With Contributions of the following partners (in order of appearance in the document) Partn
更新时间:2023-08-29 22:12:01 阅读量: 教育文库 文档下载
- with推荐度:
- 相关推荐
A state of the art
InformationSocietyTechnologies(IST)-6thFramework
Programme
DeliverableNo:D.WP-JRA-2.4.1
QoSinmulti-servicewirelessnetworks
Astateoftheart
DeliverableVersionNo:
SendingDate:
Editor’sName:
LeadContractorNo:
Disseminationlevel:
URLReferenceofWorkpackage:Version1.02004/08/24AlexandreProutiere11Con dentialReporthttp://www.77cn.com.cn
A state of the art
ProjectAcronym:
ProjectFullTitle:
Typeofcontract:
contractNo:
ProjectURL:Euro-NGIDesignandEngineeringoftheNextGenerationInternet,http://www.77cn.com.cnworkofExcellence507613http://www.77cn.com.cn
A state of the art
WithContributionsofthefollowingpartners(inorderofappearanceinthedocument):
PartnerNum.andNameContributorNameContributoremail
FranceTelecomR&DT.Bonald
A.Proutiere
J.Roberts
N.Hegde
SalahEddineElayoubi
T.Chahed
A.E.Samhat
J.Martínez
V.Pla
S.Borst
L.Georgiadis
V.Tsibonis
T.Korakis
L.Tassiulas
C.A.Courcoubetis
M.Dramitinos
V.A.Siris
G.D.Stamoulis
D.Kouvatsos
I.Awan
S.Lucetti
LucaTavanti
A.Beben
M.Cesana
K.A.Hummel
HenriKoskinen
A.Penttinen
S.VanDenHeuvel
C.Blondia
D.Remondo
M.C.Domingo
R.Guimarães
J.Morillo
L.Cerdà
J.M.Barceló
J.Garcia
M.Welzlthomas.bonald@http://www.77cn.com.cnalexandre.proutiere@http://www.77cn.com.cnjames.roberts@http://www.77cn.com.cnhegde@eurandom.tue.nlsalah_eddine.elayoubi@int-evry.frtijani.chahed@int-evry.frabedellatif.samhat@int-evry.frjmartinez@upvnet.upv.esvpla@dcom.upv.esSem.Borst@cwi.nlleonid@eng.auth.grvtsib@egnatia.ee.auth.grkorakis@inf.uth.grleandros@inf.uth.grcourcou@aueb.grmdramit@aueb.grgstamoul@aueb.grD.D.Kouvatsos@scm.brad.ac.uki.awan@scm.brad.ac.uks.lucetti@iet.unipi.itluca.tavanti@iet.unipi.itabeben@tele.pw.edu.plcesana@http://www.77cn.com.cnkarin.hummel@univie.ac.athenri@netlab.hut. vpenttin@netlab.hut. sylwia.romaszko@ua.ac.bechris.blondia@ua.ac.beDavid.Remondo@upc.escdomingo@mat.upc.esrpaoliel@ac.upc.esjmorillo@ac.upc.esllorenc@ac.upc.esjoseb@ac.upc.esjorge@ac.upc.esmichael.welzl@uibk.ac.atEurandom,TheNetherlandsINT,FranceGIRBA/ITACA/UPV,SpainCWI,TheNetherlandsCERTH,GreeceAUEB,GreeceUniversityofBradford,EnglandUniversityofPisa,ItalyWarsawUniversityofTechnology,PolandPolitecnicodiMilano,ItalyUniversityofVienna,AustriaHUT,FinlandUniversityofAntwerp,BelgiumUniversitatPolitecnicadeCatalunya,SpainTechnicalUniv.ofCatalonia,SpainUniversityofLinz,Austria
VersionHistory
Version-1.0-
InternalVersion
2004/08/24--alexandre.proutiere@http://www.77cn.com.cn
A state of the art
ProjectAcronym:
ProjectFullTitle:
Typeofcontract:
contractNo:
ProjectURL:Euro-NGIDesignandEngineeringoftheNextGenerationInternet,http://www.77cn.com.cnworkofExcellence507613http://www.77cn.com.cn
A state of the art
Contents
1Introduction
1.0.0.1QoSrequirementsandtraf cdemand....................
1.0.0.2Radioresourcemanagement.........................
1.1Cellularnetworks........................................
1.2WirelessLANs.........................................
1.3AdHocnetworks........................................
1.4Transportprotocolsforwirelessnetworks...........................2AdmissionControlinUMTS-StateoftheArt
2.1CACalgorithmsbasedonamaximalnumberofusers.....................
2.2CDMA-orientedCACalgorithms................................
2.2.1Interference-CAC....................................
2.2.1.1Modelingthesystem.............................
2.2.1.2Introducingthewiredcapacity.......................
2.2.2Power-basedCAC...................................
2.2.2.1Power-CACandcoverage..........................
2.2.2.2ICACorPower-CAC?............................
2.2.3SIR-basedCAC.....................................
2.2.3.1Handlingmultipleclassesoftraf c.....................
2.2.3.2Theeffectivebandwidth:apossiblesolutioninWCDMA.........
2.2.3.3CombinedSIR-andpower-CAC......................
3PerformanceofstreamingservicesinwirelessCDMAnetworks
3.1Feasibilityconditions......................................
3.1.1Other-cellinterferenceapproximations........................
3.1.2Effectivebandwidth..................................
3.1.3Suf cientconditions..................................
3.1.4Powercontrolalgorithms-Rateofconvergence....................
3.2Outageprobability.......................................
3.3Impactofadmissioncontrol..................................4SupportingCircuitServicesinCellularNetworks
4.1DesignAdmissionControlMinimizingBlocking/Forced-termination.............
4.1.1EvaluationScenario..................................
4.1.1.1LossandDelayModels,AbandonmentsandRetrials............
4.1.1.2OverlayCell.................................
4.1.1.3ModelAssumptions.............................
4.1.2PoliciesthatonlyDeploySystemStateInformation..................
4.1.2.1ApproachestoCACdesign.........................
4.1.2.2AdmissionControlPolicies.........................
4.1.3Policiesthatdeployhandoff/handoverpredictionschemes..............
5RadioResourceSharing
5.1Introduction...........................................
5.2WirelessPacketFairQueueing:CopingwithBurstyChannelErrors.............
667789910101010111112121313131415171818192020202223232323242426262627292930
A state of the art
5.3.5
5.3.6
5.4
5.4.1Interactionwithmulti-antennaarrays.........................Cross-layerscheduling.................................StableScheduling...................................
