希望杯试题11-20

更新时间:2023-10-08 04:21:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

高中数学希望杯典型例题100道(11-20)

题11 使不等式2?a?arccosx的解是?x1?x?1的实数a的取值范围是( ) 2A、1??2 B、

22?25?1 C、 D、?? ??26232(第十一届高二第一试第6题)

解法1 由已知可知2?arccosx?a的解集是??x?1?,1?.在此区间上函数?2??1?f?x??2x?arccosx是单调增的.因此a的值应当满足关系f????a,

?2??a?2?1222??1??arccos?????.选B.

223??x解法2 原不等式同解于a?2?arccosx,因为?21?2x?2, ?x?1,所以22?22?22?2???2x?arccosx?2,?a??.故选B. ??arccosx?0,从而23233 评析 上述两种解法的实质是一回事.

关于此题,刊物上有数篇文章的观点值得商榷,现摘其部分加以分析. 一篇文章认为:“由已知不等式得a?2?arccosx,欲使其解为?x1?x?1,实际上是对2?1??1?x???,1?的任何x,a?2x?arccosx恒成立,而y?2x?arccosx在??,1?上是增函数,

22?????22?1?1?2y?2?arccos?????所以当x??时,min.故选B.”

2232??1另一篇文章在介绍了“设m?f?x??n,则a?f?x??a?f?x?max?n;a?f?x??

xa?f?x?min?m”后分析道:“令f?x??2?arccosx,当?22?1??f?x? ?x?1时,232?2,又a?f?x?,故a?

22??,选B. ” 231

还有一篇文章干脆将题目改为: 使不等式2?a?arccosx的解是? A、???,1?x1?x?1的实数a的取值范围是( ) 2???22??? ?23??????2?? B、???,?25??1??? D、? C、??,???,???? ??262????并作了如下解答:

“由已知得a?2?arccosx,记f?x??2?arccosx,因为x在??xx?1?,1?时,f?x?单调?2?增,所以ymin?2?1222?22??1??arccos????.因此,a?.选B.” ??2323?2?x首先应当指出,第一、第三篇文章中说增函数f?x??2?arccosx在???1?,1?上的最小值?2?是

22??是明显错误的. 23这三篇文章共同的观点是“不等式2?a?arccosx的解是?x1?x?1”等价于“对2?1??1?x???,1?的任何x,a?2x?arccosx恒成立”.按此观点,应当有a?f???,题目就错了

?2??2?(选择支中没有正确答案),又怎么能选B呢?第三篇文章也将题目改错了(选择支中同样没有正确答案).

问题的关键在于“不等式2?a?arccosx的解是?x1?1?1?的任何?x?1”与“对x???,2?2?x,a?2x?arccosx恒成立”到底是否等价.

为说明这一问题,我们只要看一个简单的例子就能明白了. 不等式x?2x?a?0的解集是??1,3?,求a的取值范围.

2如果认为它等价于“x???1,3?时,不等式x?2x?a?0恒成立,求a的取值范围”,就

2会这样解:

2

2??x?2x?1??x?1?在??1,3?上的最小值是 由x?2x?a?0得a??x?2x,22221??3?1???3,?a??3为所求.而事实上,?8??3,但x?2x?8?0的解集却不是??1,3?,

2而是??2,4?,可见两者并不等价.

至此,我们可以得出结论:“关于x的不等式a?f?x?的解集是D”与“x?D时,关于x的不等式a?f?x?恒成立”不一定是等价的.

题12 已知a,b是正数,并且a1998?b1998?a1996?b1996,求证a2?b2?2.

(第十届高一培训题第74题)

证法1 若a与b中有一个等于1,那么另一个也等于1,此时,显然a?b?2. 若a?b且b?1,可将a199822?b1998?a1996?b1996改写为a1996?a2?1??b1996?1?b2?,由此

1996a2?1?b?2推得0?b?1(若b?1,则a?1?0,得a?1,这与a?b矛盾),由此得???1?b2?a?,?

b?b?0??1,0???a?a?证法2 2a1996a2?122?1,??1,得 a?b?2. 21?b?1998?b1998???a2?b2??a1996?b1996??a1998?a2b1996?a1996b2?b1998?

