2014年北京市西城区初三数学一模试题及答案评分标准 doc

更新时间:2024-06-09 06:39:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

北京市西城区2014年初三一模

数 学 试 卷 2014. 4

学校 姓名 准考证号 考生须知 1.本试卷共6页,共五道大题,25道小题,满分120分。考试时间120分钟。 2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。 4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。 5.考试结束,将本试卷、答题卡和草稿纸一并交回。 一、选择题(本题共32分,每小题4分)

下面各题均有四个选项,其中只有一个是符合题意的. 1.?2的绝对值是 A.2

B.?2

C.

1 2 D.?

122.2014年3月5日,李克强总理在政府工作报告中指出:2013年全国城镇新增就业人数 约13 100 000人,创历史新高.将数字13 100 000用科学记数法表示为 A.13.1×106

B.1.31×107

B.

C.1.31×108

D.0.131×108

3.由5个相同的正方体搭成的几何体如图所示,则它的主视图是 A.

C.

4.从1到9这九个自然数中任取一个,是奇数的概率是 A.

D.

2 9 B.

4 9 C.

5 9 D.

2 3OACDB5.如图,表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5cm,水面宽AB为8cm,则水的最大深度CD为 A.4cm

B.3cm

C.2cm

D. 1cm

6.为了解某小区家庭使用垃圾袋的情况,小亮随机调查了该小区10户家庭

一周垃圾袋的使用量,结果如下:7,9,11,8,7,14,10,8,9,7(单位:个).关于这组数据,下列结论正确的是 A.极差是8 A.m??1

B.众数是7

C.中位数是8 B.m?1

D.m??1且m?0

D.平均数是9

7.已知关于x的一元二次方程mx2?2x?1?0有两个不相等的实数根,则m的取值范围是 C.m?1且m?0

1

8.如图,在平面直角坐标系xOy中,点A(2,3)为顶点作一直角 ∠PAQ,使其两边分别与x轴、y轴的正半轴交于点P,Q.连接PQ,过点A作AH⊥PQ于点H.若点P的横坐标为x,AH的长为y,则下列图象中,能表示y与x的函数关系的图象大致是 yyyyyAQHOPx3 2O6.5x3 2O6.5x3 2O6.5x3 2O6.5x A B C D 二、填空题(本题共16分,每小题4分) 9.分解因式:2a2?4a?2=______.

10.写出一个只含字母x的分式,满足x的取值范围是x≠2,所

写的分式是: .

11.如图,菱形ABCD中,∠DAB=60°,DF⊥AB于点E,且DF=DC,

连接FC,则∠ACF的度数为 度.

12. 如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),将正六边形ABCDEF沿x轴正

方向无滑动滚动,当点D第一次落在x轴上时,D的横坐标为 ;在运动的过程中,点A的纵坐标的最大值是 ;保持上述运动过程,经过(2014,3)的正六边形的顶点 .

yED1DAEFOBCyFC2B1EDCFA12BOA1xOx

三、解答题(本题共30分,每小题5分) 13.计算:(2?1)0?27?2cos30??()?1.

14.如图,点C,F在BE上,BF=CE,AB=DE,∠B=∠E.

求证:∠ACB=∠DFE.

AD12?3(x?1)?x?7,?15.解不等式组?2x?1

≤x?1.??316.已知x2?3x?1,求代数式(x?1)(3x?1)?(x?2)2?4的值.

2

BFCE17.列方程(组)解应用题:

某校甲、乙两班给贫困地区捐款购买图书,每班捐款总数均为1200元,已知甲比乙班多8

人,乙班人均捐款是甲班人均捐款多1.2倍,求甲、乙两班各有多少名学生.

18.在平面直角坐标系xOy中,一次函数y?x?n和反比例函数y??y6的图象都经过点A(3,m). x1(1)求m的值和一次函数的表达式;

6(2)点B在双曲线y??上,且位于直线y?x?n的x下方,若点B的横、纵坐标都是整数,直接写出点B的坐标.

四、解答题(本题共20分,每小题5分)

O1x19.如图,在△ABC中,AB=AC,AD平分∠BAC,CE∥AD且CE=AD. B(1)求证:四边形ADCE是矩形;

(2)若△ABC是边长为4的等边三角形,对角线AC,DE相交于

点O,在CE上截取CF=CO,连接OF,求FC的长及四边形AOFE的面积.

