3 - Hardware - Verification - of - a - Hpyer-Efficient - Kasper - APEC - 2015 - 01 - 图文

更新时间:2023-10-21 02:37:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

? 2015 IEEE

Proceedings of the 30th Applied Power Electronics Conference and Exposition (APEC 2015), Charlotte, NC, USA, March 15-19, 2015.

Hardware Verification of a Hyper-Efficient (98%) and Super-Compact (2.2kW/dm3) Isolated AC/DCTelecom Power Supply Module based on Multi-Cell Converter Approach

M. KasperC. W. ChenD. BortisJ. W. KolarG. Deboy

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of ETH Zurich‘s products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

HardwareVeri?cationofaHyper-Ef?cient(98%)andSuper-Compact(2.2kW/dm3)IsolatedAC/DCTelecomPowerSupplyModulebasedonMulti-Cell

ConverterApproach

MatthiasKasper?,Cheng-WeiChen?,DominikBortis?,JohannW.Kolar?andGeraldDeboy??PowerElectronicSystemsLaboratory,ETHZurich,Switzerland,Email:kasper@lem.ee.ethz.ch

?ElectricEnergyProcessingLaboratory,NationalTaiwanUniversity,Taipei,Taiwan

?In?neonTechnologiesAustriaAG,Villach,Austria

Abstract—Duetotheincreasingelectricitydemandofdatacentersdrivenbytheemergenceofcloudcomputingandbigdata,thefocusonthedevelopmentoftelecomanddatacenterpowersuppliesisshiftedtowardshighef?ciencies.Inthispaper,amulti-cellconverterapproachforatelecomrecti?ermodulebreakingthroughtheef?ciencyandpowerdensitybarriersoftraditionalsingle-cellconvertersystemsisshown.Thecom-prehensiveoptimizationoftheentiresystemwithrespecttoef?ciencyandvolumeisdescribedandtheappliedcomponentlossmodelsareexplained.Furthermore,thedesignofahardwaredemonstratorbasedontheoptimizationresultsispresentedandseveralimportantdesignaspectsareexplainedindetail.

LgConverter CellACDCACDCDCDCDCDCVout

Vg

vFB,totACDCACDCDCDC=??

VDC,iI.INTRODUCTION

Duetotheincreasingpopularityofcloudbasedinternet

servicesandthetrendaroundbigdata,theelectricityconsump-tionofdatacentershasgrowntremendouslyinthepastdecadeandisprojectedtogrowinthefutureevenfurther,e.g.around70%from2013to2020intheUSalone[1].Asaconsequence,datacentersarenowoneofthelargestconsumersofelectricityandthereforealsounderagrowing?nancialandpoliticalpressuretoincreasetheirenergyef?ciency.

Nowadays,conventionalsingle-phasetelecompowersuppliestypicallyconsistofaPFCrecti?erstageinconnectionwithanisolatedDC-DCconverterstageinordertogenerateanoutputvoltageof48Vforthesubsequentconversionstages.Therecti?erstageisusuallyaboost-typePFCconverterwithafullbridgedioderecti?er,thatcreatesconsiderableconductionlossesduetotheforwardvoltagedropsoftheemployeddiodes.Thishasinitiatedatrendtowardsbridge-lesstopologiesasanalternativetopology[2],[3].Oneexampleofahighlyef?cientpowersupplyfortelecomapplicationsisatriple-parallel-interleavedTCMPFCrecti?ersystem[4]incombinationwithadouble-parallel-interleavedphase-shiftedfull-bridgeisolatedDC-DCconverter(ratedpowerPout=3.3kW,outputvoltageVout=48V)featuringapowerdensityofρ=3.3kW/dm3andanef?ciencyofη=97%athalfoftheratedpower.Asshownin[5],thisconceptcurrentlypresentstheleadingedgetechnologyfortelecompowersupplies.

Anewandverydifferentapproachtowardsahyper-ef?cient

DCDC=??

Fig.1:Multi-celltelecompowersupplymodulewithinput-series

output-parallelconnectionoftheconvertercells.EachcellconsistsofafullbridgeAC-DCrecti?erinputstageandanisolatedDC-DCconvertercomprisingaphase-shiftedfull-bridgeconverter.

andsuper-compacttelecomrecti?erdesignbeyondthebarriersoftraditionalconverterconceptshasbeenpresentedin[6].Theapproachisbasedonamulti-cellconverterconceptwithseriesconnectionoftheconvertercellsattheinputsideandparallelconnectionattheoutputside(i.e.ISOP),asshowninFig.1.EachconvertercellformedbyanAC-DCrecti?erstageswhichisoperatedwithaTotem-PolemodulationandanisolatedDC-DCconverterstageconsistingofphase-shiftedfullbridgeconverter.Thismulti-cellISOPcon?gurationallowstosharetheinputvoltageamongtheconvertercellsandthusenablestheuseoflow-voltageratedsemiconductorsthroughouttheconvertercells.Accordingtothescalinglawsof[7]withthisapproachsigni?cantbene?tsintermsofreducedconductionandswitchinglossesandsmallervolumeofinductivecompo-nentsandheatsinks,amongothers,canbeachieved.Basedonthespeci?cationofTab.Ithesystemperformancetargetsthatshouldbereachedbyutilizingtheadvantagesofthemulti-cellconvertertopologyareanoutputpowerofPout=3.3kWwith

Tab.I:Speci?cationsofthemulti-celltelecomrecti?ermodule.