?a2?b2??a1996?b1996?.?a2?b2与a1996?b1996同号,? ?a2?b2??a1996?b1996??0,

?2?a1998?b1998???a2?b2??a1996?b1996?.?a1998?b1998?a1996?b1996?0,?a2?b2?2.

证法3 由a1998?b1998?a1996?b1996及a,b?R,得a?b?22?a?1996?b1996??a2?b2?a1998?b1998

a1998?b1998?a1996b2?a2b1996a1996b2?a2b1996199622199619981998??1?.?ab?ab?a?b 1998199819981998a?ba?b???a2?b2??a1996?b1996?,又a2?b2与a1996?b1996同号,???a2?b2??a1996?b1996??0,

a1996b2?a2b1996??1,?a2?b2?2. 19981998a?b评析 解决本题的关键在于如何利用已知条件.

3

证法1通过分类讨论证得a?b?2,较繁.由于a221998?b1998?a1996?b1996,故证法2作差

2a1998?b1998?a2?b2a1996?b1996,只要此差大于等于0命题便获证.而证法3将a2?b2表

???????a示成

1996?b1996a2?b2①,便将问题转化成证①式小于等于2.证法2,3的作法既有技巧性,

a1998?b1998???又有前瞻性,简洁明了.

拓展 本题可作如下推广

推广1 设a,b?R,且a推广2 设a,b?R,且a推广3 设a,b?R,且a1998?b1998?a1996?b1996,则a2?b2?2.

?b2n?2?a2n?b2n,其中n?N?,则a2?b2?2. ?b2m?2n?a2m?b2m,其中m,n?N?,则a2n?b2n?2.. ?Bb2m?2n?Aa2m?Bb2m,其中m,n?N?,

2n?22m?2n推广4 设a,b?R,且Aa2m?2nA,B?R?,A?B?1,则Aa2n?Bb2n?1②.

由于推广1,2,3都是推广4的特例,故下面证明推广4. 证明 ⑴当a?b?0时,②式显然成立. ⑵当a,b不全为零,有

?A?B??Aa2m?2n?Bb2m?2n???Aa2m?Bb2m??Aa2n?Bb2n??AB?a2m?2n?a2mb2n?a2nb2m?b2m?2n??AB?a2m?b2m??a2n?b2n?.?a2m?b2m与

a2n?b2n同号,?AB?a2m?b2m??a2n?b2n??0,??A?B??Aa2m?2n?Bb2m?2n?

??Aa2m?Bb2m??Aa2n?Bb2n?.?Aa2m?2n?Bb2m?2n?Aa2m?Bb2m?0,?Aa2n?Bb2n?A?B?1.即当a,b不全为零时,②式也成立.综上,不等式②成立.

推广5 设a,b?R,且a推广6 设a,b?R,且a???m?n?bm?n?am?bm,其中m,n?Z,mn?0,则an?bn?2. ?bm?n?am?bm,其中m,n?R,mn?0,则an?bn?2. ?Bbm?n?Aam?Bbm,

nnm?n推广7 设a,b?R,且Aa?m?n其中m,n?R,mn?0,A,B?R,A?B?1,则Aa?Bb?1③.

4

由于推广5,6是推广7的特殊情形,故下面证明推广7. 证明 ?A?B?Aa?m?n?Bbm?n???Aam?Bbm??Aan?Bbn?

?AB?am?n?ambn?anbm?bm?n??AB?am?bm??an?bn?.?mn?0.由幂函数的性质,可知

am?bm与an?bn同号,

?AB?am?bm??an?bn??0,??A?B??Aam?n?Bbm?n???Aam?Bbm??Aan?Bbn?.

?Aam?n?Bbm?n?Aam?Bbm?0,?Aan?Bbn?A?B?1.即不等式③成立.

从变元个数进行推广可得

推广8 设xi?R?i?1,2,?,k?,且?xi?km?ni?1k其中m,n?R,mn?0,则?xi?k. ??xi,

i?1i?1km?nkmkn推广9 设xi,Ai?R?i?1,2,?,k?,?Ai?1,且?Aixi?i?1i?1??Aixi,

i?1km其中m,n?R,mn?0,则

?Axii?1kni?1④.

