整定主调节器。依此类推,逐步逼近,直至满足质量指标要求为止。

(二) 两步整定法

两步整定法就是第一步整定副调节器参数,第二步整定主调节器参数。 整定的具体步骤为:

1.在工况稳定,主回路闭合,主、副调节器都在纯比例作用条件下,主调节器的比例度置于100%,然后用单回路控制系统的衰减(如4:1)曲线法来整定副回路。记下相应的比例度δ2S和振荡周期T2S。

2.将副调节器的比例度置于所求得的δ2S值上,且把副回路作为主回路中的一个环节,用同样方法整定主回路,求取主回路的比例度δ1S和振荡周期T1S。

3.根据求取的δ1S、T1S和δ2S、T2S值,按单回路系统衰减曲线法整定公式计算主、副调节器的比例度δ、积分时间TI和微分时间Td的数值。

4.按“先副后主”,“先比例后积分最后微分”的整定程序,设置主、副调节器的参数,再观察过渡过程曲线,必要时进行适当调整,直到过程的动态品质达到满意为止。

(三) 一步整定法

由于两步整定法要寻求两个4:1的衰减过程,这是一件很花时间的事。因而对两步整定法做了简化,提出了一步整定法。所谓一步整定法,就是根据经验先确定副调节器的参数,然后将副回路作为主回路的一个环节,按单回路反馈控制系统的整定方法整定主调节器的参数。

具体的整定步骤为:

1.在工况稳定,系统为纯比例作用的情况下,根据K02/δ2=0.5这一关系式,通过副过程放大系数K02,求取副调节器的比例放大系数δ

2或按经验选取,

并将其设置在副调节器上。

2.按照单回路控制系统的任一种参数整定方法来整定主调节器的参数。

3.改变给定值,观察被控制量的响应曲线。根据主调节器放大系数K1 和副调节器放大系数K2的匹配原理,适当调整调节器的参数,使主参数品质指标最佳。

4.如果出现较大的振荡现象,只要加大主调节器的比例度δ或增大积分时间常数TI,即可得到改善。

第二节 水箱液位串级控制系统

一、实验目的

1.通过实验了解水箱液位串级控制系统组成原理。

2.掌握水箱液位串级控制系统调节器参数的整定与投运方法。

3.了解阶跃扰动分别作用于副对象和主对象时对系统主控制量的影响。 4.掌握液位串级控制系统采用不同控制方案的实现过程。 二、实验设备(同前) 三、实验原理

本实验为水箱液位的串级控制系统,它是由主控、副控两个回路组成。主控回路中的调节器称主调节器,控制对象为下水箱,下水箱的液位为系统的主控制量。副控回路中的调节器称副调节器,控制对象为中水箱,又称副对象,中水箱的液位为系统的副控制量。主调节器的输出作为副调节器的给定,因而副控回路是一个随动控制系统。副调节器的的输出直接驱动电动调节阀,从而达到控制下水箱液位的目的。为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的主调节器应为PI或PID控制。由于副控回路的输出要求能快速、准确地复现主调节器输出信号的变化规律,对副参数的动态性能和余差无特殊的要求,因而副调节器可采用P调节器。本实验系统结构图和方框图如图5-2所示。

图5-2 水箱液位串级控制系统

(a)结构图 (b)方框图

四、实验内容与步骤

本实验选择中水箱和下水箱串联作为被控对象(也可选择上水箱和中水箱)。实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-7全开,将中水箱出水阀门F1-10、下水箱出水阀门F1-11开至适当开度(要求阀F1-10稍大于阀F1-11),其余阀门均关闭。

具体实验内容与步骤按五种方案分别叙述,这五种方案的实验与用户所购的硬件设备有关,可根据实验需要选做或全做。

(一)、智能仪表控制

1.将两个SA-12挂件挂到屏上,并将挂件的通讯线插头插入屏内RS485通讯口上,将控制屏右侧RS485通讯线通过RS485/232转换器连接到计算机串口2,并按照下面的控制屏接线图连接实验系统。将“LT2中水箱液位”钮子开关拨到“OFF”的位置,将“LT3下水箱液位”钮子开关拨到“ON”的位置。

图5-3 智能仪表控制水箱液位串级控制实验接线图

2.接通总电源空气开关和钥匙开关,打开24V开关电源,给压力变送器上电,按下启动按钮,合上单相Ⅰ、单相Ⅲ空气开关,给智能仪表1及电动调节阀上电。

3.打开上位机MCGS组态环境,打开“智能仪表控制系统”工程,然后进入MCGS运行环境,在主菜单中点击“实验十、水箱液位串级控制系统”,进入实验十的监控界面。

4.在上位机监控界面中点击“启动仪表1”、“启动仪表2”。将主控仪表设置为“手动”,并将输出值设置为一个合适的值,此操作可通过调节仪表实现。

5.合上三相电源空气开关,磁力驱动泵上电打水,适当增加/减少主调节器的输出量,使下水箱的液位平衡于设定值,且中水箱液位也稳定于某一值(此值一般为3~5cm,以免超调过大,水箱断流或溢流)。