Parameter

VariableValue

NominalgridvoltageVgrid,RMS,nom230V/50HzGridvoltagerangeVgrid,RMS180V-270VRatedoutputpowerPout3.3kWNominaloutputvoltageVout,nom48VOutputvoltagerangeVout40V-60VTotalDC-linkvoltageVDC400V

Hold-uptime

Thold10ms@ratedpower

Switchingfreq.percellfsw

≥18kHz

EMIstandards

CISPRClassAandB

aconversionef?ciencyof98%atpartloadoperationandapowerdensityofρ=2.2kW/dm3.

Inthispaper,at?rsttheoptimizationandofthesystemisdiscussedindetailandtheresultsareanalyzedinSec.II.Afterwards,therealizationofthehardwaredemonstratorisdescribedinSec.IIIanddifferentdesignaspectsareaddressed.Finally,conclusionsaredrawninSec.IV.

II.SYSTEMOPTIMIZATIONANDRESULTS

In[7]acomprehensivesystemmodelingandoptimizationintermsofef?ciencyandpowerdensityoftheISOPmulti-celltelecomrecti?ermodulehasbeenpresented.InthisoptimizationallavailabledegreesoffreedomforthedesignoftheAC-DCandtheDC-DCconverterstageshavebeenconsideredsuchas

?SwitchingoftheAC-DCfrequencyrecti?er:Thestageeffectiveequalsswitchingtheswitchingfrequencyfre-quencyofasinglecellmultipliedbythenumberofcellsduetheinterleavedoperationoftherecti?erstages,i.e.fsw,eff=Ncells·fsw.Anaturallowerlimitoftheswitchingfrequencyofasinglecellcanbedeductedfromtherangeofaudiblefrequencywhichshouldbeavoidedbychoosingfsw≥18kHz.TheupperboundaryoffeasibleswitchingfrequenciescanbederivedbytheCISPREMIstandardsthatimposelimitsonharmonicsatfrequenciesabovefEMI≥150kHz[8].Asaconsequencetheswitchingfrequencypercellshouldbelimitedtofsw

?MOSFETsizeofthechipMOSFETssizeandisjunctionanimportanttemperatureparameter:Theforchipthetrade-offbetweenconductionandswitchinglosses[4],asgivenfortheAC-DCstagewhichisoperatedunderhard-switching.Furthermore,thethermalresistancebetweenthejunctionandthecaseofthesemiconductorchangeswiththechipsize,whichalsoin?uencesthedesignandvolumeoftheheatsink.

η / ?98.5N=798N=697.5N=8N=59796.5Selected Designρ / kW96dm3012345Fig.2:Pareto-optimal(ef?ciency/power-density)designsofthemulti-celltelecompowersupplymodulefordifferentnumbersofconvertercellsandadropoftheDC-linkvoltageduringthehold-uptimeofkDC,drop=20%.

?

DC-linkemployedcapacitorDC-linkrealizationcapacitors:offersThesizeantrade-offandtypebetweenofthetheoverallvolumeoftheDC-linkcapacitorsandthelossescausedbytheequivalentseriesresistance(ESR).Theseparameters,amongothers,aresubjecttoatrade-offbetweenthepower-densityandtheef?ciencyoftheentiresystem.Therefore,forallcombinationsofdesignparametersthesystemperformancehastobedeterminedbyemployingcomponentlossandvolumemodels.

Thevolumesoftheconverterdesignshavebeendeterminedbyconsideringthesumofallcomponentboxedvolumes,suchasthevolumeofthe?DC-linkInductivecapacitors?EMI?ltercomponents?sink.

components?HeatThevolumeofPCBsandcontrolelectronicshavenotbeenconsideredsincetheyarelayoutdependentandthusnotavail-ablefortheoptimization.Forthecalculationoftheconversionef?ciencyfollowinglosseshavebeenincluded:?AC-DCFull-bridgeMOSFETs

–Switchinglosses–Conductionlosses–Gatedrivelosses

?Phase-shiftedFull-bridgeMOSFETs

–Conductionlosses–Gatedrivelosses

?Synchronousrecti?erMOSFETs

–Conductionlosses

–Reverserecoverylosses–Gatedrivelosses?Inductivecomponents

–Corelosses

–Windinglosses(incl.HF-losses).