由于推广8是推广9的特例,故下面证明推广9. 证明 令??kk?A?Axii?1i?1kkm?nii??Aixi??Aixin

mi?1i?1kk??Ai?Ajxji?1j?1m?n??Aixii?1km?Axjj?1knj??i?1nk?AAx??xnijjj?1kmj?xi.由下标的对称性,对换上

m?式的下标,得??kk?i?1k?AiAjxixi?xj..将上面两式相加,得

mmj?1mmnnk??2???i?1?AA?xijj?1mi?xjm??xin?xjn?.?mn?0,由幂函数性质知xi?xj与xi?xj同

n号, AiAjxi?xjk?mm??xi?xjn??0,?2??0,

即??0,?k?Ai?Aixii?1i?1kkm?n??Aixi??Aixi,??Aiximni?1i?1i?1kkkm?n??Aixi?0,

mi?1k??Aixi??Ai?1,即不等式④成立.

ni?1i?1 5

题13 设x1,x2,x3,y1,y2,y3是实数,且满足x1?x2?x3?1,证明不等式

2222(x1y1?x2y2?x3y3?1)2?(x12?x2?x3?1)(y12?y2?y3?1).

222 (第十届高二第二试第22题)

证法1 当x1?x2?x3?1时,原不等式显然成立.

222当x1?x2?x3?1时,可设f?t??x1?x2?x3?1t?2?x1y1?x2y2?x3y3?1?t

2222222??22??y12?y2?y3?1?.易知右边??x1t?y1???x2t?y2???x3t?y3???t?1?.

2222?f?1???x1?y1???x2?y2???x3?y3??0.?f?t?是开口向下的抛物线,

2222222??t?4?x1y1?x2y2?x3y3?1??4?x12?x2?x3?1??y12?y2?y3?1??0即

22222(x1y1?x2y2?x3y3?1)2?(x12?x2?x3?1)(y12?y2?y3?1).

综上,x1?x2?x3?1时,

2222(x1y1?x2y2?x3y3?1)2?(x12?x2?x3?1)(y12?y2?y3?1).

222证法2,?xi,yi?R?i?1,2,3?,x1?x2?x3?1,?当y1?y2?y3?1时,

?2222222222(x12?x2?x3?1)(y12?y2?y3?1)?0,又(x1y1?x2y2?x3y3?1)2?0,?求证的不等式

成立.当y1?y2?y3?1时,(x1?x2?x3?1)(y1?y2?y3?1)?

222222222?1?x212222?x2?x31?y12?y2?y3????2222?1?x12?x2??x3?1?y12?y2?y3????2??2???2??x12?y12??x22?y22??x32?y32??21????1?xy?xy?xy???????????112233222????????(x1y1?x2y2?x3y3?1)2.综上,在题设条件下,总有

2222(x1y1?x2y2?x3y3?1)2?(x12?x2?x3?1)(y12?y2?y3?1).

证法3 设a?x1?x2?x3?1,b??2(x1y1?x2y2?x3y3?1),c?y1?y2?y3?1,则

2222由x1?x2?x3?1知a?0,从而a?b?c?x1?x2?x3?1?2?x1y1?x2y2?x3y3?1??y1

222222222 6

22?y2?y3?1??x1?y1???x2?y2???x3?y3??0.

222?b2?4ac??2a?b???4a2?4ab?4ac??4a?a?b?c??0,b2?4ac??2a?b??0,

22?2222?x3?1)(y12?y2?y3?1). ?b2?4ac?0,即(x1y1?x2y2?x3y3?1)2?(x12?x2??证法4 设a??x1,x2,x3?,b??y1,y2,y3?,则 ??a?b??x1,x2,x3??y1,y2,y3??x1y1?x2y2?x3y3,又 ????a?b?a?b?cos??2222x12?x2?x3?y12?y2?y3?cos?.

2222?x1y1?x2y2?x3y3?1?1?x12?x2?x3?y12?y2?y3?cos??222222221?x12?x2?x3?y12?y2?y3?cos??1?x12?x2?x3?y12?y2?y3?0 22222?(x1y1?x2y2?x3y3?1)2?(1?x12?x2?x3y12?y2?y3)

2222?(x12?x2?x3?1)(y12?y2?y3?1).

B??y1,y2,y3?,O?0,0,0?为坐标原点,证法5 记A??x1,x2,x3?,则由AB?OA?OB,

得?x1?y1???x2?y2???x3?y3?222?2222,整理得 x12?x2?x3?y12?y2?y322221??x1y1?x2y2?x3y3??1?x12?x2?x3?y12?y2?y3?0,

22?xy1?x2y2?x3y3?1?1?x12?x2?x3222y12?y2?y3?0,

2223?(x1y1?x2y2?x3y3?1)?1?x?x?x?212223y?y?y21??(x?x?x?1)(y?y?y?1).