5.4.1.1
5.4.1.2Single-UserTransmission..........................Multiple-UserTransmissions........................424343434346
48
48
49
49
51
51
51
52
52
52
54
54
55
55
56
57
59
62
62
62
62
63
64
65
66
71
71Packet-LevelDynamics.....................................5.5Flow-LevelPerformance....................................5.5.15.5.25.5.3Theimpactoffastfadingonperformance.......................Theimpactofslowfadingonperformance......................Multi-cellscenario...................................6ResourceControlforLoss-SensitiveTraf cinCDMANetworks6.16.2BackgroundandMotivation..................................AnewResourceControlApproach...............................7Auction-basedResourceReservationin2.5/3GNetworks7.17.2BackgroundandMotivation..................................ATHENA:AnewResourceReservationMechanism.....................8TransportintheUMTSRadioAccessNetwork8.18.28.38.48.5QoSintheUTRAN.......................................Transportnetworkarchitecture.................................ATM-basedtransportintheUTRAN..............................IP-basedtransportintheUTRAN...............................IP-basedservicedifferentiationintheUTRAN........................9UMTSNetworkswithPrioritisedRABs10MobilityModels10.1MobilityModels........................................10.1.1Introduction,Terms,andDe nitions..........................10.1.2Classi cationofMobilityModels...........................10.1.3SelectedMobilityModels...............................10.1.4ExtractingMobilityPatternsfromTraces.......................10.1.5ConclusionandOpenIssues..............................11IEEE802.11WirelessLANStandardanditsevolutions11.0.5.1FHSSPHYlayer...............................11.0.5.2DSSSPHYlayer...............................
12Theevolutionof802.11-eandh
QualityofServicesupport,TransmissionPowerControlandDynamicFrequencySe-lection7712.1Introduction...........................................12.2802.11e.............................................
12.2.1ThemotivationoftheTaskGroupe..........................777777
A state of the art
12.2.2802.11eframework...................................
12.2.2.1ProvisionofQoS..............................
12.2.2.2Traf cStreams................................
12.2.2.3Modi cationintheaccessfunctions....................
12.2.3802.11MACandchannelcondition..........................
12.2.4Functionalcharacteristicsofan802.11eTraf cScheduler..............
12.3802.11h.............................................
12.3.1ThemotivationofTaskGrouph............................
12.3.2TransmissionPowerControl(TPC)..........................
12.3.3DynamicFrequencySelection(DFS).........................
12.3.3.1Measurements................................
12.3.3.2Selectingachannel.............................
12.3.4APresponsibilitiesunderthenewframework.....................
13Handlingofreal-timeapplications
14PerformanceEvaluationofIEEE802.11
wirelessLANs
14.1Introduction...........................................
14.2Performanceevaluationof802.11anditsa,b,andgvariants.................787879798284868686909292929699999914.3Performanceevaluationof802.11e...............................10515ImprovingtheFairnessandEf ciencyofMACProtocols10915.1Introduction...........................................10915.2IEEE802.11bOverview....................................110
15.2.1RelatedWork......................................11215.3InterferenceAwareMAC....................................11415.4Conclusions...........................................11716WLANLossModelsforMultimediaServices11816.1WLANLossModelsforMultimediaServices.........................118
16.1.1WLANQoSMeasures.................................11816.1.2LossModelsforWLAN................................11816.1.3Conclusion,OpenIssues,andConnectionstoOtherWorkPackages.........12017Connectivityandcoverageproblemsinadhocandsensornetworks(stateoftheart)12117.1Connectivity...........................................12117.2Sensorcoverage.........................................12218MACprotocolsforadhocnetworks12418.1Introduction...........................................12418.2Classi cation..........................................12418.3IEEE802.11featuresandlimitations..............................12518.4Problemsandpossiblesolutions................................127
18.4.1HTPandETPproblem.................................127
A state of the art
18.4.2Blocking,falseblockingandpseudo-deadlock....................12818.4.3Unfairnessintheadhocnetwork............................12818.4.4MobilityandIEEE802.11...............................12918.4.5Multiplefading.....................................12918.4.6Near-farproblemandCDMAenvironment......................12918.4.7Omnidirectionalvs.directionalandsmartantenna..................12918.5Newschemesandtechniques..................................130
18.5.1PowerControlApproaches...............................13018.5.2Randomscheduleapproachandfan-in/outmethodofseedexchange........13118.5.3Multipacketreception(MPR)networks........................13118.5.4TheBlack-Burst(BB)mechanism...........................13218.5.5TheRandomizedInitializationProtocol........................13218.5.6Tree-SplittingApproaches...............................13218.5.7Neighborhoodawarenessprotocols..........................13318.5.8Synchronousatomicbroadcastprotocol........................13318.6Conclusions...........................................13419Energyef cientroutinginadhocnetworks13519.1Introduction...........................................13519.2Researchonenergyef cientrouting..............................13619.3Energyef cientnetworkoperation,combinedapproach....................13719.4Conclusion...........................................13820End-to-EndQoSSupportinAdHocNetworksConnectedtoFixedNetworks
21QualityofServiceforMobileAd-hocNetworks:anOverview139141
21.1Introduction...........................................14121.2Reservation-LessApproaches..................................142
21.2.1Load-BalancingSchemes................................14221.2.2CourtesyPiggybacking.................................14221.2.3SWAN.........................................14221.3Reservation-OrientedApproaches...............................143
21.3.1INSIGNIA.......................................14321.3.2FlexibleQoSModelforMANETs(FQMM)......................14321.3.3CEDAR.........................................14321.3.4QualityofServiceforAdhocOn-DemandDistanceVector..............14421.3.5Canseveretal......................................14421.3.6AdhocQoSon-demandrouting(AQOR).......................14521.4Conclusions...........................................14522PassingCorruptDataAcrossNetworkLayers:AnOverviewofRecentDevelopmentsandIssues14622.1Introduction...........................................14622.2UDPLite............................................14622.3DCCP..............................................147
A state of the art
22.4Issues...................
22.4.1TheLinkLayerPerspective...
22.4.2IPv6................
22.4.3EncryptionandAuthentication..
22.4.4Congestionvs.Corruption....
22.4.5LinkLayerARQConsiderations.
22.5Inter-layerCommunication........
22.5.1TrigTran:CorruptionExperienced
22.5.2Transportprotocoldetection...