Inaddtion,thelossescausedbytheequivalentseriesresistanceoftheelectrolyticcapacitorsandconstantlossescausedbyauxiliaryandcontrolelectronicshavebeenincluded.Designspeci?clossessuchastheconductionlossesofthePCBhavebeenomittedinthecalculationastheyvarywiththelayout.Asaresultofthiscomprehensivesystemoptimizationaclear

η / ?98.59897.59796.59699.599.5kDC,drop=10 0@?.4599.499.3599.399.25kDC,drop=10 0@?98.59897.597kDC,drop=10 0@%ρ / kWdm325Full system01234599.2AC-DC Rectifier Stage0246896.5DC-DC Conversion Stage05101520Fig.3:ImpactofdifferentvaluesofthemaximumpermissibledropoftheDC-linkvoltageduringthehold-uptime,kDC,drop,ontheachievablePareto-optimalresultsoftheentiresystem,theAC-DCrecti?erstagesandtheDC-DCconverterstages.

optimumcanbefoundforthenumberofemployedconvertercellsatNopt=6.Eventhoughthescalinglawsderivedin[7]predictabetterperformancewithincreasingnumberofcells,externalandotherpracticalconstraintsoutweighthebene?tsofalargercellnumber,suchasEMIlimitingstandardsbeginningatfEMI=150kHz,thepackageresistanceofMOSFETs,andcommunicationandcontroloverhead.

Thetelecomsupplyisrequiredtofeatureahold-uptimeofThold=10ms(cf.Tab.Iforthefullsetofspeci?cations)whichnecessitateselectrolyticcapacitorswithineachcell.Thevoltagedropofthesecapacitorsduringthehold-uptimewasfoundtobeanotheroptimizationparametersthatexhibitsanoptimumatavalueofkDC,drop=20%.

ThePareto-optimalresultsofthesystemoptimizationareshowninFig.2forfullloadoperationatthenominalop-eratingpointfordifferentnumbersofconvertercellsandamaximumpermissibledropoftheDC-linkvoltageduringthehold-uptimeofkDC,drop=20%.

Thein?uenceofkDC,dropontheachievablesystemperformanceisdepictedinFig.3(a)fortheentiresystemandinFig.3(b)and(c)fortheAC-DCandDC-DCstage,respectively.InthecalculationstheelectrolyticDClinkcapacitorshavebeenallocatedtotheAC-DCconverter.

III.HARDWAREDEMONSTRATORDESIGN

Thedesignwhichisselectedforthehardwaredemonstratorwithacalculatedmaximumef?ciencyofη=98%at75%oftheratedoutputpowerandapowerdensityaboveρcalc=3kW/dm3ismarkedinFig.2.ThemainsystemparametersoftheselecteddesignarelistedinTab.II.ApictureoftheassembledprototypeisshowninFig.4whichfeaturesavolumeofVol=30.4cm·4.5cm·11cm=1.504dm3andthusanoverallpowerdensityofρsys=2.2kW/dm3.ThepowerdensityoftheprototypeislowerthanthecalculatedvaluesincethespacebetweenthecomponentsadverselyaffectstheachievablepowerdensityandthevolumeofthePCBandthecontrolboardshavenotbeenincludedinthecalculations.AdetailedbreakdownofthecalculatedlossesandvolumesisprovidedinFig.5forfullloadoperation.

Inthefollowingparagraphsdifferentdesignaspectsoftheconvertersystemaredescribedindetail.

Tab.II:MainsystemparametersoftheselecteddesignforthehardwaredemonstratorwithN=6convertercells.(Allvaluesgivenpercomponent,e.g.parallelMOSFETs,ifnototherwisenoted.)

AC-DCrecti?er

Switchingfrequencyfsw,cell=20kHz

BoostinductanceAMCC-4,2605SA1,36μH,5turnsMOSFETs2xBSC046N10NS3G,100V,4.6m?DC-linkcap.4xPanasonicECO-S1KA222CA,alum.elect.,

80V,2.2mF

EMI?lter

3stages,2xcommonmodechokes

(EPCOSR40coresT38,10turns),3x680nFDC-DCconverter

Switchingfrequencyfsw=200kHz

Transformerturnsratio7:7,ETD34/17/11,N87,EPCOS

litzwire(600x71μm)

Inductance

ETD34/17/11,N87,EPCOS,20.5μHPrim.MOSFETsBSC046N10NS3G,100V,4.6m?Sec.MOSFETs

BSC046N10NS3G,100V,4.6m?