2212223212223评析 这是一个条件不等式的证明问题.由求证式是b?ac的形式自然联想到二次函数的判别式,构造一个什么样的二次函数是关键.当然是构造

2222f?t??x12?x2?x3?1t2?2?x1y1?x2y2?x3y3?1?t?y12?y2?y3?1,但只有当 2222x12?x2?x3?1?0时,f?t?才是二次函数,故证法1又分x12?x2?x3?1?0与

22x12?x2?x3?1?0两类情形分别证明.很显然,等价转化思想、分类讨论思想是证法1的精髓.

2????证法2直接运用基本不等式证明.证法3通过换元后证明b?4ac?0(即求证式),技巧性很强,

7

2一般不易想到,读者可细心体会其思路是如何形成的.证法4由求证式中的

22222x12?x2?x3,y1?y2?y3及x1y1?x2y2?x3y3联想到空间向量的模及数量积,因而构造向量

解决问题.证法5则从几何角度出发,利用AB?OA?OB使问题轻松得证.五种证法,从多角度展示了本压轴题的丰富内涵.

拓展 本题可作如下推广:

推广 1 若xi,yi?R?i?1,2,?,n?,2?xi?1n2i?1,则

?n??n2??n2???xiyi?1????xi?1???yi?1?. ?i?1??i?1??i?1?推广 2 若xi,yi?R?i?1,2,?,n?,m?0,

?xi?1n2i?m,则

?n??n2??n2???xiyi?m????xi?m???yi?m?. ?i?1??i?1??i?1?两个推广的证明留给读者.

2x2y2z2???2, 题14 已知x、y、z?0,并且

1?x21?y21?z2x2y2z2???2. 求证:2221?x1?y1?z (第一届备选题)

证法1 令x?tan?,y?tan?,z?tan?,且?,?,?为锐角,则题设可化为

sin2??sin2??sin2??2,即co2?s?2c?o?s2?c?os柯西1不等式知.由

2?2?1??sin2??sin2??sin2???cos2??cos2??cos2??

??sin?cos??sin?cos??sin?cos??2?1????sin2??sin2??sin2???. ?2?2?1?sin2??sin2??sin2???2.由万能公式得 2tan?tan?tan?xyz???2???2. ,即

1?tan2?1?tan2?1?tan2?1?x21?y21?z2

8

证法2 构造二次函数

?1x??1y?f?t???t??t???2221?x1?x1?y2???1?y22??1z????t??2??1?z21?z??2?1?x11?2yz?222??xyz????t?2??t???222222??? . ?222??1?x1?y1?z??1?x1?y1?z?1?x1?y1?z???f?t??0,当且仅当x?y?,即?,z取t?x?y?z时取等号,??0?xyz?2?111??x2y24??1?x2?1?y2?1?z??2?4??1?x?z2?12?y?1?2z????1?2x?1?y2?1?z2???0?11?x2?1?x21y21z21?x2,1?y2?1?1?y2,1?z2?1?1?z2, 又x2y2z211?x2?1?y2?1?z2?2,?1?x2?11?y2?11?z2?1, 2?4??xyz??1?x2?1?y2?1?z2???4?1?2?0, 故

x1?x2?y1?y2?z1?z2?2.(当且仅当x?y?z?2时取等号) 证法3 x21?x2?y21?y2?z21?z2?2, 即

???1?1?1?x2??????1?1?1?y2??????1?1?1?z2???2,即11?x2?11?y?121?z?1,2于??1?1?x2?1?1y??1?x2y2z?2?xy?22?1?, z???z2?1?x?2?1?y2?????1?z2??1?x2?1??y21z2即

x1?x2?yz1?y2?1?z2?2. 证法4 令x2y2z21?x2?X,1?y2?Y,1?z2?Z,则X?Y?Z?2,且 9

是2?xyz??XYZ?XYZ??????? ,所以?x2?,y2?,z2?222?1?X1?Y1?Z?1?x1?y1?z??xyz?22??222?X?XYZ?YZ?222? ?3?X?Y?Z?X?Y?Z?3?2?2?2??3??????????XYZyz??x???1?X1?Y1?Z?222xyz12??1???3?2??X?Y?Z???3?2??22??2.所以???2. 222331?x1?y1?z????x22ay22bz22c?,?,?, 证法5 设2221?xa?b?c1?ya?b?c1?za?b?c则x?22a2b2c,y2?,z2?,