22.5.3Otherpossibilities?........
22.6Conclusion................
22.7Acknowledgments............
References154....................................................................................................................................................................................................................................................................................................................................148148148149149150151151151152152153
A state of the art
1.Introduction
Thisdocumentconstitutesthe rstdeliverableofworkpackageJRA2.4onQoSinmultiservicewirelessnet-works,providingastate-of-the-artontherelatedtopics.Thisdeliverablegatherstogetherthecontributionsofthedifferentpartnersinvolvedinthisworkpackageandisthebaseforfutureresearchwithintheworkpackage.Thedocumentisfarfrombeingcompleteandwilleventuallybeextendedlateron.
1Introduction
A.Proutière
FranceTelecomR&D
N.Hegde
Eurandom,TheNetherlands
Therecognizedgoalinnetworkdesignistobeabletohandletraf cdemandensuringpre-de nedqualityofservice(QoS)requirementsandusingaminimumamountofnetworkresources.Insimplistictelephonenetworksforinstance,Erlang’sformula[151]identi es,foragiventraf cdemand,therequirednumberofcircuitstoguaranteeagivencallblockingprobability.Today,telecommunicationnetworksareexpectedtosupportvariouskindsofapplicationsde nedbytheirdifferentQoSrequirements.Thisneedforaconvergednetworkgeneratesasigni cantcomplicationindesigningitsarchitectureandprotocols.Eveninthecaseofwirednetworks,noconsensushasemergedandtheproposedsolutionsareconstantlychallengedbynewnetworkservicesandnewphysicaltransportfacilities.
Inthecontextofwirelessnetworks,thedesignisfurthercomplicatedbythefactthattheircapacitycannotbeexpressedinasimpleway,likelinkbandwidthinwire-linenetworks.Capacityoftheairinterfaceisacomplicatedfunctionofthetime-varyingchannelqualityofeachactiveuserandofthewayradioresources,e.g.powerandbandwidth,areshared.InitiatedbyShannon[386],informationtheoryidenti esthemaximumcapacityofthesystem,givensomefadingcharacteristics.Thisnotionofcapacityassumesastaticscenario,i.e.,a xednumberofactiveusersandisoftennotabletoaccountfortheactualQoSrequirementsofthevariousofferedapplications.
Thedesignofwirelesssystemsgatherstogetherchallengesofdifferentnature,withtheaimtooptimizetheoftenso-called’erlangcapacity’,de nedasthemaximumtraf cthatthesystemcanhandlemaintainingpre-de nedQoSrequirements.Thedesignofsuchsystemsshouldbeinspiredbyschemesapproachingtheinformationtheoreticallimitsinstaticscenarios,andshouldalsoaccountfortherandomnaturetraf caswellasforthevariousQoSrequirementsassociatedwiththesupportedapplications.
1.0.0.1QoSrequirementsandtraf cdemandTraf cdemandinmulti-servicenetworkscanbeclassi edintwobroadcategories,namelystreamingandelastictraf c,accordingtothecorrespondingQoSrequirements.Streamingtraf ccorrespondstoaudioorvideoapplicationsandrequireslowpacketlossanddelay,whereaselastictraf ccorrespondstodocumenttransfersandrequiresalowtransfercompletiontime.Inaddition,forbothtypesoftraf c,users rstperceiveperformancethroughtheblockingprobability,orequivalentlybytheprobabilitythattheserviceisavailableandthatthesystemallowsthecallortransfertostart.AnotherQoSparameterthathastobemaintainedbelowagiventhresholdistheprobabilitythatthecallortransferisinterrupted,whichmayoccurevenwhenaperformantadmissioncontrolschemeis
A state of the art
1.1Cellularnetworks
implemented,dueforexampletousermobility.Finally,somespeci cQoSrequirementshavesometimestobeensured.Forexample,whenauserreceivespacketsfromdifferentradiotransmittersatthesametime,i.e.theuserisinsofthandover,thepacketarrivalsatthetransmittershavetobesynchronized(incellularnetworks,thisrequirementimpliesstringentboundsforpacketdelayintheUTRAN).
Asinwire-linenetworks,traf cisrandomlygeneratedbyusers:atanytime,acalloratransfercanbegeneratedbetweenasourceandadestination.Incellularnetworks,forthedownlinkforexample,thetransferisinitiatedfromabasestationtoamobileattachedtothisbasestation.Inad-hocnetworks,thesourceandthedestinationmaybeanynodesofthenetwork.Whenthecallorthetransferiscompleted,therequirednetworkresourcesarefreed.Inwirelessnetworks,thistraf cdemandisalsode nedbythemobilitypatternsofeachuser/node:eachuserfollowshis/herowntrajectory(mostoftenindependentlyofotherusermovements)resultinginatimevaryingsource-to-destinationdistanceandroutingpath.
1.0.0.2RadioresourcemanagementRadioresourcesconsistofbandwidthandpower.Theachiev-ablerateforasource-destinationpairdependsinacomplicatedmanner,notonlyonthewaytheseresourcesaresharedamongallsource-destinationpairs,butalsoonthehighlyvariablepropagationcharacteristics,i.e.fading.Therearebasicallytwoapproachestohandlefadingdependingontheconsideredapplication: rst,onemayadapttheusedradioresourcestocompensateforthevaryingchannelqualityandtomaintaina xedrate,asincircuit-switchedvoicenetworks;second,onemaydynamicallyadapttheratesoastomatchthe uctuationsinthechannelquality.Thelatterapproachiswell-suitedfordatatransferapplicationsthatdonothaveastringentraterequirement.
Radioresourcesmanagementinanactualsystemmustalsosatisfysomedesignconstraintsdependingontheconsideredtypeofnetwork.Incellularnetworksforexample,radioresourcesmayoftenbemanagedinacentralizedmanner,whereasinWLANorAdHocnetworks,byde nition,theabsenceofsignalingproceduresimposesadecentralized(andthuslessef cient)waytoshareresources.
1.1Cellularnetworks
Cellularnetworksaredividedupintocells,eachcellbeingservedbyoneormoreradiotransceiverscompos-ingabasestation.Theradioresourcemanagementcanthenbeperformedinacentralizedmanneratthebasestationlevelorperhapsevenatahigherlevelinthenetwork(e.g.theRNCinUMTSnetworks)toallowforspeci cfunctionalities,suchasmacrodiversity.