Phase-shiftedfullbridgeconverter

Thephase-shiftedfullbridgeconverter(PSFB)withfullbridgesynchronousrecti?cation(SR)ischosenfortheisolatedDC-DCconverterstagesinceitallowstoachieveacomparablyhighef?ciencybyoperatingthesemiconductorsunderzero-voltageswitching(ZVS)andstillprovidesaneasywaytocontrolthepower?owbymeansofthephaseshiftbetweenthebridgelegsontheprimarysideataconstantswitchingfrequency.Foraproperoperationoftheconverter,however,certaindesignguidelineshavetobeconsidered[10].WhileZVScanbeachievedforthelagginglegoftheprimaryfullbridgeeasilybyutilizingboththeenergystoredintheoutputinductorandintheleakageinductorofthetransformer,theoperationoftheleadinglegwithZVSreliessolelyontheen-ergystoredintheleakageinductanceduringthefreewheelingphase

E=12

Lσ2Lσ(ILoad·ntr+Imag)

(1)Thisenergyhastobesuf?cienttocharge/dischargethepar-asiticoutputcapacitancesoftheMOSFETsintheleadingbridgeleg.AnenergyanalysisrevealsthatsoftswitchingcanonlybeachievediftheenergyELσislargerthantheenergywhichisfedbackintotheDCinputvoltageduringdischarge

Inductor

DC LinkCapacitorsControlBoard

PowerBoard

Transformer(a)

DC LinkCapacitors

SingleCell

Increasingtheleakageinductanceevenfurtherforabroaderrangeofloadcurrentsforsoftswitchingwouldintroducethedrawbackofalargerdutycyclelosscausedbythetimerequiredtoreversethecurrentintheleakageinductancefrom(?ILoad·ntrafo)to(+ILoad·ntrafo)orviceversa,thusrenderingitasanunpracticalsolution.

AnotherissueintheoperationofthePSFBisthevoltagering-ingatthesecondaryrecti?erMOSFETsafterthefreewheelingphase.TheringingiscausedbytheresonantcircuitcomprisingtheleakageinductanceLσofthetransformerandtheparasiticcapacitancesoftherecti?erMOSFETs(2·COSS)sincethevoltageacrosstheoutputrecti?erisdecoupledbytheoutputinductorfromtheoutputvoltageandthereforenotclampedtoa?xedvoltage(cf.Fig.6(b)).Theresonantfrequencyofthisresonantcircuitequals

??

(3)ωres=1/2CossLσn2trandthecharacteristicimpedanceamountsto

??

Zres=Lσn2tr/(2Coss).

EMIFilterRelayCurrent Sensor

BoostInductor

ControlBoard

PowerBoard

(4)

(b)

Fig.4:Multi-cellsingle-phaseAC-DCtelecomrecti?erprototypewith6convertercellsinISOPcon?gurationforaratedpowerof3.3kWandapowerdensityofρ=2.2kW/dm3:(a)singlecelland(b)fullsystem(30.4cm·11cm·4.5cm/12in·4.3in·1.8in).

ofthechargeequivalentcapacitanceofaMOSFET,i.e.

2.EC,sw=Coss,Qeq·VDC

(2)

Theworstcasevoltageovershootcanreachthevalueoftwice

thetransformedprimaryvoltageVSR,peak=2Vsec=2ntrVDC,asshowninFig.6(d).Inthecaseatthehand,theDC-busvoltageineachcellequalsVDC=VDC,tot/Ncells=400V/6=66Vandwithatransfomerturnsratioofntr=1theworstcasevoltagespikecouldreacharoundVSR,peak=133Vwhichwouldleadtothedestructionofthesynchronousrecti?cationMOSFETswithavoltageratingofVDS,max=100V.Sincethediodesintherecti?erMOSFETsarepronetoreverserecoveryeffects,thevoltagespikeincreasesdependingonthepeakreverserecoverycurrentIRRandcanbecalculatedas

??

(5)VSR,pk=VDCntr+(VDCntr)2+(ZresIRR)2Inorderlimitthevoltagespikealoss-lesssnubbercircuit

consistingofasnubbercapacitorCSnubandtwodiodesisaddedtotheconverter[11].Analternativesnubberthatworkswithanadditionaltransformerwindingcanbefoundin[12].Byintroducingthesnubbertheequivalentcircuitof

Intheprototypeathand,theleakageinductanceofthetrans-formerwasselectedtobeLσ=1μHbyadjustingthewindingarrangement.Thisallowstoachievesoft-switchingintheleadinglegatlevelsoftheoutputcurrentaboveILoad≥3.4A(i.e.30%)accordingto(1)and(2).

