2010年全国大学生数学专业及高等数学竞赛试题及解答

更新时间:2024-06-06 09:03:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

2010年全国大学生数学专业竞赛试题及解答 (1)计算积分

???0e??x?e??xdx,??0,??0. 2x22解 方法一 直接利用分部积分法得

???e??x20?ex2??x2dx????0221(e??x?e??x)(?)?dx

x?????0221(?2?xe??x?2?xe??x)(?)dx

x?????2(????0(2?e??x?2?e??x)dx22

?2????2)??(???);

方法二 不妨设0????,由于而积分???2e??x2?ex2??x2????e?yxdy,

20??e?yxdx关于y在[?,?]上一致收敛,故可交换积分次序

?0e??x?e??xdx?2x22???0dx?e???yx2dy????dy???0e?yx2dx

????1y??0?22dy??(???);

2方法三 将??0固定,记I(?)??收敛.

e??x?e??xdx, ??0, 可证I(?)在(0,??)上2x设??[?,??), ??0, 因为e??x?e??x,而?所以由Weierstrass判别法知道

22+?0e??xdx收敛,

2?+?0e??xdx对??[?,??)一致收敛.所以可以

2交换微分运算和积分运算的次序, 即

I?(?)????0?e??x?e??x()dx??x222????0(?e??x)dx??21??2.

由?的任意性,上式在(0,??)上成立. 所以

I(?)?????C,由于I(?)?0,C???, 所以

1

I(?)??(???),

(2)若关于x的方程kx?数k.

解:设f?x??kx????0e??x?e??xdx??(???). 2x221?1,?k?0?在区间?0,???内有唯一的实数解,求常2x12?,则有, ?1fx?k???23xx11????3322????当x??0,???时,f??x??0;当x????,???时,f??x??0.

??k????k??????13由此f?x?在x???2??处达到最小值, ?k?1又f?x??kx?2?1在?0,???内有唯一的零点,

x131???2?3?k?2?2?3??必有f???0,k??????1?0,

??k???k??2???3?1?2127??k?23?????1,k2??1, ?4?4????23所以k?233.

(3)设函数f?x?在区间a,b上连续,由积分中值公式,有???f?t?dt??x?a?f???,?a???x?b?,若导数f??a?存在且非零,

ax?求lim?x?a??ax?a.

解:

??f?t??f?a??dt??x?a??f????f?a??,

xa2

x??a1 ??ft?f?a??dt, 2?a???x?af????f?a??x?a???a由条件,可知 lim?x?a??a1?,

f????f?a?f???a?x?a?f?t??f?a??dtf?x??f?a?1?lim?lim?f??a?,

a?x?x?a?2x?a?2?x?a?2?故有lim?x?a??a1?. x?a2二、设函数f?x?在x?0附近可微,f?0??0,f??0??a, 定义数列xn?f??1??2??n??2?f?2?????n??n?f?2?. ?n?证明:?xn?有极限并求其值. 证明:由导数的定义,

对于任意??0,存在??0,当0?|x|??时,有于是?a???x?f?x???a???x,?0?x???

f?x??a??. xk1从而,当n??时,有2???,

nn?1?a???kk?k??f?a??,其中k?1,2,?,n. ???2?22nn?n?对于上式求和,得到

nkka???x?a?????2n???2,

k?1nk?1nn即?a???n?1n?1, ?xn??a???2n2n令n??,有

3

11a???limx?limx?a??????, nnn??n??22a由??0的任意性,得到 limxn?.

n??2 设f?x?在??1,1?上有定义,在x?0处可导,且f?0??0.