Cellularsystemsare rstde nedbytheirradioaccesstechnology.Fromthe rstanalogsystemsdeployedinthe70’stotheOFDM/MIMObased4Gproposals,theaccesstechnologyhasconstantlyevolved,notonlytooptimizetheuseofthebandwidth,butalsotosupportdifferenttypesofapplications.A rstissuetoaddressisthedesignofanoptimalradiointerfacebasedontheconsideredapplication.Forexample,traditionalvoicetraf cprovestobebettersupportedbyCDMAsystemsthanbyTDMAsystems,whereasrecentadvancesinscheduling,suchasthedevelopmentofschedulersthattakeadvantageoffastfadingvariations,makeTDMAaccess,ratherthanCDMA,moresuitedtodelaytolerantdatatraf c.Nevertheless,thereisnoconsensusonthewayradioresourcesshouldbeshared,andbuildinganef cientmulti-serviceairinterfaceisstillthemajorissueinwirelessnetworkdesign.
Cellularnetworkswereinitiallydesignedtosupportcircuitservices.Theperformanceofsuchservicesde-pendsonmanyparameters,suchasthetypeofradioaccessorthewayadmissioncontrolisperformed.Unlikeusualtelephonenetworks,theQoSinwirelessnetworksisperceivednotonlythroughtheprobabilitythecall
A state of the art
1.2WirelessLANs
isadmittedbutalsothroughtheprobabilitytheQoSisensuredduringtheentirecall.TheprobabilitythattheQoSisdegradedduringthecallisoftentermedoutageprobability.Indeed,anoutagecanoccurevenundersevereadmissioncriterium,due,forexample,tousermobility.Wemayconsidertwokindsofmobility,intraandinter-cellmobility.The rstkindmainlyconsistsinshadowingandRayleighfading,whereasthesecondkindconsistsinwideusermovementsimplyinghardhand-overs.PredictingandcharacterizingmobilityisanimportanttasksincemobilityrepresentsthemaincontributioninoutageandQoSdegradation.AreviewofmobilitycharacterizationsispresentedinSection10.Theadmissionschemehastorealizeagoodtrade-offbetweenblockingandoutageprobabilities.ThesenotionsarefurtherdiscussedinSection3.Astate-of-the-artonadmissioncontrolinCDMAnetworksanditsperformanceevaluationispresentedinSections2,4and
9.Inconjunctionwithadmissioncontrol,powercontrolalgorithmsareusedtoadaptthetransmittedpowertothechannelqualityvariations.Referto[46]foranexhaustivereviewoftheliteraturedealingwithpowercontrol.
Inadditiontocircuitservices,wirelessnetworksareexpectedtosupportawidevarietyofdatatransfers.Thiskindoftraf c,withoutdelayorraterequirements,opensupthepotentialforde ningvariousschedulingdisciplinessoastomaximizecertainperformanceindicators.Areviewofexistingresultsonsuchschedulingdisciplinesandtheirpacketand owlevelperformanceispresentedinSection5.
Recently,economicmodelinghasbeenproposedasanalternativewayofresourcemanagementinwirednetworks.Thesenewideas,suchascongestionpricingorauction-basedresourcereservation,arenowadaptedtothecontextofwirelessnetworks.RefertoSections6and7forareviewonthistopic.
Finally,itmightbeimportanttoensurespeci cQoSrequirementsintheaccessnetwork,e.g.lowpacketdelaytoallowmacrodiversity.ThearchitectureaswellastheenvisagedQoSmechanismoftheUTRAN(theaccessnetworkofUMTSnetworks)arediscussedinSections8and9.
1.2WirelessLANs
WLANsaredesignedwithacompletelydifferentphilosophythancellularnetworks.TheinitialmotivationoftheIEEE802.11WorkingGroupwasthedevelopmentofaradiointerfacethatcouldreplicatethetraditionalEthernet-basedlocaldatanetworksinwirelessnetworks.Themajorconstraintofsuchaninterfacewasthattheradioresourceneededtobesharedinadecentralizedmanner,withoutanysignalingprocedures.TheWorkingGroupdevelopeda rststandard,the802.11standard,thatactuallycanbeseenasamodi edversionofEthernet,atleastfortheMAClayer.Manyotherstandardshavebeenproposedsince,thatadapttheMACprotocolstothephysicallayerevolutionorsupportnewfunctionalitiessuchasQoSprovisioning.ThevariousstandardsandtheirevolutionaredescribedinSections11and12.
ThedecentralizedradioresourcemanagementinWLANscreatesmanynewissues.First,thedeployedMACprotocolsarenaturallyveryinef cientinusingthescarceradioresources.Second,duetothediversityofradioconditionsofthevarioususers,theMACprotocolalsoprovestobequiteunfair.ManyotherproblemsexistinWLANs,forexampletheinitialdesignofMACprotocolsdidnottakeintoconsiderationseparatede nitionsofuplinkanddownlink.Asaresult,oneuplinkconnectionhasthesamechancetoaccessthemediaasallactiveconnectionsinthedownlink,leadingtoinef cienciesinresourcemanagement.TheperformanceevaluationofusualMACprotocolsispresentedinSection14.SomeproposalstoimprovetheirperformancearepresentedinSection15.
Finally,WLANswereoriginallydesignedtosupportInternet-likebestefforttraf candarethereforenotsuitedtodelaysensitivestreamingservices.Thislattertypeofserviceswasthemotivationofthe802.11e
A state of the art
1.3AdHocnetworks
WorkingGroup.AdescriptionofthestandardsintroducedtoprovideQoSguaranteesinWLANsandtheirperformancearepresentedinSections12and16.
1.3AdHocnetworks
Wirelessad-hocnetworksconsistofmobilenodescommunicatingoveraradiochannel,eachnodebeingallowedtocommunicatewithanyothernode.Duetothenatureofthewirelesschannel,eachnodecaneffectivelytransmittosomenodesonly,typicallyinhiscoveragearea.Thenwhentwonodesindifferentcoverageareaswishtocommunicate,itisnecessarythatintermediatenodescooperatetoforwardpacketsforonenodetotheother.Nodesmobilitycanalsobeusedtoincreasethenodecoverage,butwithanonnegligibledelaycost.Inafewwords,ad-hocnetworksarecooperativemulti-hopmobilewirelessnetworks.Thereisanintenseresearchactivitytowardsthedevelopmentofsuchnetworks.Forexample,considerableeffortsaremadetodesignef cientMACandroutingprotocolaswellashigherlevelfunctionalitiessuchassecurityorQoSprovisioning.Section17isdevotedtothestudyoftheconnectivityandthecoverageofad-hocnetworks.Section18presentsareviewofMACprotocolsforsuchnetworks.Section19addressestheproblemofde ningef cientroutingprotocolsandSections20and21discussthepossibilitytosupportQoSinad-hocnetworks.