Auxiliary(3.0 W)

Inductors(8.1 W)AC/DCstageMOSFETs (11.8 W)DC-linkcapacitors (6.4 W)Auxiliary(3.0 W)

DC/DCstage

Boost ind.(0.9 W)MOSFETs(17.2 W)

Inductors(0.15 dm3)

AC/DCstageTransformers(15.2 W)

Transformers(0.21 dm3)DC-linkcapacitors (0.52 dm3)

DC/DCstage

Boost ind.(0.04 dm3)(a)(b)

EMI filter(0.08 dm3)

Fig.5:Calculatedbreak-downofthelosses(a)andthevolume(b)fortheselectedconverterdesignofthemulti-celltelecompowersupplymoduleatfullload.

Snubber circuitLσ1:nCsnubtrV+-v+DCSR-Vout(a)

n2trLσn2LCtrσsnubn+trV2C+DC

vSR-OSSntrVDCvSR-2COSSVout

(b)

(c)

Z i.ZresISRwithout withSnubberSnubberZres,snubISRvSR

VoutntrVDCVSR,pk,sbVSR,pk(d)

Fig.6:Phase-shiftedfullbridgeconverterwithover-voltagelimitingloss-lesssnubbercircuit[11]forthesecondaryrecti?erMOSFETs:(a)applicationofthesnubbercircuittotheconverter;(b)equivalentcircuitoftheresonantnetworkforthecasewithoutsnubber;(c)modi?edresonantnetworkforcasewithsnubberelements;(d)comparisonoftheresonanttrajectoriesforthecaseswithandwithoutsnubberelementsandtheirresultingvoltagepeaksVSR,pk,sbandVSR,pk,respectively.(Thein?uenceofthereverserecoverycurrentoftheMOSFETbodydiodesisnotshown.)

theresonantnetworkchangesasshowninFig.6(c)andtheresonantfrequencybecomes

??

fres,snub=1/Lσn2tr(2Coss+Csnub)(6)whiletheresonantimpedance??

becomes

Zres,snub=Lσn2tr/(2Coss+Csnub)

(7)

afterthevoltagevSRhasrisenabovetheleveloftheoutputvoltagVout.ThisisalsodepictedinFig.6(d)wherethesuddenchangeoftheresonantimpedanceleadstoadropinthevSR?Z·iplane.Themaximumvoltagespikecanthenbederivedasafunctionoftheoutputvoltagetobe

Vn??

SR,pk,sb=VDCtr+(VDCntr?Vout)2+(Zres,snubISR)2.(8)ThesnubbercapacitorischosentohaveavalueofCSnub=15nFwhichlimitstheworstcasevoltagespikeatthelowestoutputvoltageofVout,min=40VtoVSR,peak,snub=92Vwithoutconsideringthein?uenceofthereverserecoverycurrent.ForthematerialoftheceramicsnubbercapacitorstheC0G(NP0)dielectricischosensinceitprovidesastablecapacitancevalueundervaryingtemperatureandvoltage.Inorderminimizethereverserecoverycurrentsofthediodes,theconductiontimeofthediodesintheSRMOSFETsiskepttoaminimum(around10ns)byadjustmentsofthetimingsofthegatesignals[13].

Master Controller

VDC,tot,ref+-VDC,1VDC,1V??NVV+DC,2DC,iDC,totVi=1-mDC,NGu,1(s)u+grid-VDC,2ugridKmii+g,refgrid-+-VDC,N

ModulationmG(a)

i,1(s)iindexgridmV++DC,N--VoutGate signalsiPWM?outGi,3(s)iV+ref,cellDC,ref-G++u,2(s)iout,refSlave ControllersMaster Controller

VDC,1??NVDC,2VVDC,refii=1DC,iout,ref

Gi,2(s)Vout

Vout,ref

(b)

VDC,NNFig.7:Controlimplementationofthemulti-celltelecomrecti?er:(a)totalDC-busvoltagecontrollerandinputcurrentcontroller;(b)outputcurrentcontrollerandDC-linkvoltagecontroller.

Controlimplementation

Oneofthemainchallengesregardingthecontrolofmulti-cellconvertersingeneralistheunbalanceoftheDC-link

voltagesofthecell.Inordertoovercomethisproblemdifferentcontrolstrategieshavebeenproposed[14]–[18].ThebasicideabehindthoseconceptsistoperformvoltagebalancingcontroleitherbythecascadedH-bridgerecti?erortheisolatedDC-DCconverters.In[14]avoltagebalancecontrolispresentedwhichisbasedonthesingle-phasedq-controlfortherecti?er,andapowerbalancecontrolmethodtoregulatethepowertransferredthroughtheDC-DCconverterthatareconnectedinparallelattheiroutputs.ThisallowstoindividuallyadjustthepowertransferfromeachDC-linktotheoutputinordertobal-ancetheDC-linkvoltages.Incontrast,[15]presentsamethodtocontrolandbalancethevoltageoftheDC-linksbyoperatingtherecti?erstageswithamixtureoflowandhighfrequencyPWM.However,bothoftheaforementionedmethodsresultinrathercomplicatedcontrollerimplementationssincethevoltagebalancingrequiresadditionalcontrolloops.AsimplerwaytooperatetheISOPsystemispresentedin[16]whichusesacommon-duty-ratiocontrolmethodwhichreliesonthenaturalbalancingbehaviorofISOPmulti-cellconverters[17].However,thismethodisnotactivelybalancingtheDC-linkvoltages.Therefore,anymismatchbetweentheconverters,

