2014年北京市西城区初三数学一模试题及答案评分标准 doc
更新时间:2024-06-09 06:39:01 阅读量: 综合文库 文档下载
北京市西城区2014年初三一模
数 学 试 卷 2014. 4
学校 姓名 准考证号 考生须知 1.本试卷共6页,共五道大题,25道小题,满分120分。考试时间120分钟。 2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。 4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。 5.考试结束,将本试卷、答题卡和草稿纸一并交回。 一、选择题(本题共32分,每小题4分)
下面各题均有四个选项,其中只有一个是符合题意的. 1.?2的绝对值是 A.2
B.?2
C.
1 2 D.?
122.2014年3月5日,李克强总理在政府工作报告中指出:2013年全国城镇新增就业人数 约13 100 000人,创历史新高.将数字13 100 000用科学记数法表示为 A.13.1×106
B.1.31×107
B.
C.1.31×108
D.0.131×108
3.由5个相同的正方体搭成的几何体如图所示,则它的主视图是 A.
C.
4.从1到9这九个自然数中任取一个,是奇数的概率是 A.
D.
2 9 B.
4 9 C.
5 9 D.
2 3OACDB5.如图,表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5cm,水面宽AB为8cm,则水的最大深度CD为 A.4cm
B.3cm
C.2cm
D. 1cm
6.为了解某小区家庭使用垃圾袋的情况,小亮随机调查了该小区10户家庭
一周垃圾袋的使用量,结果如下:7,9,11,8,7,14,10,8,9,7(单位:个).关于这组数据,下列结论正确的是 A.极差是8 A.m??1
B.众数是7
C.中位数是8 B.m?1
D.m??1且m?0
D.平均数是9
7.已知关于x的一元二次方程mx2?2x?1?0有两个不相等的实数根,则m的取值范围是 C.m?1且m?0
1
8.如图,在平面直角坐标系xOy中,点A(2,3)为顶点作一直角 ∠PAQ,使其两边分别与x轴、y轴的正半轴交于点P,Q.连接PQ,过点A作AH⊥PQ于点H.若点P的横坐标为x,AH的长为y,则下列图象中,能表示y与x的函数关系的图象大致是 yyyyyAQHOPx3 2O6.5x3 2O6.5x3 2O6.5x3 2O6.5x A B C D 二、填空题(本题共16分,每小题4分) 9.分解因式:2a2?4a?2=______.
10.写出一个只含字母x的分式,满足x的取值范围是x≠2,所
写的分式是: .
11.如图,菱形ABCD中,∠DAB=60°,DF⊥AB于点E,且DF=DC,
连接FC,则∠ACF的度数为 度.
12. 如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),将正六边形ABCDEF沿x轴正
方向无滑动滚动,当点D第一次落在x轴上时,D的横坐标为 ;在运动的过程中,点A的纵坐标的最大值是 ;保持上述运动过程,经过(2014,3)的正六边形的顶点 .
yED1DAEFOBCyFC2B1EDCFA12BOA1xOx
三、解答题(本题共30分,每小题5分) 13.计算:(2?1)0?27?2cos30??()?1.
14.如图,点C,F在BE上,BF=CE,AB=DE,∠B=∠E.
求证:∠ACB=∠DFE.
AD12?3(x?1)?x?7,?15.解不等式组?2x?1
≤x?1.??316.已知x2?3x?1,求代数式(x?1)(3x?1)?(x?2)2?4的值.
2
BFCE17.列方程(组)解应用题:
某校甲、乙两班给贫困地区捐款购买图书,每班捐款总数均为1200元,已知甲比乙班多8
人,乙班人均捐款是甲班人均捐款多1.2倍,求甲、乙两班各有多少名学生.
18.在平面直角坐标系xOy中,一次函数y?x?n和反比例函数y??y6的图象都经过点A(3,m). x1(1)求m的值和一次函数的表达式;
6(2)点B在双曲线y??上,且位于直线y?x?n的x下方,若点B的横、纵坐标都是整数,直接写出点B的坐标.