Anotherresearcheffortismadetowardstheestablishmentofthecapacityofad-hocnetworks,i.e.,theoreticalboundsonhowmuchtraf cthesenetworkscansupportassumingperfectroutingandMACprotocols(thiskindofworkwasinitiatedbyGuptaandKumarintheirseminalpaper[188]).Thisaspecthasnotbeentreatedsofarinthisdocument.Thereaderwill ndin[418]aquiteexhaustivesurveyonthistopic.
1.4Transportprotocolsforwirelessnetworks
Finally,itisworthnotingthattransportprotocolssuchasTCPfordatatraf cwereoriginallydesignedforwirelinenetworksandarenotwell-suitedtotheradiomediumwhichisinherentlyslowandlossy.SomerecentproposalsthataddressthisissuearepresentedinSection22.Butthereaderwill ndanextensivestateoftheartofthistopicindeliverablesrelatedtoworkpackageJRA2.1.
A state of the art
2.AdmissionControlinUMTS-StateoftheArt
2AdmissionControlinUMTS-StateoftheArt
S-E.Elayoubi,T.Chahed
GET/InstitutNationaldesTelecommunications,France
SeveralCACalgorithmshavebeendevelopedforcellularnetworksduringthepastdecade.However,fewofthesealgorithmswereadaptedtothedynamicnatureofthirdgenerationwirelessnetworks.Infact,theradiointerfaceofthesenetworksisbasedonWideband-CDMAandthecapacityisdetermined,notonlybythenumberofusersandtheirbitrates,butalsobytheirpositioninthecellwhichinturnchangeswithmobility.WewillanalyzeinthisdocumentthemostimportantCACalgorithmspresentedintheliterature,withrespecttothevariousconstraintstheyconsider,aswellastheircomplexityandtheirabilityornottohandledifferentclassesofmultimediatraf c.
2.1CACalgorithmsbasedonamaximalnumberofusers
The rstCACalgorithmsweredesignedfor2Gsystems,especiallyGSM,andwerebasedonamaximalpredeterminednumberofusersinthesystem,orequivalentlyona xedcapacity.Infact,forsystemsbasedonTimeDivisionMultipleAccess(TDMA)orFrequencyDivisionMultipleAccess(FDMA),userscanbeacceptedaslongastherearechannels(timeslotsorfrequenies)available.ThisiscalledNCACandcorre-spondstoahardcapacityallocation,whichisnotthecasein3Gsystems,whosecapacityvariesdynamicallywiththequalityoftheairchannelandmobilityofusers,asshallbeseennext.
Nevertheless,thissimplisticassumptionmakesitpossibletointroduceseveralclassesoftraf c(Leongetal.in[277]andBartolinietal.in[41]),basedontheLimitedFractionalGuardChannel(LFGC)policy, rstproposedbyRamjeeetal.[353]for2Gsystems.Theythusobtainimportantperformancemeasuressuchthattheblockingprobability,i.e.theprobabilitythatacallisblockedduetothelackofresources,orthehandoffblockingprobability,i.e.theprobabilitythatamobile,acceptedinagivencellandmovingtowardsanadjacentone,failstocontinueitsconnectioninthenewcell.
2.2CDMA-orientedCACalgorithms
The rstCDMA-orientedalgorithmsweredesignedfor2GsystemsusingCDMAasaccessprotocolontheradiointerface,i.e.IS95system.TheseearlieralgorithmsconsideredinterferenceasthelimitingfactorwhenmakingaCACdecision.Infact,incontrastwiththehardcapacityallocation,CDMAsystemsarecharacterizedbyasoftcapacitywherethereisnohardtheoreticallimitonthenumberofusers.Ausercanthenbeacceptedifitsadmissiondoesnotcauseanexcessivedegradationforalreadyconnectedusersduetoahighlevelofinterference[31].
TherearethreeclassesofCDMA-orientedCACintheliterature,namelytheInterference-CAC,thePower-CACandtheSIR-CAC.
2.2.1Interference-CAC
InInterference-CAC(ICAC)algorithms,thedecisionisbasedonapredeterminedinterferencethresholdatthebasestation[213][82]:acallisacceptediftheresultinginterferenceremainsacceptable.Letusnotethat,
A state of the art
2.2CDMA-orientedCACalgorithms
byde nition,ICACalgorithmsaredesignedforthereverselink(uplink)astheyconsidertheinterferenceatthebasestationandnotatthemobile.Furthermore,ICACalgorithmsdevelopedintheliteraturedonottakeintoconsiderationmultipleclassesoftraf c.
2.2.1.1ModelingthesystemA rstenhancementtoICACwaspresentedbyHoetal.in[204]whereseveralCACschemeshavebeenbuiltbasedonananalyticalmodelofaDirectSequenceCDMA(DS/CDMA)cellularuplinksystem.TheaimoftheproposedCACschemesistomaximizethecell’sErlangcapacity,de nedastheratiooftheaveragenumberofcallsinthecelltothesystembandwidth,whilesatisfyingtwosystemconstraints:the rstisonblockingprobabilityandisgivenby(PBL≤θ)andthesecondisonoutageprobability,i.e.probabilitythatanongoingcallseesitsQoSdegraded(withouttakingintoaccountthehandoffblocking)(Pout≤ ).The rstandsecondmomentsoftheother-cellinterferencehavebeencalculatedusingatwo-slopepathlosspropagationmodelandanequivalentnumberofactiveusersZisderived,inthesensethattheeffectoftheother-cellinterferenceonthecapacityisequivalenttotheeffectofZlocalusers.Theoutageconditionisthenobtainedas
K+Z+noise>max.Interference
whereKisthenumberofusersinthecell.
Theimportanceofthisequation(1)isthatitde nesanICACalgorithmwiththesimplicityofNCAC.
ThesystemismodeledasaMarkovchainwitheachstaterepresentingthenumberofongoingcalls.TheblockinganddroppingprobabilitiesarethencalculatedusingaGaussianapproximationofK,forfourdif-ferentCACschemes:
Complete-SharingCallAdmissionControlScheme:thenumberofacceptedcallsislimitedtoGmax,Th.ThisnumberandthearrivalrateλarecalculatediterativelytomaximizetheErlangcapacitywhilesat-isfyingthesystemconstraints.ThisisequivalenttoanNCAC,withthedifferencethatthethresholdisvariablewiththeother-cellinterference.