CCM3CCM2CCM1LCM2LCM2LgCCVDM3DM2CDM1gvFB,totCCM3CCM2CCM1filter stage 3filter stage 2filter stage 1Fig.8:Schematicoftheemployed3-stagecommon-modeanddifferential-modeEMI?lter.

suchase.g.slightlydifferenttransformerterminalbehaviors,willleadtodifferentACvoltageripplesontheDC-linkcapacitorscausedbythepulsatingpowerofthemains.ThesedifferencesintheDC-linkvoltageswillgeneratecirculatingcurrentsattheparallelconnectedconverteroutputswhichde-creasestheef?ciencyofthesystem.Thus,thecontrolschemewhichisselectedfortheimplementationintheprototypehasatotaldc-linkvoltageregulatorontherecti?ersideinordertohaveaconstanttotaldc-linkvoltage(i.e.thesumofallDC-linkvoltages).Inaddition,eachcellpossessesindividualDC-linkvoltageandloadcurrentcontrolfortheisolatedDC-DCconverters[18].Fig.7showsthecontrolblockimplementationoftheentiresystem.Thecontrolloopscanbeimplementedasamaster-slavecontrolregimewherethesloweroutervoltagecontrolloopsareprocessedbythemastercellandthefasterinnercontrolloopslikethecurrentcontrollersarecomputedlocallyoneachcell.Thecommunicationbetweenthecellsisrealizedbytheserialperipheralinterface(SPI).EMIFilterDesign

ForthedesignoftheEMI?lterthein?uenceofthedifferential-modeandthecommon-modenoisehavetobeconsidered.The?lterdesigncanbeperformedindividuallyforthecommon-modeandthedifferential-modenoiseiftherequiredattentuationforeachcaseiscalculatedwithamarginofaround16dBtothelimits,i.e.6dBfortheworstcaseadditionofthetwonoisesignalsand10dBtoaccountforcomponenttolerances.

Inordertocalculatetherequiredattenuationforthedifferential-modenoise,the?rstharmonicthatfallsintotheEMIconstrainedspectrum(fEMI≥150kHz)isconsidered,sincetheamplitudeoftheharmonicspectrumofsquarewavevoltagedecreaseswith?20dBperfrequencydecade,whereasthe?lterattenuationincreaseswith?40·NsdBwithNsbeingthenumberof?lterstages.Forthecaseathand,the?rstharmonicintheconstrainedfrequencyrangeisattwicetheeffectiveswitchingfrequencyfsw,eff=120kHzoftheinter-leavedAC-DCstages,i.e.f?lt=240kHz.ThecompliancewithEMIstandardsisevaluatedbydeterminingthequasi-peakemissionlevelsoftheconverter.Thequasi-peakvoltageoftheharmonicatf?lt=240kHziscalculatedbyconsideringa9kHzbandaroundthatharmonicandbysynthesizingatimedomainsignalwhichisfedintothenon-linearquasi-peakdetectionnetwork[19]andresultsinaquasi-peaknoise

voltageoftheconverteratf?lt=240kHzofV?lt,qp=17.2Vand/orarequiredattenuationof92.8dBincludingthemarginpreviouslymentioned.Followingthe?ltervolumeoptimiza-tionguidelinespresentedin[20]thenumberof?lterstagesforaminimumvolumeanditsassociatedvolumecanbefoundatn?lt=3asshowninFig.8.Themaximumvalueofthetotaldifferentialmodecapacitanceislimitedbythemaximumallowablereactivepowerconsumptionofthe?lter.Thelimitwassetsuchthatapowerfactorofcosφ=0.9canbereachedabove10%ofthenominalpower.ThisleadstototaldifferentialmodecapacitanceofCDM,tot=2μF,whichmeanseachdifferentialmodecapacitanceamountstoCDM=660nF.ThisleadstodifferentialmodeinductancesofLDM=18μHinordertoachievetherequiredattenuationincombinationwiththeboostinductorLg.