四、解答题(本题共20分,每小题5分)
O1x19.如图,在△ABC中,AB=AC,AD平分∠BAC,CE∥AD且CE=AD. B(1)求证:四边形ADCE是矩形;
(2)若△ABC是边长为4的等边三角形,对角线AC,DE相交于
点O,在CE上截取CF=CO,连接OF,求FC的长及四边形AOFE的面积.
20.以下是根据北京市统计局公布的2010—2013年北京市城镇居民人均可支配收入和农民
人均现金收入的数据绘制的统计图的一部分:
CFEDOA
根据以上信息,解答下列问题:
(1)2012年农民人均现金收入比2011年城镇居民人均可支配收入的一半少0.05万元,则
2012年农民人均现金收入是______万元,请根据以上信息补全条形统计图,并标明相应的数据(结果精确到0.1);
(2)在2010—2013年这四年中,北京市城镇居民人均可支配收入和农民人均现金收入相
差数额最大的年份是______年;
(3)①2011—2013年城镇居民人均可支配收入的年平均增长率最接近______;
A.14%
3
B.11% C.10% D.9%
②若2014年城镇居民人均可支配收入按①中的平均增长率增长,请预测2014年的城镇居民人均可支配收入为_____万元(结果精确到0.1).
21.如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接OD,过点D作⊙O的切线,交AB延长线于点E,交AC于点F. A(1)求证:OD∥AC; (2)当AB=10,cos?ABC?
22.阅读下列材料:
问题:在平面直角坐标系xOy中,一张矩形纸片OBCD
5时,求AF及BE的长. 5BEOFDC按如图1所示放置,已知OB=10,BC=6.将这张纸片折叠,使点O落在边CD上,记作点A,折痕与边OD(含端点)交于点E,与边OB(含端点)或其延长线交于点F,求点A的坐标.
小明在解决这个问题时发现:要求点A的坐标,只要求出线段AD的长即可.连接
OA,设折痕EF所在直线对应的函数表达式为y?kx?b(k?0,n?0),于是有 E(0,n),F(?n,0).所以在Rt△EOF中, 得到tan∠OFE=?k,在Rt△AOD中,利用等角的三k 1角函数值相等,就可以求出线段DA的长(如图1). yDE1ACyDACyDC111O FBxOBxO1Bx 图1 请回答:
图2 备用图
(1)如图1,若点E的坐标为(0,4),直接写出点A的坐标;
(2)在图2中,已知点O落在边CD上的点A处,请画出折痕所在的直线EF(要求:尺
规作图,保留作图痕迹,不写作法); 参考小明的做法,解决以下问题:
(3)将矩形沿直线y??x?n折叠,求点A的坐标;
(4)将矩形沿直线y?kx?n折叠,点F落在OB边上(含端点),直接写出k的取值范围.
tan∠OFE=?k= tan∠AOD, 12?k?OD6,DA??6k, ?DADA2?DA?6,2??6k?6
4
5
五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)
23. 抛物线y?x2?kx?3与x轴交于点A,B,与y轴交于点C,其中点B坐标为(1+k,0). (1)求抛物线对应的函数表达式;
(2)将(1)中的抛物线沿对称轴向上平移,使其顶点M落在线
段BC上,记该抛物线为G,求抛物线G对应的函数表达式;
(3) 将线段BC平移得到线段B'C'(B的对应点记作B',C的
对应点记作C'),使其经过(2)中所得使得抛物线G的顶点M,求点B'到直线OC'的距离h的取值范围.
24. 四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF.G为DF的中点,连接EG,CG ,EC.
(1)如图1,若点E在CB边的延长线上,直接写出EG与GC的位置关系及
y321-3-2-1O-1-2-3-5-61234xEC的值; GC(2)将图1中的△BEF绕点B顺时针方向旋转至图2所示位置,在(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;
(3)将图1中的△BEF,绕点B顺时针旋转?(0°<90°),若BE=1,AB=2,当E,F,D三点共线时,求DF的长及tan?ABF的值.
