高三数学第二轮专题讲座复习:求解函数解析式的几种常用方法

更新时间:2024-01-10 09:20:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

高三数学第二轮专题讲座复习:求解函数解析式的几种常用方法

高考要求

求解函数解析式是高考重点考查内容之一,需引起重视 本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力 重难点归纳 求解函数解析式的几种常用方法主要有

1 待定系数法,如果已知函数解析式的构造时,用待定系数法;

2 换元法或配凑法,已知复合函数f[g(x)]的表达式可用换元法,当表达式较简单时也可用配凑法;

3 消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f(x); 另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法 典型题例示范讲解

a1(x?) (其中a>0,a≠1,x>0),求f(x)的表达式 例1 (1)已知函数f(x)满足f(logax)=2xa?1(2)已知二次函数f(x)=ax2+bx+c满足|f(1)|=|f(-1)|=|f(0)|=1,求f(x)

命题意图 本题主要考查函数概念中的三要素 定义域、值域和对应法则,以及计算能力和综合运用知识的能力

知识依托 利用函数基础知识,特别是对“f”的理解,用好等价转化,注意定义域 错解分析 本题对思维能力要求较高,对定义域的考查、等价转化易出错 技巧与方法 (1)用换元法;(2)用待定系数法

a-

解 (1)令t=logax(a>1,t>0;0

a?1a-∴f(x)=2 (ax-ax)(a>1,x>0;0

a?1(2)由f(1)=a+b+c,f(-1)=a-b+c,f(0)=c

1?a?[f(1)?f(?1)]?f(0)?2?1?得?b?[f(1)?f(?1)]并且f(1)、f(-1)、f(0)不能同时等于1或-1,

2??c?f(0)??所以所求函数为 f(x)=2x2-1 或f(x)=-2x2+1 或f(x)=-x2-x+1 或f(x)=x2-x-1 或f(x)=-x2+x+1 或f(x)=x2+x-1

例2设f(x)为定义在R上的偶函数,当x≤-1时,y=f(x)的图象是经过点(-2,0),斜率为1的射线,又在y=f(x)的图象中有一部分是顶点在(0,2),且过点(-1,1)的一段抛物线,试写出函数f(x)的表达式,并在图中作出其图象

命题意图 本题主要考查函数基本知识、抛物线、射线的基本概念及其图象的作法,对分段函数的分析需要较强的思维能力 因此,分段函数是今后高考的热点题型

知识依托 函数的奇偶性是桥梁,分类讨论是关键,待定系数求出曲线方程是主线 错解分析 本题对思维能力要求很高,分类讨论、综合运用知识易发生混乱 技巧与方法 合理进行分类,并运用待定系数法求函数表达式 解 (1)当x≤-1时,设f(x)=x+b

1

∵射线过点(-2,0) ∴0=-2+b即b=2,∴f(x)=x+2

(2)当-1

(3)当x≥1时,f(x)=-x+2

?x?1,x??1?综上可知 f(x)=?2?x2,?1?x?1作图由读者来完成

??x?2,x?1?例3已知f(2-cosx)=cos2x+cosx,求f(x-1) 解法一 (换元法)

∵f(2-cosx)=cos2x-cosx=2cos2x-cosx-1 令u=2-cosx(1≤u≤3),则cosx=2-u

∴f(2-cosx)=f(u)=2(2-u)2-(2-u)-1=2u2-7u+5(1≤u≤3) ∴f(x-1)=2(x-1)2-7(x-1)+5=2x2-11x+4(2≤x≤4) 解法二 (配凑法)

f(2-cosx)=2cos2x-cosx-1=2(2-cosx)2-7(2-cosx)+5 ∴f(x)=2x2-7x-5(1≤x≤3),

22

即f(x-1)=2(x-1)-7(x-1)+5=2x-11x+14(2≤x≤4) 学生巩固练习

1 若函数f(x)=

A 3

mx3(x≠)在定义域内恒有f[f(x)]=x,则m等于( )

44x?333 B C - D -3

222 设函数y=f(x)的图象关于直线x=1对称,在x≤1时,f(x)=(x+1)2-1,则x>1时f(x)等于( )