?k?f??0?证明:lim?f?2??.

n??2?n?k?1n

三、设函数

f在[0,??)上一致连续,且对任何

x?[0,1],有

limf(x?n)?0n??证明:

limf(x)?0x???。

试举例说明,仅有证明 证法一

f在[0,??)上的连续性推不出上述结论。

f在[0,??)上一致连续,对

???0, ???0,

y1,y2?[0,??)

|y1?y2|??时,

便有

|f(y1)?f(y2)|??2;

k等分,设其分点为

1??取定充分大的正整数k,使得k

4

。现把区间[0,1]x?iik,i?0,1,?,k,每个小区间的长度小于?。

对于任意

x?1,x?[x]?[0,1);

从而必有xi,i?{0,1,?,k},使得|x?[x]?xi|??;

由条件对每个xi,有

limf(xi?n)?0;

n??于是存在N,当n?N时,|f(xi?n)|??2,对i?0,1,?,k都成立;

故当x?N?1时,便有

|f(x)|?|f(xi?[x])|?|f(x)?f(xi?[x])|??2??2??,

即得

limf(x)?0,结论得证。

x???证法二 设

fn(x)?f(x?n),由题设条件知

{fn(x)}在[0,1]上等度一致连续,对每一x?[0,1],有limfn(x)?0;

n??利用Osgood定理得, {fn(x)}在[0,1]上一致收敛于0,

对???0,存在N,当n?N时,

|f(x?n)|?|fn(x)|??,x?[0,1],

从而当x?N?1时,有|f(x)|??,

即得limf(x)?0,结论得证。

x???设

f在[0,??)上的连续,且对任何x?[0,1], 有limf(x?n)?0,但推不出n??limf(x)?0。

x???例如函数

f(x)?xsin?x1?x2sin2?x满足在[0,??)上的连续,且对任何x?[0,1],limf(x?n)?0,

n?? 5

但不成立limf(x)?0 。

x???四、设D???x,y?:x2?y2?1?,f?x,y?在D内连续,g?x,y?在D内连续有

界,且满足条件:

当x2?y2?1时,f?x,y????; 在D中f与g有二阶偏导数,

?2f?2f?2g?2gfg??e??e,. ?x2?y2?x2?y2证明:f?x,y??g?x,y?在D内处处成立. 证明:设u?x,y??f?x,y??g?x,y?, 则有 ?u??f??g?e?e? ?fg??10etf??1?t?g?dt

??e01tf?1?tg?? ?C?x,y??u. dt?u于是 ??u?C?x,y??u?0,?x,y??D , C?x,y??0; 由已知条件,存在0?r0?1,当r0?r?1时, 有 u?x,y??f?x,y??g?x,y??0, x2?y2?r2. 记D?r????x,y?:x2?y2?r2?,

设 m?minu?x,y?,我们断言,必有m?0,

?x,y??D(r)假若m?0,则必有?x0,y0??D?r?,使得 u?x0,y0??m; 易知??u?x0,y0??0, C?x0,y0?u?x0,y0??0. ??u?C?x,y??u???x0,y0??0

这与??u?C?x,y??u?0矛盾, 所以 m?0

从而 u?x,y??0,?x,y??D?r?; 由r的任意性,得

6

u?x,y??0, ?x,y??D. 故在D内处处成立f?x,y??g?x,y?. 五、 设

R???x,y?:0?x?1,0?y?1?R????x,y?:0?x?1??,0?y?1???.

dxdydxdy考虑积分I???,I????,定义I?limI, ????01?xy1?xyRR?(1)证明 I?1; ?2n?1n?1?u?x?y????2?1?2??2. (2)利用变量替换:?,计算积分I的值,并由此推出

6n?1n?v?1?y?x???2证明:(1)由

??xy?n?1?n?1?1,在R?上一致收敛,可以进行逐项积分 1?xydxdy??n?1n?1?I?????????xy?dxdy

1?xyR??n?1?R? ????n?10?1??1??01????n?1n?1xydxdy ??, 2nn?1?2n1????又

n2?2n1?2, n2n1????所以? 关于???0,1?是一致收敛的,可以逐项求极限, 2nn?1于是有 limI?lim?????0??0?n?1??1???n22n1??2. n?1n?故有 I?1; ?2n?1n?(2) x?u?v,y?u?v

??x,y??2, xy?u2?v2

??u,v?

7

11????????u,v?:0?u?,0?v?u????u,v?:?u?1,0?v?1?u?