AGFDAGFD
ADEE
B图1
CB图2
C
B备用图
C
6
25. 定义1:在 △ABC中,若顶点A,B,C按逆时针方向排列,则规定它的面积为△ABC的“有向面积”;若△ABC的顶点A,B,C按顺时针方向排列,规定它的面积的相反数为
△ABC的“有向面积”. “有向面积”用S表示.例如图1中,S?ABC?S?ABC;图2中,S?ABC??S?ABC.
定义2:在平面内任取一个△ABC和点P(点P不在△ABC三边所在直线上),称有序数
组(S?PBC,S?PCA,S?PAB)为点P关于△ABC的“面积坐标”,记作P(S?PBC,S?PCA,S?PAB). 例如图3中,菱形ABCD的边长为2,∠ABC=60°,则S?ABC?3,点D关于
AD△ABC的“面积坐标”D(S?DBC,S?DCA,S?DAB)为 D(3,?3,3).
在图3中,我们知道,S?ABC?S?DBC?S?DAB?S?DCA,利用“有向面积”我们也可以把上式表示为S?ABC?S?DBC?S?DAB?S?DCA.
应用新知:
(1)如图4,正方形ABCD的边长为1,则S?ABC?_____,点D关于△ABC的“面积坐标”是D ( ____________);
探究发现:
(2)如图4,在平面直角坐标系xOy中,点A(0,2),B(?1,0).
①若点P是第二象限内任意点(不在直线AB上),点P关于△ABO的“面积坐标”为
B图4
CP(m,n,k),试探究m?n?k的值是否为定值?如果是,求出这个定值;如果不是,说明理
由;
②若点P(x,y)是第四象限内任意点,直接写出点P关于△ABO的“面积坐标”(用含x,y表示); 解决问题:
(3)在(2)的条件下,点C(1,0),D(0,1),点Q在抛物线y?x2?2x?4上,求当
S?QAB?S?QCD 的值最小时,求点Q的横坐标.
yyAB-121AB121Ox-1O1x备用图 备用图
7
北京市西城区2014年初三一模试卷
数学试卷参考答案及评分标准
一、选择题(本题共32分,每小题4分) 题号 答案 1 A 2 B 3 B 4 C 5 C 6 B 7 D 2014. 4
8 D 二、填空题(本题共16分,每小题4分)
9 10 答案不唯一,如:11 12 (4,0) 2 B或F 2(a-1)2 1 x?215 三、解答题(本题共30分,每小题5分)
1-12-1)-27+2cos30+() 13.解:(
20o=1?33?2?3········································································································· 4分 ?2 ·
2=3?2······················································································································ 5分 3. ·
14. 证明:(1)∵BF=CE,
∴ BF+ FC=CE+CF,
即BC=EF. …………1分 在△ABC和△DEF中,
AD
?AB?DE,???B??E, ?BC?EF,?BFCE∴△ABC≌△DEF ························································································· 4分 ∴∠ACB=∠DFE. ························································································· 5分
?3(x?1)?x?7,?15.解:?2x?1
≤x?1.??3由①得x?5. ········································································································ 2分
x?5. ············································································ 5分
由②得x??4. ················································································································· 4分 ∴ 原不等式组的解集是?4?16. 解:(x?1)(3x?1)?(x?2)=3x=3x22?4.
?3x?x?1?(x2?4x?4)?4. ············································································ 2分
?3x?x?1?x2?4x?4?4. ·············································································· 3分
2=2x
2?6x?9. ··················································································································· 4分
8
当x2?3x?1时,原式=2?1?9??7. ············································································ 5分
17.解:设乙班有学生x人,则甲班有学生(x+8)人.
依题意得 解得x12001200. ·
·················································································· 5分 ?1.2?xx?8?40. ·························································································································· 3分
?40是原方程的解,并且符合题意. ······························································· 4分
经检验,x (x+8)=48.
答: 甲班有学生48人,乙班有学生40人. ········································································ 5分
18. 解:(1)∵一次函数y?x?n和反比例函数
y??6的图象都经过点A(3,m). xy∴m??6??2. ································ 1分 31∴点A的坐标为A(3,?2),. ························ 2分 ∴?2?3?n. ∴nO1xA??5.
y?x?5. ······················ 3分 ∴一次函数表达式为
(2)点B的坐标为(1,?6)或(6,?1). ··········································································· 5分
四、解答题(本题共20分,每小题5分) 19.解:(1)∵CE∥AD且CE=AD,
∴四边形ADCE是平行四边形. ······················································································ 1分
又在△ABC中,AB=AC,AD平分∠BAC, ∴AD⊥BC. ∴∠ADC=90°..