Check-Interference-Upon-Call-ArrivalCallAdmissionControlScheme:Gmax,Th=∞,butacallisacceptedifandonlyiftheinterferencedoesnotexceedathresholdTTh.Again,TThandλarecalculatedbyiterationstosatisfythesystemconstraints.
Position-BasedCallAdmissionControlScheme:eachcellisdividedintotwozones:theinnercellandtheoutercell,andtwodifferentthresholdsTinandToutarede nedfortheacceptanceofthenewcallsinthetwozones.
However,thesealgorithmsremainlimitedtothecaseofasingleclassofvoicecalls,andnodistinctionismadebetweennewandhandoffcalls.
2.2.1.2IntroducingthewiredcapacityAnotherimportantenhancementtoICACwasintroducedbyKaseraetal.[236]whereadmissioncontrolisstudiedasacongestioncontrolpolicyintheIP-basedRadioAccessNetwork(RAN).Thisisbasedontheideathatthecurrentpoint-to-pointlinksusedinconnectingbasestationstonetworkcontrollerswillevolvetoanIP-basedRANforreasonsoflowercostduetostatisticalmultiplexinggains,betterscalabilityandreliability,andtheprojectedgrowthindataapplications.(1)
A state of the art
2.2CDMA-orientedCACalgorithms
TheCACalgorithmisindeedanI-CACasitlimitsthenumberofacceptedusersinthecellbyathresholdPmaxontheinterferenceatthebasestation.However,insteadofusingthismaximumallowablereceivedpowertoperformadmissioncontrol,eachbasestationusesavariablereceivedpowerthreshold,Padm,thatisperiodicallycalculatedbytheRNC,basedontheIPRANlossrate.Theideaissimple:themeasuredpacketlossrateisusedtocalculateapowerscalingfactorα,whichisthenusedtoscaletheadmissioncontrolthresholds,Padm,fortheairinterface.
Despiteitssimplicity,theimportanceofthisstudyliesinthefactthatitwas,withtheworksofElayoubietal.[141],oneofthe rstworksevokingthewiredconstraintsintheRANasalimitationwhenmakingaCACdecision.Indeed,airandwiredresourcesarecomplementary;theformerispreponderantinlargecells,usedinruralenvironmentswherewehaveasmallloadfactorandthesystemiscoverage-limited,whilethewiredcapacityismoresigni cantinurbanenvironmentswheresmallcellswithhighloadareusedandthesystemiscapacity-limited[206].
However,thechoiceofpacketlossasadeterminingfactorinCACdecisionsin[236]wasnotverysuccessful,mostlybecauseofthereal-timenatureonthetransportintheRANinWCDMAthatmakesthedelay,andnotthepacketloss,themostconstrainingfactor[375].Ontheotherhand,thestudywaslimitedtovoiceusersonly(amaximalnumberofusersisderivedfromtheCACthresholdPadm),whiletheIPRANisessentiallyproposedtocarrydatatraf cinthirdgenerationsystems.Thesecharacteristics(delayanddatatraf c)weretakenintoaccountin[141].
2.2.2Power-basedCAC
Whenacceptingacall,onecannotneglecttheeffectofthetransmissionpoweronQoS.Infact,thepowerthatcanbeemittedbyamobileorabasestationisnotin nite,butislimitedtoamaximalvaluePmax.
Inthedownlink,thispowerisconsideredasthelimitingfactor(Huangetal.[213]andCaponeetal.[82])becauseeachnewuserwillconsumeapartofthebasestationpower.Thecallisthenblockedifthebasestationcannotincreaseitspowertosupportit.
2.2.2.1Power-CACandcoverageFortheuplink,therelationshipbetweencoverageandemittedpowerisverytightinapower-controlledCDMAsystem:whenamobilestationgetsfartherfromthebasestation,itisrequiredtoincreaseitstransmissionpowertokeepthepowerreceivedatthebasestationasis.Ifitreachesitsmaximaltransmissionpowerwhilecontinuingitsmovement,itwilleitherhandovertoanadjacentcell,orfailtoinsuretherequiredQoSatitsoriginalbasestationandbedropped.Ontheotherhand,whenanewuserisaccepted,thelevelofinterferenceatthebasestationwillincrease,andconsequentlytheSIRofeachexistentuserwilldecrease.
Dimitriouetal.[132]triedtosolvetheSIRexpressionsinordertodeterminethetargetreceivedpowersatthebasestation.Thepresentedapproachisaniterativeonethatcalculatesthedeterminantsofthesystemwithnactiveusersbasedonthedeterminantswhenn 1activeusersareinthecell.Thereceivedpowersarethendeducedandthenewcallisblockedifthecorrespondingtransmittedpowersexceedthemaximaltransmissionone.AtunableguardfactorFisproposedtocontrolthedroppingratesinthesystem.Fisincreasedwhentheobserveddroppingprobabilityduetotheusers’mobilityistoohigh.However,thisanalyticalstudyhasbeenconductedforasingle-cellcase,anditwasfollowedwithsimulations[133]thatshowthattheother-cellinterferencereducesthecapacity.Alimitationofthisalgorithmisthecomplexity
A state of the art
2.2CDMA-orientedCACalgorithms
ofthecalculationsitrequireswhichmakesverydif culttheintroductionofenhancementslikeprioritizationbetweenhandoffandnewcalls,ortheintroductionofmultimediaservices.
2.2.2.2ICACorPower-CAC?Thetwoapproachesdescribedabove(ICACandPower-CAC)arecom-paredbysimulationsin[213],anditisshownthattheappropriatethresholdsforICACmayleadtoaperfor-mancecomparabletothatofPower-CAC.However,itisshownin[82]thatthesystemmaybeinterference-limitedifthepowerthresholdneverpreventsthepowercontroltoreachanequilibriumpoint,anditispower-limitedotherwise.ItisalsoshownthattheoptimalthresholdvalueofICACdependsonthepropagationenvironment,andthatwecannotde neasimplegeneralcriteriatotunetheinterferencethresholdPthr.TheproblemoftuningPthrwasalsoinvestigatedbysimulationsin[314]todeterminethetradeoffbetweentheblockinganddroppingprobabilitiesinthechoiceofthecapacitybound.Power-basedCACremainsthenthemostaccuratemethodtocontrolthesystem.