20.以下是根据北京市统计局公布的2010—2013年北京市城镇居民人均可支配收入和农民

人均现金收入的数据绘制的统计图的一部分:

CFEDOA

根据以上信息,解答下列问题:

(1)2012年农民人均现金收入比2011年城镇居民人均可支配收入的一半少0.05万元,则

2012年农民人均现金收入是______万元,请根据以上信息补全条形统计图,并标明相应的数据(结果精确到0.1);

(2)在2010—2013年这四年中,北京市城镇居民人均可支配收入和农民人均现金收入相

差数额最大的年份是______年;

(3)①2011—2013年城镇居民人均可支配收入的年平均增长率最接近______;

A.14%

3

B.11% C.10% D.9%

②若2014年城镇居民人均可支配收入按①中的平均增长率增长,请预测2014年的城镇居民人均可支配收入为_____万元(结果精确到0.1).

21.如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接OD,过点D作⊙O的切线,交AB延长线于点E,交AC于点F. A(1)求证:OD∥AC; (2)当AB=10,cos?ABC?

22.阅读下列材料:

问题:在平面直角坐标系xOy中,一张矩形纸片OBCD

5时,求AF及BE的长. 5BEOFDC按如图1所示放置,已知OB=10,BC=6.将这张纸片折叠,使点O落在边CD上,记作点A,折痕与边OD(含端点)交于点E,与边OB(含端点)或其延长线交于点F,求点A的坐标.

小明在解决这个问题时发现:要求点A的坐标,只要求出线段AD的长即可.连接

OA,设折痕EF所在直线对应的函数表达式为y?kx?b(k?0,n?0),于是有 E(0,n),F(?n,0).所以在Rt△EOF中, 得到tan∠OFE=?k,在Rt△AOD中,利用等角的三k 1角函数值相等,就可以求出线段DA的长(如图1). yDE1ACyDACyDC111O FBxOBxO1Bx 图1 请回答:

图2 备用图

(1)如图1,若点E的坐标为(0,4),直接写出点A的坐标;

(2)在图2中,已知点O落在边CD上的点A处,请画出折痕所在的直线EF(要求:尺

规作图,保留作图痕迹,不写作法); 参考小明的做法,解决以下问题:

(3)将矩形沿直线y??x?n折叠,求点A的坐标;

(4)将矩形沿直线y?kx?n折叠,点F落在OB边上(含端点),直接写出k的取值范围.

tan∠OFE=?k= tan∠AOD, 12?k?OD6,DA??6k, ?DADA2?DA?6,2??6k?6

4

5

五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)

23. 抛物线y?x2?kx?3与x轴交于点A,B,与y轴交于点C,其中点B坐标为(1+k,0). (1)求抛物线对应的函数表达式;

(2)将(1)中的抛物线沿对称轴向上平移,使其顶点M落在线

段BC上,记该抛物线为G,求抛物线G对应的函数表达式;

(3) 将线段BC平移得到线段B'C'(B的对应点记作B',C的

对应点记作C'),使其经过(2)中所得使得抛物线G的顶点M,求点B'到直线OC'的距离h的取值范围.

24. 四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF.G为DF的中点,连接EG,CG ,EC.

(1)如图1,若点E在CB边的延长线上,直接写出EG与GC的位置关系及

y321-3-2-1O-1-2-3-5-61234xEC的值; GC(2)将图1中的△BEF绕点B顺时针方向旋转至图2所示位置,在(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;

(3)将图1中的△BEF,绕点B顺时针旋转?(0°

AGFDAGFD

ADEE

B图1

CB图2

C

B备用图

C

6

25. 定义1:在 △ABC中,若顶点A,B,C按逆时针方向排列,则规定它的面积为△ABC的“有向面积”;若△ABC的顶点A,B,C按顺时针方向排列,规定它的面积的相反数为

△ABC的“有向面积”. “有向面积”用S表示.例如图1中,S?ABC?S?ABC;图2中,S?ABC??S?ABC.

定义2:在平面内任取一个△ABC和点P(点P不在△ABC三边所在直线上),称有序数

组(S?PBC,S?PCA,S?PAB)为点P关于△ABC的“面积坐标”,记作P(S?PBC,S?PCA,S?PAB). 例如图3中,菱形ABCD的边长为2,∠ABC=60°,则S?ABC?3,点D关于

AD△ABC的“面积坐标”D(S?DBC,S?DCA,S?DAB)为 D(3,?3,3).

在图3中,我们知道,S?ABC?S?DBC?S?DAB?S?DCA,利用“有向面积”我们也可以把上式表示为S?ABC?S?DBC?S?DAB?S?DCA.

应用新知:

(1)如图4,正方形ABCD的边长为1,则S?ABC?_____,点D关于△ABC的“面积坐标”是D ( ____________);

探究发现:

(2)如图4,在平面直角坐标系xOy中,点A(0,2),B(?1,0).