∴四边形ADCE是矩形. ································································································ 2分 (2)作 OH⊥CE于点H,
∵△ABC是边长为4的等边三角形, ∴∠ACB =60°,
11?DAC??BAC?30?,CD?BC?2.
221AC?2. 2由(1)知四边形ADCE是矩形, ∴AC与DE互相平分,AO=OC?BDOCHFA∴FC=OC=2. ························································ 3分 ∵在矩形ADCE中.∠AED=∠DCE=90°. ∴∠ACE=∠DCA=30°. 在Rt△COH中, ∴CHE1·············································································· 4分 OH?OC?1. ·
2?EH?3.
9
∴S四边形AOFE11··············· 5分 ?S?ACE?S?FOC?AE?CE?CF?OH?23?1. ·
2220.解:(1)1.6;补全条形统计图如图;…………2分
(2)2013; …………3分 (3)①C.②4.4. …………5分
(1)证明:连接AD.
∵AB是直径, ∴∠ACB=90°.
∴AD⊥BC. ∵AB=AC,
∴∠1=∠2. ∴∠1=∠ODA. ∴∠2=∠ODA.
∴OD∥AC. ···························································································································· 2分
(2)解: ∵EF是⊙O的切线,
可得∠ODE=90°.
由(1)知OD∥AC,∠1=∠2,∠ADB=90°. ∴∠AFE=∠ODE=90°,∠ADF=∠ABC.
A12OFBEDC5在Rt△ADB中,AB=10,cos?ABC?,
5∴
AD?45,BD?25 ,OD?5.
cos?ADF?cos?ABC?5, 5在Rt△AFD中,
可得
AF?8. ···························································································································· 4分
∵OD∥AC,
∴△EDO∽△EFA.
ODDE5DE?5?,可得?. AFDA8DE?1010∴DE=.
310∴DE长为 ································································································································· 5分
3由
10
22.解:(1)点A的坐标(23,0);……………… 1分
(2)如图; ………………2分
(3)EF垂直平分OA,
则∠AOD=∠OFE. ∴tan∠AOD =tan∠OFE=
yDE1AC1. 2O1BFx在Rt△AOD中,DA= OD tan∠AOD?3.
∴点A的坐标为?3,···························································································· 3分 6?; ·(4)?1?1····················································································································· 5分 k?? ·3五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.(1)解:∵(k?1)2∴ k∴
··············································································· 1分 ?k(k?1)?3?0, ·
?2.
····································································································· 2分 y?x2?2x?3. ·
(2)由(1),得B (3,0),C (0,?3),
∴经过B,C的直线:y·························································································· 3分 ?x?3. ·
设平移后的抛物线G的的顶点M的坐标为:(1,t). ∵M在线段BC上, ∴t?1?3??2. ···················································································································· 4分
y?(x?1)2?2.
∴平移后的抛物线G为:即
·················································································································· 5分 y?x2?2x?1. ·
(3)作OE⊥BC于点E.
∴B?C??BC?32,OE∴S?OB?C?∴
132BC?. 22119?OC??h?B?C??OE?. 222?5?OC??17.
11
∴
91795?h?.··············································································································· 7分 175
24.(1)解:EG?GC,
EC····················································································· 2分 ?2; ·
GC (2)(1)中的结论仍然成立.
证明:取线段BF的中点M,连接EM,MG,
∵△BEF是等腰直角三角形, ∴EM?MB?FM?1. FB,且∠FME=90°2连接BD,取线段BD的中点N,连接GN,CN, ∵ABCD是正方形, ∴GN?BN?DN?1. BD,且∠CND=90°2∵G是DF的中点, ∴GN?1FB?EM,GN∥FB. 21BD?CN,MG∥BD. 2∴∠1=∠2. 同理MG?∴∠2=∠3. ∴GN?1FB?EM,GN∥FB. 2∴∠1=∠3.