6.按本章第一节中任一种整定方法整定调节器参数,并按整定得到的参数进行调节器设定。

7.待液位稳定于给定值时,将调节器切换到“自动”状态,待液位平衡后,通过以下几种方式加干扰:

(1) 突增(或突减)仪表设定值的大小,使其有一个正(或负)阶跃增量的变化;

(2)打开阀门F2-1、F2-4(或F2-5),用变频器支路以较小频率给中水箱(或下水箱)打水。(干扰作用在主对象或副对象)

(3)将阀F1-5、F1-13开至适当开度(改变负载);

(4)将电动调节阀的旁路阀F1-3或F1-4(同电磁阀)开至适当开度; 以上几种干扰均要求扰动量为控制量的5%~15%,干扰过大可能造成水箱中水溢出或系统不稳定。加入干扰后,水箱的液位便离开原平衡状态,经过一段调节时间后,水箱液位稳定至新的设定值(后面三种干扰方法仍稳定在原设定值),记录此时的智能仪表的设定值、输出值和仪表参数,下水箱液位的响应过程曲线将如图5-4所示。

图5-4 下水箱液位阶跃响应曲线

8.适量改变主、副控调节仪的PID参数,重复步骤7,用计算机记录不同参数时系统的响应曲线。

(二)、远程数据采集控制

1.将挂件SA-22远程数据采集模拟量输出模块、SA-23远程数据采集模拟量输入模块挂到屏上,并将挂件上的通讯线插头插入屏内RS485通讯口上,将控制屏右侧RS485通讯线通过RS485/232转换器连接到计算机串口2,并按照下面的控制屏接线图连接实验系统。将“LT2中水箱液位”、“LT3下水箱液位”钮子开关均拨到“ON”的位置。

图5-5 远程数据采集控制水箱液位串级控制实验接线图

2.接通总电源空气开关和钥匙开关,打开24V开关电源,给智能采集模块及压力变送器上电,按下启动按钮,合上单相Ⅰ空气开关,给电动调节阀上电。

3.打开上位机MCGS组态环境,打开“远程数据采集系统”工程,然后进入MCGS运行环境,在主菜单中点击“实验十、水箱液位串级控制”,进入实验十的监控界面。

4.以下步骤请参考前面“(一)智能仪表控制”的步骤4~8。 (三)、S7-300PLC控制

1.将挂件SA-41 S7-300PLC控制挂件挂到屏上,并用MPI通讯电缆线将S7-300PLC连接到计算机CP5611专用网卡,并按照下面的控制屏接线图连接实验系统。将“LT2中水箱液位”、“LT3下水箱液位”钮子开关均拨到“ON”的位置。

2.接通总电源空气开关和钥匙开关,打开24V开关电源,给S7-300PLC及

压力变送器上电,按下启动按钮,合上单相Ⅰ空气开关,给电动调节阀上电。

3.打开Step 7软件,打开“S7-300”程序进行下载,然后运行WinCC组态软件,打开“S7-300PLC控制系统”工程,然后激活WinCC运行环境,在主菜单中点击“实验十、水箱液位串级控制”,进入实验十的监控界面。

4.以下步骤请参考前面“(一)智能仪表控制”的步骤4~8。

图5-8 S7-300PLC控制水箱液位串级控制实验接线图

五、实验报告要求

1.画出水箱液位串级控制系统的结构框图。

2.用实验方法确定调节器的相关参数,并写出整定过程。

3.根据扰动分别作用于主、副对象时系统输出的响应曲线,分析系统在阶跃扰动作用下的静、动态性能。

4.分析主、副调节器采用不同PID参数时对系统性能产生的影响。 6.综合分析五种控制方案的实验效果。 六、思考题

1.试述串级控制系统为什么对主扰动(二次扰动)具有很强的抗扰能力?如果副对象的时间常数与主对象的时间常数大小接近时,二次扰动对主控制量的影响是否仍很小,为什么?

2.当一次扰动作用于主对象时,试问由于副回路的存在,系统的动态性能比单回路系统的动态性能有何改进?

3.串级控制系统投运前需要作好那些准备工作?主、副调节器的正反作用方向如何确定?

4.为什么本实验中的副调节器为比例(P)调节器? 5.改变副调节器的比例度,对串级控制系统的动态和抗扰动性能有何影响,试从理论上给予说明。

6.评述串级控制系统比单回路控制系统的控制质量高的原因?

本文来源:https://www.bwwdw.com/article/o1n3.html

Top