Theprecisemodelingofthecommon-modenoiseischal-lengingsinceitrequirestheexactknowledgeofthestraycapacitancesofallelectricnodesintheconvertercellstotheground.Sincethisispracticallyimpossibletodetermineformulti-cellconvertersystems,anapproachaspresentedin[21]wasfollowedwhichdeducesanequivalentcircuitforthecommon-modenoise.Byapplyingaworst-caseapproximationandneglectingsmallcapacitancescomparedtolargerones,itcanbefoundthatduetothenatureoftheseriesconnectionoftheconverterinputsthemeasuredcommon-modevoltageatthelineimpedancestabilizationnetwork(LISN)dependsonwhichcelloftheseriesstackisswitching.So,forexampleeachtimethelowestcelloftheseriesstackswitches,alluppercellsarealsomovedinrespecttotheirpotentialtoground.Sincethecellsareoperatedinterleaved,thecommon-modevoltageresemblesastaircaselikevoltagewaveformwiththelevelsbeing

vNCM(i)=

cells?i

N·VcellsDC(9)fori∈[1,Ncells]wherei=1meansthatthelowestcellofthestackisswitchedandi=Ncellsmeanstheuppermostcellisswitched.Basedonthatvoltagewaveformthequasi-peakvoltagespectrumcanbederivedbymeansofsimula-tionsandtherequiredcommon-mode?lterattenuationcanbedeterminedtobe78dB.Themaximumallowabletotalcommon-mode?ltercapacitanceislimitedbythemaximumtotalleakagecurrenttoearth(e.g.3.5mARMS)whichleadstoCCM,tot=36nFandthusthevalueforeachcommon-modecapacitorisselectedasCCM=4.7nF.Usually,thesmallestcommon-mode?ltervolumeisobtainedbyutilizingthemaximumallowableamountofcommon-mode?lterca-pacitance[22].Asaresult,thecommon-modeinductancescanbedeterminedtobeLCM=1.6mH.Intheprotoype,theleakageinductanceofthecommon-modechokesisutilizedasdifferential-mode?lterinductances.

IV.CONCLUSION

Anewapproachtowardsahighlyef?cientandverycompacttelecomreciti?ermodulebeyondthelimitsofstate-of-the-artsystemsispresented.Thedegreesoffreedominthedesignprocedureofamulti-celltelecompowersupplymoduleinISOPcon?gurationareoutlinedandtheoptimizationprocess

isdescribedindetail.Theoptimizationresultsshowthataconverterdesignwithanef?ciencyofη=98%andapowerdensityofρ=2.2kW/dm3canbeachieved.TheresultsalsorevealanoptimumvalueofN=6forthenumberofconvertercellsandanoptimummaximumpermissibledropof20%theDC-linkvoltageduringthehold-uptime.Basedontheoptimizationresultsahardwaredemonstratorrealizationispresentedandspeci?cdesignaspectsareexplained.Firstmeasurementresultsverifytheoperationofthesystemandwillbesummarizedinfuturepublication.

REFERENCES

[1]NationalResourcesDefenseCounsil,“DataCenterEf?ciencyAssement

-ScalingUpEnergyEf?ciencyAcrosstheDataCenterIndustry:EvaluatingKeyDriversandBarriers,”August2014.

[2]L.Huber,Y.Jang,andM.M.Jovanovic,“PerformanceEvaluation

ofBridgelessPFCBoostRecti?ers,”IEEETrans.PowerElectron.,vol.23,no.3,pp.1381–1390,2008.

[3]D.Bortis,L.Faessler,andJ.W.Kolar,“ComprehensiveAnalysis

andComparativeEvaluationoftheIsolatedTrueBridgelessCukSingle-PhasePFCRecti?erSystem,”inProc.ofthe14thWorkshoponControlandModelingforPowerElectronics(COMPEL),pp.1–9,2013.

[4]J.W.Kolar,F.Krismer,Y.Lobsiger,J.Muehlethaler,T.Nussbaumer,

andJ.Minibock,“ExtremeEf?ciencyPowerElectronics,”inProc.ofthe7thInt.Conf.ofIntegratedPowerElectronicsSystems(CIPS),pp.1–22,2012.

[5]G.Deboy,“ChallengesandSystemSolutionsforMaximizingEnergy

Ef?ciencyinSMPSandPVApplications,”inProc.ofthe39thAnnualConf.oftheIEEEIndustrialElectronicsSociety(IECON)KeynotePresentation,2013.

[6]M.Kasper,D.Bortis,J.W.Kolar,andG.Deboy,“Hyper-Ef?cient

(98%)andSuper-Compact(3.3kW/dm3)IsolatedAC/DCTelecomPowerSupplyModulebasedonMulti-CellConverterApproach,”inProc.oftheIEEEEnergyConversionCongressandExposition(ECCEUSA),pp.150–157,2014.

[7]M.Kasper,D.Bortis,andJ.Kolar,“ScalingandBalancingofMulti-Cell

Converters,”inProc.oftheInternationalPowerElectronicsConference(IPEC),2014.