∴∠EMG=∠EMF+∠1=∠CND+∠2=∠GNC.
∴△EMG≌△GNC. ·························································································· 4分 ∴EG=GC. ∴∠EGM=∠GCN.
在△CNG中,∠GNC+∠GCN+∠CGN=180°. ∴∠3+∠GCN+∠CGN=90°. ∴∠2+∠EGM+∠CGN=90°. 即EG⊥GC,
EC···························································································· 5分 ?2. ·
GCA12
(3)当E,F,D三点共线时,连接BD.
FGDE∵BE=1,AB=∴BF2,
?2,BD=2.
?BE1?. BD2在Rt△BED中,sin?EDB∴?EDB?30?. ∴DE?3.
···································································································· 6分 DF?DE?EF?3?1. ·∴?FBD??EFB??EDB∴?ABF?45??30??15?.
??ABD??FBD?45??15??30?.
∴tan?ABF?3. ················································································································· 7分 325.解:(1)
1111, (,?,) ········································································································· 2分 2222(2)答:m?n?k分两种情况:
?S?ABO.
(ⅰ) 当点P在△ABO的内部时,
m?n?k?S?PBO?S?POA?S?PAB?S?PBO?S?POA?S?PAB?S?ABO?S?ABO.
·········································································································································· 3分
(ⅱ) 当点P在△ABO的外部时, yPABP-1OyA2121B1x-1O1xm?n?k?S?PBO?S?POA?S?PAB?S?PBO?S?POA?S?PAB?S?ABO?S?ABO.
综上,m?n?k② P(·························································································· 4分 ?S?ABO. ·
11························································································ 5分 y,?x,1?x?y). ·
22(3)当x>0或x<0时,均有:
13
111y,S?QOA??x,S?QDO?x,S?QOC?y.
2221由S?QBO?S?QOA?S?QAB?S?ABO,得y?x?S?QAB?1.
2111由S?QDO?S?QOC?S?QCD?S?CDO,得x?y?S?QCD?.
222111113S?QAB?S?QCD?(y?x?1)?(x?y?)??x?y?
22222213??x?(x2?2x?4)?
2235?x2?x?
22331?(x?)2?.
41635可以验证当x=0时,y=4,S?QAB?S?QCD?1??,上式仍然成立.
2233∴当S?QAB?S?QCD的值最小时,x??,即点Q的横坐标为?. ······························ 5分
44S?ABO?
QADB-112yyQADB1C21
Ox-1O1Cx 14
正在阅读:
2014年北京市西城区初三数学一模试题及答案评分标准 doc06-09
2106探构造施工安全技术措施05-20
公安机关执法勤务机构人民警察警员职务套改工作政策解答06-13
时评界02-18
证券投资技术分析论文09-15
An Analysis of Wang Zuoliang06-10
农村土地承包合同纠纷产生的原因和审理中应注意的问题06-01
PMP 模拟试题2 - IBM11-08
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 西城区
- 北京市
- 初三
- 试题
- 评分
- 答案
- 数学
- 标准
- 2014
- doc
- 车桥涂装线项目技术协议
- 工信部两化深度融合五年行动计划—智慧园区
- 焊接工艺评定
- 《学校教育与家庭教育有机结合的探索与研究》课题结题报告
- 美国对个人不良信用的治理及其对我国的启示
- 《(电科)数字信号处理》复习大纲
- 专八改错题常见错误
- 新财富 - 2010-11-27 - 第八届新财富最佳分析师高峰论坛—2011年
- 必修10-2017年版新课标高中语文72篇必背古诗文理解性默写之《项
- 三种常见的组织结构
- 二十款知名外汇EA测试笔记
- 材料科学导论 - 图文
- 山东省高等教育学会关于评选从事高等教育研究有重要贡献学者的通
- 浅谈如何提高学生的写作水平
- 成本习题答案
- 华为内外部环境分析
- 教育科学出版社 - 五年级上册科学教学计划和教案
- TA7232P双音频功率放大集成电路图
- 教育教学理论试题及答案 - 图文
- 浅议联合收割机发展的必然趋势