22???? ???u,v?:0?u???11???,?u?v?0????u,v?:?u?1,?1?u?v?0? 22???注意到区域?关于u轴对称

dxdy2 I??????dudv 221?xy?1??u?v?Ru1?1?u?111???2? ?2?2????dv?du??1??dv?du?

001?u2?v201?u2?v2???2??? ?4?I1?I2?; I1??12011?u2arctanv1?u2v?udu

v?0 ??12011?u?2arctan11?sint22u1?u2du

sint1?sint2 u?sint??60arctancostdt

21?1??? ??6tdt????;

02?6?418 I2??112111?u11?u?22arctanv1?u2v?1?udu

v?0 ??12arctan1?u1?u2du

u?sint??261?sitnarctan?2cost1?sint?1tcdo tst1?sitn2dt dt ???2arctan ???2arctantcost661?tan2?1?tan 8

? ???26?arcta?n???t??t?an???dt ?42??22??12?t???11?????? ???2???dt????????????2;

2?4?26?22?436?4186?4?或者利用分部积分,得

???261?sintarctandt

cost??1?sitn2 ?tarctan???2tcost?66t?i?n??1s?dt 2?ts?n??co?1?sit1???t??cos1 ????6??1????2t???dt 66?2??1 ????362?21??2?2?122??????, 23418?4?6122212于是I?4?I1?I2???????,

18186故

9

?26??1. 2n?1n?2010年全国大学生非数学专业竞赛试题及解答

一、计算题

kk?(1) 求极限 lim?(1?)sin2

n??nnk?1n解法1 直接化为黎曼和的形式有困难. 注意到 sinx=x+O(x3),

n?k3?3??k??k??k??k?lim??1??sin2?lim??1???2?O?6??, n??n??n?nn??nk?1?k?1??n??n3333nk??k?k?由于 |??1??O(6)|??2C6?0,(n??),

n?nnk?1?k?1n所以

nk??k??k?k?lim??1??sin2?lim??1??2 n??n??n?nn?nk?1?k?1?n1kk215?. ??lim?(?2)???(x?x2)dx?0n??6nnk?1nn解法2 利用x-13x

n?nnk?1?k?1nn1kk215??k?k?, lim??1??2??lim?(?2)???(x?x2)dx?0n??n??n?n6nnk?1?k?1nnkk?5?所以lim?(1?)sin2? .

n??nn6k?1n 10

(2)计算I????axdydz??z?a?dxdyx?y?z222222,

其中?为下半球z??a?x?y的上侧,a?0.

2解法一. 先以x?y?z2?22122??a代入被积函数,

?z?a2axdydz??z?a?dxdy1z? ???axdyd?I???a?a?d,x dy222?x?y?a?补一块有向平面S:?,其法向量与z轴正向相反,

?z?0利用高斯公式,从而得到

?1?22I????axdydz??z?a?dxdy???axdydz??z?a?dxdy?

a??S???+S-??1?2???????a?2?z?a??dxdydz???adxdy?, ??a??D?其中?为?+S围成的空间区域,D为z?0上的平面区域x?y?a,

?2221?2322?于是I???3a??a?2???zdxdydz?a?a?

a?3??2?a014 ???a?2?d??dr?00?a?a2?r2zdz

? ???2a3.

解法二. 直接分块积分

I1?1222axdydz??2a?x?ydydz, ??????a?Dyz222其中Dyz为yOz平面上的半圆y?z?a,z?0. 利用极坐标,得

11

I1??2?d???2?a02a2?r2rdr???a3,

312I2????z?a?dxdy

a?21?222? ???a?a??x?y?dxdy,

???aDxy?其中Dxy为xOy平面上的圆域,x?y?a, 用极坐标,得

a12?I2??d??2a2?2aa2?r2?r2rdr

0a0222?? ??6a3,

因此I?I1?I2???2a3.

(3)现要设计一个容积为V的圆柱体的容积,已知上下两低的材料费为单位面积

a元,而侧面的材料费为单位面积b元.试给出最节省的设计方案:即高与上下底

面的直径之比为何值时,所需费用最少?