[8]J.Muehlethaler,H.Uemura,andJ.W.Kolar,“OptimalDesignof

EMIFiltersforSingle-PhaseBoostPFCCircuits,”inProc.ofthe38thAnnualConf.oftheIEEEIndustrialElectronicsSociety(IECON),pp.632–638,2012.

[9]R.Burkart,H.Uemura,andJ.W.Kolar,“OptimalInductorDesignfor3-PhaseVoltage-SourcePWMConvertersConsideringDifferentMagneticMaterialsandaWideSwitchingFrequencyRange,”inProc.oftheInternationalPowerElectronicsConference(IPEC),2014.

[10]J.Sabate,V.Vlatkovic,R.Ridley,F.Lee,andB.Cho,“Design

ConsiderationsforHigh-VoltageHigh-PowerFull-BridgeZero-Voltage-SwitchedPWMConverter,”inProc.ofthe5thAnnualAppliedPowerElectronicsConferenceandExposition(APEC),pp.275–284,1990.[11]J.-G.Cho,J.-W.Baek,C.-Y.Jeong,andG.-H.Rim,“NovelZero-VoltageandZero-Current-SwitchingFull-BridgePWMConverterUsingaSimpleAuxiliaryCircuit,”IEEETrans.Ind.Appl.,vol.35,no.1,pp.15–20,1999.

[12]U.Badstuebner,“Ultra-highPerformanceTelecomDC-DCConverter,”

Ph.D.dissertation,PowerElectronicSystemsLaboratory,ETHZurich,2012.

[13]D.Polenov,T.Reiter,R.Baburske,H.Probstle,andJ.Lutz,“The

In?uenceofTurn-OffDeadTimeontheReverse-RecoveryBehaviourofSynchronousRecti?ersinAutomotiveDC/DC-Converters,”inProc.ofthe13thEuropeanConferenceonPowerElectronicsandApplications(EPE),pp.1–8,2009.

[14]T.Zhao,G.Wang,S.Bhattacharya,andA.Q.Huang,“Voltage

andPowerBalanceControlforaCascadedH-BridgeConverter-BasedSolid-StateTransformer,”IEEETrans.PowerElectron.,vol.28,no.4,pp.1523–1532,2013.

[15]H.Iman-Eini,J.-L.Schanen,S.Farhangi,andJ.Roudet,“AModular

StrategyforControlandVoltageBalancingofCascadedH-BridgeRecti?ers,”IEEETrans.PowerElectron.,vol.23,no.5,pp.2428–2442,2008.

[16]R.Giri,V.Choudhary,R.Ayyanar,andN.Mohan,“Common-Duty-RatioControlofInput-SeriesConnectedModularDC-DCConverterswithActiveInputVoltageandLoad-CurrentSharing,”IEEETrans.Ind.Appl.,vol.42,no.4,pp.1101–1111,2006.

[17]W.vanderMerweandT.Mouton,“NaturalBalancingoftheTwo-Cell

Back-to-BackMultilevelConverterwithSpeci?cApplicationtotheSolid-StateTransformerConcept,”inProc.ofthe4thIEEEConf.onIndustrialElectronicsandApplications(ICIEA),pp.2955–2960,2009.[18]R.Ayyanar,R.Giri,andN.Mohan,“ActiveInput-Voltageand

Load-CurrentSharinginInput-SeriesandOutput-ParallelConnectedModularDC-DCConvertersUsingDynamicInput-VoltageReferenceScheme,”IEEETrans.PowerElectron.,vol.19,no.6,pp.1462–1473,2004.

[19]R.BurkartandJ.W.Kolar,“Low-ComplexityAnalyticalApproximation

ofSwitchingFrequencyHarmonicsof3-PhaseN-LevelVoltage-SourcePWMConverters,”inProc.oftheInternationalPowerElectronicsConference(IPEC),2014.

[20]K.Raggl,T.Nussbaumer,andJ.Kolar,“GuidelineforaSimpli?ed

Differential-ModeEMIFilterDesign,”IEEETrans.Ind.Electron.,vol.57,no.3,pp.1031–1040,2010.

[21]H.Ye,Z.Yang,J.Dai,C.Yan,X.Xin,andJ.Ying,“Common-Mode

NoiseModelingandAnalysisofDualBoostPFCCircuit,”inProc.ofthe26thAnnualInternationalTelecommunicationsEnergyConference(INTELEC),pp.575–582,2004.

[22]K.Raggl,T.Nussbaumer,andJ.Kolar,“Model-BasedOptimizationof

EMCInputFilters,”in11thWorkshoponControlandModelingforPowerElectronics(COMPEL),pp.1–6,2008.

本文来源:https://www.bwwdw.com/article/nypf.html

Top