2.2.3SIR-basedCAC
AnotherapproachtoCDMA-orientedCACistobasethedecisionofacceptingornotanewarrivalonitseffectontheSIRofexistentusers.ThischoiceisbasedonthefactthatSIRisanimportantmeasureoftheQoSinCDMAradiointerface:itcanbemappedintocorrespondingbitrates,biterrorrates,orbitenergytointerferenceratio(Eb/N0)(Chahedetal.[90]).Thisapproach,combinedwithanadequatepowercontrolmechanism,makesitpossibletoconsiderthemaximaltransmissionpowerofmobilestationsthatisanimportantissueintheuplinkasweshowedabove.
The rstSIR-CACalgorithmwaspresentedbyLiuetal.in[290].ItisbasedontheideathatSIRisinverselyproportionaltothecapacity.Theresidualcapacityforeachcellkisthencalculatedas:
Rk=11 ,fortargetcellTH111
( TH ),foradjacentcells
where X denotesthegreatestintegerlessthanorequaltoX,andαisanempiricalconstantrepresentingtheestimateoftheinterferencecouplingbetweenadjacentcells.
Theoverallresidualcapacityisthentheminimalresidualcapacitiesbetweenalltheadjacentcells,andthenewcallisacceptedifthisquantityispositive.
Onecanseethatthisother-cellinterferenceestimationisnotveryaccurateanddoesnottakeintoaccountthevariousintercellinterferenceconditions.Kimetal.[248]proposedanextensionof[290]withmorerealisticassumptionsontheinterference,astheyconsidernotonlytheinterferencebetweenadjacentcells,butalsobetweencellsthatarenotadjacent,butclosetoeachother.Again,thealgorithmisdesignedforasingleclassoftraf c,andnocoverageconstraintsweretakenintoaccount.
2.2.3.1Handlingmultipleclassesoftraf cTheSIR-CACalgorithmpresentedbyJeonetal.[223]aimstoinsureprioritiesbetweenhandoffandnewcalls,andtosupportmultimediatraf cinbothuplinkanddownlink.Infact,inresourcesharingbetweencallrequests,sinceprematureterminationofconnectedcallsisusuallymoreannoyingthanrejectionofanewcallrequest,itiswidelyrecommendedthatasystemgiveshigherprioritytohandoffcallrequestsascomparedtonewones.Inadditiontothisnew/handoffcleavage,realtimecalls(voice,video,etc)maybegivenhigherpriorityoverelasticones(data).
A state of the art
2.2CDMA-orientedCACalgorithms
Whenaclassicallarrives,thealgorithmin[223]measurestheaverage(Eb/N0)foreachclassofusersandusesittopredictthe(Eb/N0)valueifthenewcallisaccepted.Athresholdisthen xedforeachclassofusersandthenewarrivalisacceptedifthepredicted(Eb/N0)doesnotgobelowthisthreshold.ThisalgorithmcanbeconsideredasaSIR-CAConeas(Eb/N0)canbedirectlyrelatedtotheSIR[253][90].
dMoreexplicitly,letΦuk,iandΦk,irespectivelydenotetheuplinkanddownlinkthreshold(Eb/N0)sofaclass
dkcallforcontrollingadmissionofaclassinewcallrequestandlet uk,iand k,irespectivelybetheuplink
anddownlinkthreshold(Eb/N0)sofaclasskcallforcontrollingahandoffcallrequestfromclassi.Toguaranteethepriorityofhandoffcallsovernewones,wemusthave:
u uk,i<Φk,i,d dk,i<Φk,ifor0≤k≤L 1
Fortheprioritiesbetweencallsofdifferentclasses,CACthresholdvaluesshouldbedeterminedsoastoguaranteetheprioritybetweencallclasses,consideringthedataratesandtherequired(Eb/N0)sofallcallclasses.
ThesystemismodeledasamultidimensionalcontinuoustimeMarkovchainwhose owbalanceequationsaredetermined.Asperformancemeasures,theauthorscalculatedtheblockingandoutageprobabilitiesaswellasthecellthroughput.Thethresholdsarethencalculatedtomaximizethethroughputwhileminimizingthefailureprobabilities.
Thismathematicalstudyisquitecompleteandoffersmanyanalyticalinsights.Itconsidersdifferentclassesofmultimediatraf cwithdistinctionbetweenhandoffandnewarrivals,forbothuplinkanddownlink.However,itisverycomplexandtheCACdecisionisonlyobtainedaftercumbersomecalculations.Italsofailstoconsiderpowerandcoverageconstraintsandtheanalyticalmodelforthe(Eb/N0)isnotaccurateasitisbasedonaveragecalculations.
2.2.3.2Theeffectivebandwidth:apossiblesolutioninWCDMATheeffectivebandwidth,anotionthatoriginatedinCACalgorithmsforATM-basedB-ISDNusingthelargedeviationstheory[362],ismakingitswaystothecontextof3Gsystems.Evansetal.[154],appliedATM’seffectivebandwidthtechniquesinmulti-cellCDMA.Intheirwork,thepresentedCACisaSIR-basedoneastheQoSofmobileiisexpressedintermsoftherequiredbitrateRiandthebitenergytointerferencedensityratio(Eb/I0)i,encapsulatedintheminimumSignaltoInterferenceDensityRatio(SIDR)values
Γi=Ri(Eb/I0)i,i=1...N
TheconditiontoobtaintheeffectivebandwidthisthatallusersmustbegrantedtheirSIDRrequirement,withasmallQoSviolationprobabilityα:
NpkM J mP(ΓpklXpkl>W)≤α,
p=1k=1l=1m=1..M(2)
whereMisthenumberofneighboringcells,Jisthenumberofcallclasses,Npkisthenumberofactivecallsofclasskincellp,andWisthesystembandwidth.ΓpklistheSIDRrequirementofuserlofclasskincellm.TheseSIDRrequirementsareindependentrandomvariableswithdistributionsindexedbyk(users
mofthesameclasshavethesameSIDRdistributions).Xpklsareindependentrandomvariablesthatmodelthe
A state of the art
2.2CDMA-orientedCACalgorithms
interferencecausedatcellsitemwhenmobilelofclasskincellpisreceivedatitstargetbasestationwithoneunitsignalpower.