解:设圆柱体的高为h,底面直径为d,费用为f, 根据题意,可知??24V?d?2h?V, dh????2?2?d?f?a?2?????b??dh

?2? ????12?ad?bd?h ?2?11?1????ad2?bdh?bdh?

22?2?1??33ad2?bdh?bdh 2

12

3?32322?ab??dh? 23?323?4V??ab???, 2???当且仅当ad?bdh时,等号成立,

22ha?, db故当

ha?时,所需要的费用最少. db1?11?(4)已知f?x?在?,?内满足f??x??求f?x?. 33sinx?cosx?42?解:f??x??1?sin3x?cos3xdx

2?11sinx?cosx?? ????dx, 223?sinx?cosx2sinx?sinxcosx?cosx?111?sinx?cosxdx?2????dx

sin?x??4??x?1 ?lntan4?C1,

22sinx?cosxsinx?cosxdx?dx ?sin2x?sinxcosx?cos2x?112?sinx?cosx??22??sinx?cosx??1d?sinx?cosx? ?2?2?sinx?cosx??1?2?sinx?cosx2dx

?2arctan?sinx?cosx??C2

13

21所以,f?x??lntan32二、

求下列极限.

x??4?2arctan?sinx?cosx??C. 23??1?n? (1)limn??1???e?;

?n?????n???a?b?c? (2)limn???3??1n1n1n??,其中a?0,b?0,c?0. ???n??1?n???1?x?解:(1)limn??1???e??limx??1???e?

?x??????n???x???n???? ?limx???e?1?xln1????x??e1xx

1??1????11?ln?1?x???????x???x???1?x ?limx???1?2x1????x??

1?1?ln?1???x?1?x ?elim?

x???1?2x111??1?xx?1?x?2 ?elim

x???123x1?21?x?e? ?lim

x???12x2

14

e1e ??lim??. 2x???22?1??1??x???a?b?c?(2) limn???3??1n1n1n????lim?a?b?c?x????3????lnx???n1x1x1x?? ???x111xxxa?b?c ?limex???xln111xxxa?b?clim3 ?e31x,

lnx???lima?b?c3 1x11x1x1x11?1??1?xxx111?alna?blnb?clnc???2??x??xxx??lima?b?c x???1?2x11?1?xxx?lim1alna?blnb?clnc? 11?x????ax?bx?cx?1?1?lna?lnb?lnc??ln3abc, 31n1n1n??a?b?c故limn???3??m???3abc. ???1nkn???a一般地,有lim?k?1n???m??

????ma1a2?am,其中ak?0,k?1,2,?,m, ???15

n

八、设函数f在[0,??)上一致连续,且对任何x?[0,1],有证明:

ilmfx(n?)0?,

n??limf(x)?0。

x???试举例说明,仅有证明

f在[0,??)上的连续性推不出上述结论。

由f在[0,??)上一致连续,对??当y1,y2?[0,??) 且|y1?y2便有|?0, ???0,

|??时,

?2;

。现把区间[0,1]f(y1)?f(y2)|?1??取定充分大的正整数k,使得kk等分,设其分点为

ixi?,i?0,1,?,k,每个小区间的长度小于?k对于任意

x?1,x?[x]?[0,1);

从而必有xi,i?{0,1,?,k},使得|x?[x]?xi|??; 由条件对每个xi,有limf(xi?n)?0;

n??于是存在N,当n?N时,|f(xi?n)|?故当x?N?1时,便有

?2,对i?0,1,?,k都成立;

|f(x)|?|f(xi?[x])|?|f(x)?f(xi?[x])|????22??,

即得

limf(x)?0,结论得证。

x??? 21

f在[0,??)上的连续,且对任何x?[0,1],有limf(x?n)?0,

n??但推不出上述结论。 例如函数

f(x)?xsin?x满足在

[0,??)上的连续,且对任何x?[0,1],有

1?x2sin2?xlimf(x?n)?0,

n??但不成立limf(x)?0 。 x???22

本文来源:https://www.bwwdw.com/article/nxd6.html

Top