①若点P是第二象限内任意点(不在直线AB上),点P关于△ABO的“面积坐标”为

B图4

CP(m,n,k),试探究m?n?k的值是否为定值?如果是,求出这个定值;如果不是,说明理

由;

②若点P(x,y)是第四象限内任意点,直接写出点P关于△ABO的“面积坐标”(用含x,y表示); 解决问题:

(3)在(2)的条件下,点C(1,0),D(0,1),点Q在抛物线y?x2?2x?4上,求当

S?QAB?S?QCD 的值最小时,求点Q的横坐标.

yyAB-121AB121Ox-1O1x备用图 备用图

7

北京市西城区2014年初三一模试卷

数学试卷参考答案及评分标准

一、选择题(本题共32分,每小题4分) 题号 答案 1 A 2 B 3 B 4 C 5 C 6 B 7 D 2014. 4

8 D 二、填空题(本题共16分,每小题4分)

9 10 答案不唯一,如:11 12 (4,0) 2 B或F 2(a-1)2 1 x?215 三、解答题(本题共30分,每小题5分)

1-12-1)-27+2cos30+() 13.解:(

20o=1?33?2?3········································································································· 4分 ?2 ·

2=3?2······················································································································ 5分 3. ·

14. 证明:(1)∵BF=CE,

∴ BF+ FC=CE+CF,

即BC=EF. …………1分 在△ABC和△DEF中,

AD

?AB?DE,???B??E, ?BC?EF,?BFCE∴△ABC≌△DEF ························································································· 4分 ∴∠ACB=∠DFE. ························································································· 5分

?3(x?1)?x?7,?15.解:?2x?1

≤x?1.??3由①得x?5. ········································································································ 2分

x?5. ············································································ 5分

由②得x??4. ················································································································· 4分 ∴ 原不等式组的解集是?4?16. 解:(x?1)(3x?1)?(x?2)=3x=3x22?4.

?3x?x?1?(x2?4x?4)?4. ············································································ 2分

?3x?x?1?x2?4x?4?4. ·············································································· 3分

2=2x

2?6x?9. ··················································································································· 4分

8

当x2?3x?1时,原式=2?1?9??7. ············································································ 5分

17.解:设乙班有学生x人,则甲班有学生(x+8)人.

依题意得 解得x12001200. ·

·················································································· 5分 ?1.2?xx?8?40. ·························································································································· 3分

?40是原方程的解,并且符合题意. ······························································· 4分

经检验,x (x+8)=48.

答: 甲班有学生48人,乙班有学生40人. ········································································ 5分

18. 解:(1)∵一次函数y?x?n和反比例函数

y??6的图象都经过点A(3,m). xy∴m??6??2. ································ 1分 31∴点A的坐标为A(3,?2),. ························ 2分 ∴?2?3?n. ∴nO1xA??5.

y?x?5. ······················ 3分 ∴一次函数表达式为

(2)点B的坐标为(1,?6)或(6,?1). ··········································································· 5分

四、解答题(本题共20分,每小题5分) 19.解:(1)∵CE∥AD且CE=AD,

∴四边形ADCE是平行四边形. ······················································································ 1分

又在△ABC中,AB=AC,AD平分∠BAC, ∴AD⊥BC. ∴∠ADC=90°..

∴四边形ADCE是矩形. ································································································ 2分 (2)作 OH⊥CE于点H,

∵△ABC是边长为4的等边三角形, ∴∠ACB =60°,

11?DAC??BAC?30?,CD?BC?2.

221AC?2. 2由(1)知四边形ADCE是矩形, ∴AC与DE互相平分,AO=OC?BDOCHFA∴FC=OC=2. ························································ 3分 ∵在矩形ADCE中.∠AED=∠DCE=90°. ∴∠ACE=∠DCA=30°. 在Rt△COH中, ∴CHE1·············································································· 4分 OH?OC?1. ·

2?EH?3.

9

∴S四边形AOFE11··············· 5分 ?S?ACE?S?FOC?AE?CE?CF?OH?23?1. ·

2220.解:(1)1.6;补全条形统计图如图;…………2分

(2)2013; …………3分 (3)①C.②4.4. …………5分

(1)证明:连接AD.

∵AB是直径, ∴∠ACB=90°.

∴AD⊥BC. ∵AB=AC,

∴∠1=∠2. ∴∠1=∠ODA. ∴∠2=∠ODA.

∴OD∥AC. ···························································································································· 2分

(2)解: ∵EF是⊙O的切线,

可得∠ODE=90°.

由(1)知OD∥AC,∠1=∠2,∠ADB=90°. ∴∠AFE=∠ODE=90°,∠ADF=∠ABC.

A12OFBEDC5在Rt△ADB中,AB=10,cos?ABC?,

5∴

AD?45,BD?25 ,OD?5.

cos?ADF?cos?ABC?5, 5在Rt△AFD中,

可得

AF?8. ···························································································································· 4分

∵OD∥AC,

∴△EDO∽△EFA.