A f(x)=(x+3)2-1 B f(x)=(x-3)2-1 C f(x)=(x-3)2+1 D f(x)=(x-1)2-1

3 已知f(x)+2f(

1)=3x,求f(x)的解析式为_________ x4 已知f(x)=ax2+bx+c,若f(0)=0且f(x+1)=f(x)+x+1,则f(x)=_________

5 设二次函数f(x)满足f(x-2)=f(-x-2),且其图象在y轴上的截距为1,在x轴上截得

的线段长为2,求f(x)的解析式

6 设f(x)是在(-∞,+∞)上以4为周期的函数,且f(x)是偶函数,在区间[2,3]上时,f(x)=-2(x-3)2+4,求当x∈[1,2]时f(x)的解析式 若矩形ABCD的两个顶点A、B在x轴上,C、D在y=f(x)(0≤x≤2)的图象上,求这个矩形面积的最大值

PC7 动点P从边长为1的正方形ABCD的顶点A出发D顺次经过B、

C、D再回到A,设x表示P点的行程,f(x)表示PA的长,g(x)表示△ABP的面积,求f(x)和g(x),并作出g(x)的简图 P8 已知函数y=f(x)是定义在R上的周期函数,周期T=5,函数

BAy=f(x)(-1≤x≤1)是奇函数,又知y=f(x)在[0,1]上是一次函数,在[1,4]上是二次函数,且在x=2时,函数取得最小值,最小值为-5

(1)证明 f(1)+f(4)=0;

(2)试求y=f(x),x∈[1,4]的解析式; (3)试求y=f(x)在[4,9]上的解析式

2

参考答案

mxmx4x?3=x,整理比较系数得m=3 答案 A 1 解析 ∵f(x)= ∴[ff(x)]=

mx4x?34??34x?3m?2 解析 利用数形结合,x≤1时, f(x)=(x+1)2-1的对称轴为x=-1,最小值为-1, 又y=f(x)关于x=1对称,故在x>1上,f(x)的对称轴为x=3且最小值为-1 答案 B

111)=3x知f()+2f(x)=3 xxx122由上面两式联立消去f()可得f(x)=-x 答案 f(x)= -x

xxx3 解析 由f(x)+2f(

4 解析 ∵f(x)=ax2+bx+c,f(0)=0,可知c=0 又f(x+1)=f(x)+x+1, ∴a(x+1)2+b(x+1)+0=ax2+bx+x+1,即(2a+b)x+a+b=bx+x+1

故2a+b=b+1且a+b=1,解得a=

111111,b=,∴f(x)=x2+x 答案 x2+x 2222225 解 利用待定系数法,设f(x)=ax2+bx+c,然后找关于a、b、c的方程组求解,

f(x)=

228x?x?1 776 解 (1)设x∈[1,2],则4-x∈[2,3],∵f(x)是偶函数,∴f(x)=f(-x), 又因为4是f(x)的周期,∴f(x)=f(-x)=f(4-x)=-2(x-1)2+4 (2)设x∈[0,1],则2≤x+2≤3,f(x)=f(x+2)=-2(x-1)2+4, 又由(1)可知x∈[0,2]时,f(x)=-2(x-1)2+4, 设A、B坐标分别为(1-t,0),(1+t,0)(0<t≤1),

则|AB|=2t,|AD|=-2t2+4,S矩形=2t(-2t2+4)=4t(2-t2),令S矩=S,

S22t2?2?t2?2?t2364222∴=2t(2-t)·(2-t)≤()=,

83276当且仅当2t2=2-t2,即t=时取等号

316616664?8∴S2≤即S≤,∴Smax=

99277 解 (1)如原题图,当P在AB上运动时,PA=x;当P点在BC上运动时,由Rt△ABD

PA=1?(x?1)2;当P点在CD上运动时,由Rt△ADP易得

PA=1?(3?x)2;当P点在DA上运动时,PA=4-x,故f(x)的表达式为

DPCP (0?x?1)?x ?2(1?x?2)?x?2x?2 f(x)=?

2?x?6x?10 (2?x?3)? (3?x?4)?4?x AB(2)由于P点在折线ABCD上不同位置时,△ABP的形状各有特征,计算它们的面积也有不同的方法,因此同样必须对P点的位置进行分类求解

如原题图,当P在线段AB上时,△ABP的面积S=0; 当P在BC上时,即1<x≤2时,

3

本文来源:https://www.bwwdw.com/article/ny0o.html

Top