分式运算的技巧Microsoft Word 文档
更新时间:2023-04-08 15:30:01 阅读量: 实用文档 文档下载
- 分式运算的技巧竞赛推荐度:
- 相关推荐
分式运算的技巧
江苏省泰州市智堡中学 陈凤萍
分式运算的关键是灵活运用分式的基本性质进行运算。在进行分式的加减运算时,先将分式的分母分解因式,以方便寻找最简公分母,然后通分。利用同分母分数的加法法则进行运算。在做分式的乘除运算时按分数的乘除法则先将乘除统一转化为乘法运算,再将分子分母分解因式方便约分。另外,运算的结果应该化成最简分式或整式。分式的运算求值有几种常用的技巧方法,现举例说明。 一、设常数求值 例1 已知:
543c b a ==≠0,求c
b a
c b a --+-223的值。
分析 题目中的等比式可以设常数k 来求值。 解 设
5
43c b a =
=
=k (k ≠0)则k c k b k a 5,4,3===。
所以原式=
5
3106542354233-
=-=
-?-+?-?k
k k
k k k k k
说明 先换元后消元,是为了把“多元”进行转化,从而达到化繁为简的目的。
二、倒数法求值 例2 若31=+
x
x ,则
1
2
4
2++x x x
的值是( )
A 、
81 B 、
10
1
C 、2
1
D 、
4
1
分析 直接从条件入手很难求值,不妨从问题着手考虑,向条件靠拢。
解 设
1
2
4
2++x x x
=M ,则
M
1=
111
2
2
2
2
4++
=++x
x x
x x 因为
31=+x
x ,
所
以
,9212
2
=++
x
x 即712
2
=+
x
x 。所以
M
1=112
2
++
x
x =7+1=8。
思路 技巧
所以M =81
。 故选A 。
三、整体代入法求值
例3 若31
1
=-y x ,求y xy x y
xy x 434323-+--的值
分析 这道题从形式上由已知条件无法求得x 和y 的值。对条件进变形,可以找到y x -与xy 的关系,利用整体代入的思想求值。
解 因为31
1
=-y x ,所以xy y x 3-=-。 所以y xy x y
xy x 434323-+--911
9113)3(42)3(33)(42)(3=--=+-?--?=+---=xy xy
xy xy xy
xy xy y x xy
y x 。
四、解方程法求值
例4 已知21)2)(1(3
2++-=+--x B
x A
x x x ,求A 、B 的值。
分析 这是一道考查分式恒等变形的问题,关键是对等式的右边进行通分,与左边的对应项比较,由对应项的系数相等来求值。
解 因为21)2)(1(3
2++-=+--x B
x A
x x x , 所以)2)(1()
2()()2)(1()
1()2()2)(1(3
2+--++=+--++=+--x x B A x B A x x x B x A x x x
所以???-=-=+322B A B A 。 解得??
???=-=3731B A 五、利用公式求值
例5 已知0152=+-x x ,求441
x x +的值。
解 由0152=+-x x ,x ≠0,得51
=+
x x . 所以441
x x +=52722)1(2)1(22222=-??????-+=-+x x x x .
说明:能对公式进行熟练的变形运用,可给解题带来极大的便利.
六、消元代入法求值
例6 若0634=--z y x ,072=-+z y x ,求222222103225z y x z
y x ---+的值。
分析 这道题中两个方程中有三个未知数,求解显然不行,整体代入条件又不具备,消元成为首选,把其中的一个未知数看成常数,代入求值。 解 将已知等式化为??
?=+=-z y x z y x 72634。 所以,???==z y z x 23所以原式1310439242952222
22-=-?-?-?+?=z z z z z z
由此可以看出,对于与分式有关的化简求值除考虑分式本身的运算性质和法则以外,不应考虑配方、消元、整体代入等一些既合理又行之有效的技能技巧,从而简化运算,提高解题效率。
姓名:陈凤萍 中学一级教师
邮编:225300
电话:138********
E-mail:chenfengping85@a04e731dff00bed5b9f31d99
正在阅读:
生物氧化 总结03-18
分子生物学实验理论与操作教程06-16
区发展和改革局关于2022年工作总结和工作部署范文04-26
直升机动力学基础 习题集03-14
IMS网络呼叫前转业务技术要求订01-10
地铁隧道常用管片特点与选型计算04-10
项目经理管理必备之开发规范-命名规范04-07
不同阅读任务类型对高中生词汇附带习得影响的研究-2019年教育文05-23
美丽的雪景作文400字06-29
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- 分式
- 运算
- Microsoft
- 文档
- 技巧
- Word
- 江苏省赣榆县海头高级中学高中地理必修一学案:复习学案8 缺答案
- 非线性方程求根习题课
- 云南锡业集团(控股)有限责任公司2010年度第一期中期票据募集说明
- 幽城幻剑录完整完美详细攻略(完整资料).doc
- (完整版)《教育在十字路口》摘录
- 教学六认真检查总结
- The Pittsburgh sleep quality index as a screening tool for s
- 农村集体土地确权登记发证工作细则
- 关于无线广播电台副台长竞争上岗演讲稿
- 小威向前冲详细教案及活动反思
- 自评与互评活动的组织 自评和互评活动
- 学18—19学年上学期七年级期末考试道德与法治试题(附答案)
- 五年级上学期班主任评语大全
- 高级口译:一场旷日持久的战争
- 新人教版2022届九年级语文学业水平考试模拟试卷(II )卷
- 离散数学(第三版)陈建明,刘国荣课后习题答案
- 节奏与律动课的教与学2
- 最终幻想零式图文攻略
- 八年级英语下册《Unit 5 Topic 3 Many things can affect our fe
- MBA复试面试常见问题