ODDE5DE?5?,可得?. AFDA8DE?1010∴DE=.

310∴DE长为 ································································································································· 5分

3由

10

22.解:(1)点A的坐标(23,0);……………… 1分

(2)如图; ………………2分

(3)EF垂直平分OA,

则∠AOD=∠OFE. ∴tan∠AOD =tan∠OFE=

yDE1AC1. 2O1BFx在Rt△AOD中,DA= OD tan∠AOD?3.

∴点A的坐标为?3,···························································································· 3分 6?; ·(4)?1?1····················································································································· 5分 k?? ·3五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.(1)解:∵(k?1)2∴ k∴

··············································································· 1分 ?k(k?1)?3?0, ·

?2.

····································································································· 2分 y?x2?2x?3. ·

(2)由(1),得B (3,0),C (0,?3),

∴经过B,C的直线:y·························································································· 3分 ?x?3. ·

设平移后的抛物线G的的顶点M的坐标为:(1,t). ∵M在线段BC上, ∴t?1?3??2. ···················································································································· 4分

y?(x?1)2?2.

∴平移后的抛物线G为:即

·················································································································· 5分 y?x2?2x?1. ·

(3)作OE⊥BC于点E.

∴B?C??BC?32,OE∴S?OB?C?∴

132BC?. 22119?OC??h?B?C??OE?. 222?5?OC??17.

11

91795?h?.··············································································································· 7分 175

24.(1)解:EG?GC,

EC····················································································· 2分 ?2; ·

GC (2)(1)中的结论仍然成立.

证明:取线段BF的中点M,连接EM,MG,

∵△BEF是等腰直角三角形, ∴EM?MB?FM?1. FB,且∠FME=90°2连接BD,取线段BD的中点N,连接GN,CN, ∵ABCD是正方形, ∴GN?BN?DN?1. BD,且∠CND=90°2∵G是DF的中点, ∴GN?1FB?EM,GN∥FB. 21BD?CN,MG∥BD. 2∴∠1=∠2. 同理MG?∴∠2=∠3. ∴GN?1FB?EM,GN∥FB. 2∴∠1=∠3.

∴∠EMG=∠EMF+∠1=∠CND+∠2=∠GNC.

∴△EMG≌△GNC. ·························································································· 4分 ∴EG=GC. ∴∠EGM=∠GCN.

在△CNG中,∠GNC+∠GCN+∠CGN=180°. ∴∠3+∠GCN+∠CGN=90°. ∴∠2+∠EGM+∠CGN=90°. 即EG⊥GC,

EC···························································································· 5分 ?2. ·

GCA12

(3)当E,F,D三点共线时,连接BD.

FGDE∵BE=1,AB=∴BF2,

?2,BD=2.

?BE1?. BD2在Rt△BED中,sin?EDB∴?EDB?30?. ∴DE?3.

···································································································· 6分 DF?DE?EF?3?1. ·∴?FBD??EFB??EDB∴?ABF?45??30??15?.

??ABD??FBD?45??15??30?.

∴tan?ABF?3. ················································································································· 7分 325.解:(1)

1111, (,?,) ········································································································· 2分 2222(2)答:m?n?k分两种情况:

?S?ABO.

(ⅰ) 当点P在△ABO的内部时,

m?n?k?S?PBO?S?POA?S?PAB?S?PBO?S?POA?S?PAB?S?ABO?S?ABO.

·········································································································································· 3分

(ⅱ) 当点P在△ABO的外部时, yPABP-1OyA2121B1x-1O1xm?n?k?S?PBO?S?POA?S?PAB?S?PBO?S?POA?S?PAB?S?ABO?S?ABO.

综上,m?n?k② P(·························································································· 4分 ?S?ABO. ·

11························································································ 5分 y,?x,1?x?y). ·

22(3)当x>0或x<0时,均有:

13

111y,S?QOA??x,S?QDO?x,S?QOC?y.

2221由S?QBO?S?QOA?S?QAB?S?ABO,得y?x?S?QAB?1.

2111由S?QDO?S?QOC?S?QCD?S?CDO,得x?y?S?QCD?.

222111113S?QAB?S?QCD?(y?x?1)?(x?y?)??x?y?

22222213??x?(x2?2x?4)?

2235?x2?x?

22331?(x?)2?.

41635可以验证当x=0时,y=4,S?QAB?S?QCD?1??,上式仍然成立.

2233∴当S?QAB?S?QCD的值最小时,x??,即点Q的横坐标为?. ······························ 5分

44S?ABO?

QADB-112yyQADB1C21

Ox-1O1Cx 14

本文来源:https://www.bwwdw.com/article/nzo6.html

Top