TheMequations(2)aresolvedusingtheGaussianapproximationorthelargedeviationsbound.Thisleadstotheeffectivebandwidthκmpkwhichistheresourcerequiredatlinkmbyacallofclass(p,k).Theadmissibleregionisthenboundedbya nitenumberofhyperplanesobtainedfrom(2).
Theoretically,theseboundscanbeobtainedformultipleclassesofcalls,butinreal,thecomplexityincreaseswiththenumberofclasses.Thenumericalexamplesin[154]showedthatforonlytwoclassesof"voice"users,namelypremiumandstandardservices(thatcanbeinterpretedashandoffornewcalls),thematrixofeffectivebandwidthvaluesforaseven-cellssystemisofsize(7×14),anditisobtainedaftertediouscalculations.Itwillbea(19×95)matrixfora19-cellssystemwithfourclassesoftraf c(newvoice,handoffvoice,newvideo,handoffvideo,data),andtheadmissibleregionateachnewarrivalistheintersectionof19hyperplanes.
AsoftheCACconstraints,thepresentedmodelwasabletoconsiderthemobilityparameter,includedinthemobilepositioninthecell,andthesourcevariabilityintheeffectivebandwidthcharacterizations.However,themaximaltransmissionpowerofmobilestationswasnottakenintoaccount,althoughithasanimportantimpactonoutagerates.Itwasalsorestrictedtotheuplink.
2.2.3.3CombinedSIR-andpower-CACElayoubietal.[147]developedaneffective-basedCACalgorithmthatinsurestherequiredSIRwhiletakingintoaccounttheabovementionedCACconstraints:maximaltransmissionpowerandcoverage.Thisalgorithmalsofolloweda exiblemodelthatcanhandlehandoverrequestsandmultimediatraf c,inadditiontopossibleextensionstodealwithsharedchannelsthatremainapossiblesolutionfordatatraf c,orthecaseoflimitedcapacityintheUMTSTerrestrialRAN(UTRAN).
Todothis,theybasetheirworkontheeffectivebandwidthcharacterizationsderivedin[422][250]forasinglecellDS/CDMAsystemwithmultiuserreceiverstomitigatetheinterferencebetweenusers,andextendthisworktoamultiplecellcase.Thesetechniquestakeintoaccountthestructureoftheinterferencefromotheruserstodecreasetheinterferencewhendemodulatingauser.Theyconsiderthelinearminimummean-squareerror(MMSE)receiverandthedecorrelatorinadditiontotheconventionalmatched lterreceiver,andderiveeffectivebandwidthcharacterizationsoftheusercapacityinamultiplecellcase.TheSIRrequirementsofalltheuserscanthenbemetifandonlyifthesumoftheeffectivebandwidthsoftheusersislessthanthetotalnumberofdegreesoffreedominthesystem,providedbytheprocessinggain.
ThisalgorithmtakesintoaccountmobilityandcoverageaswellasthewiredcapacityoftheUTRAN,beyondtheNodeB.Elayoubietal.thenenhancedtheirCACalgorithmtosupporthandoverrequestsandmultipleclassesofmultimediatraf c.They rstpresentedameasurement-basedapproachfortheuplinkthatintro-ducesprioritiesbetweendifferentclassesoftraf c(handoffversusnewcallsandvoiceversusdata),anddecreasestheoutageprobabilityofongoingusers.Theythenpresentedasqueezingstrategytodealwithdatacallsandshowhowtomakeuseoftheelasticityofthistraf ctomaximizethecellthroughput.
Asofthedownlink,thisCACalgorithmtakesintoaccountthemaximaltransmissioncapacityofthebasestation,inadditiontothemobilityofuserswithinthecellandbetweenadjacentones.Theyderivedeffectivebandwidthexpressionsandfoundoutthattheydepend,notonlyontheSIRrequirements,butalsoonthepositionoftheuserinthecell:theeffectivebandwidthincreasesrapidlywiththedistancefromthebasestation.Theythendividethecellintonconcentricringsandobtainnsubclassesofeachclassoftraf c,with
正在阅读:
With Contributions of the following partners (in order of appearance in the document) Partn08-29
精选感恩节演讲比赛主持词范文03-21
2018年湖南大学经济与贸易学院396经济类联考综合能力之概率论与数理统计考研冲刺五套模拟题04-28
汽车底盘综合性试题之名词解释答案09-11
天问教育:教育学考试复习题汇总04-24
历年感动中国09-06
忆王震将军01-21
2018中考语文阅读训练100天(19)(含解析)01-15
ME800 EVDO Rev.A module design guideV1.104-26
2017年广东省专科学校排名02-15
- 1新建 Microsoft Word 97 - 2003 Document
- 2BAPI-财务凭证相关 FI Document
- 3Contributions, Costs and Prospects for End-User Development
- 4Download Word document-World Trade - 图文
- 5Oracle 之 Order To Cash 企业流程简述
- 6Oracle 之 Order To Cash 企业流程简述
- 7Oracle 之 Order To Cash 企业流程简述
- 8新建 Microsoft Office Word 97- 2003 Document
- 9AEC_Q100_Rev_G_Base_Document
- 10The gauge boson contributions to the radiatively corrected mass of the scalar Higgs boson i
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- Contributions
- appearance
- following
- partners
- document
- order
- Partn
- With
- 「活化历史建筑与文化承传」工坊坊(研讨会及实地考察)
- (河南专版)2018-2019版九年级化学上册第三单元物质构成的奥秘课题2原子的结构(增分课练)试题(新版)新
- (最新修正)人民版八年级思想品德上册第一单元:成长根据地 王全玉(整理)
- 2015-2020年中国血液分离器产业发展现状及发展前景报告
- 论消化内科无痛胃肠镜临床应用疗效论文
- 年度用水计划指标申请表(非生产企业)改
- 中国scr脱硝催化剂市场需求预测及投资战略规划研究报告2016-2021年
- 最详细的Western_Blot过程步骤详解
- 政治审查报告模板
- 2011年天津公务员考试行测真题及答案
- 初三物理学习经验
- 幼儿园大班第二学期月计划
- 2019-2025年中国人造刚玉行业市场评估与投资前景预测报告目录
- 组合空调机组选型与安装
- 汽轮机计算题
- 机械原理复习题第2章
- 大豆卵磷脂提取工艺的研究
- 土木工程专业毕业设计(论文)任务与要求_secret
- (简体)《个人外汇管理办法实施细则》
- 2015-2020年中国复合无机抗菌剂市场深度研究与未来发展趋势报告