b?c?aa?c?ba?b?cx21y21z21????? 左边=

1?x2x1?y2y1?z2z?1b?c?ac?a?ba?b?c???2b??2c??2a???a?b?c?2a2b2c??????2a?b?c?a?b?c?a??b?a?c?b??c?b?a?c??

2?3?a?b?c?a??b?a?c?b??c?b?a?c?a?b?c6?2?ab?bc?ca???a2?b2?c2?a?b?c62122??a?b?c???a?b?c??2.a?b?c33x22证法6 ???2221?x1?x2x2?1?x2?2x?22?; 21?xy22yz22z??22?;??22?. 同理?1?y21?y21?y21?z21?z21?z2?1x2y2z211????2??三式相加得 ?222222?1?x1?y1?z?1?x1?y1?z? 10

?x?xyz?yz??22???,2?2?1?22??. 即?222?222?1?x1?y1?z1?x1?y1?z????故

xyz???2. 2221?x1?y1?z2?xyz??? 证法7 ? 222??1?x1?y1?z??1x1y1z????????1?x21?x21?y21?y21?z21?z2??111??x2y2z2???????.222??222?1?x1?y1?z1?x1?y1?z????????

2111x2y2z2???1,???2, 由已知,易知

1?x21?y21?z21?x21?y21?z2?xyz?xyz?????2,????2. 222?2221?x1?y1?z?1?x1?y1?z?

证法8 由已知,易知

2111???1. 2221?x1?y1?z设

1a1b1c?,?,?, 1?x2a?b?c1?y2a?b?c1?z2a?b?cb?cc?aa?b,y?,z?. abc则x?所以

xyza?b?c?b?c?a?c?a?b??? 2221?x1?y1?za?b?c?2.

??a?b?c??b?c?c?a?a?b?a?b?cx2y2z2111???2,???1,于是 证法9 由易得2222221?x1?y1?z1?x1?y1?z 11

2?x??y??z??1?y2????2?x2y2z21?x1?z2??????2??????

1111?x21?y21?z21?x21?y21?z222?xyz???2?1?x21?y21?z2???xyzxyz??????.????2. ?222?2221111?x1?y1?z1?x1?y1?z????2221?x1?y1?z2x2y2z2111???2,证法10 由易得???1. 2222221?x1?y1?z1?x1?y1?z2x112?x2112???2x????, 22221?x1?x1?x222?1?x?同理,

2y112z11??,??, 1?y222?1?y2?1?z222?1?z2?

?xyz?31?111?31?2??????????2.?222?222?1?x1?y1?z221?x1?y1?z????22?xyz???2. 2221?x1?y1?z证法11 由已知,易得

111???1.构造空间向量 1?x21?y21?z2???x2y2z2,,?222?, b???1?x1?y1?z????111a??,,?1?x21?y21?z2???, ??2????????2?2?2?xyz??a?b?a?b?cos??ab,?a?b?ab.???? 222?1?x1?y1?z???1x21y21z2????2222?1?x21?x21?y1?y1?z1?z???1???1?x2????

????2

222??1??2?????1?y2??1??2?????1?z2????2?? ????2x???2??1?x??12

??y2?????1?y2????z2?????1?z2???????? ?? ?1?2?2, ?xyz???2. 2221?x1?y1?z评析 条件不等式证明的关键在于如何利用条件,而当条件难以直接利用或条件式显得相当复杂时,通常应当将条件适当转化,证法1、4、5、8正是通过不同形式的换元,使得问题变得简单易证的.灵活(变形)应用基本不等式(证法6、证法10),柯西不等式(证法3、7),以及一些重要的结论(证法9)也是证明不等式的常用方法.证法2、11分别构造函数、向量加以证明,很富创新性,同时也应纳入我们正常思考的范围.

拓展 本赛题可推广为:

xi2?n?1?n?3?, 命题1 若x1,x2,…,xn?0,且?2i?11?xin则

xi?n?1. ?21?xi?1i证明 设xi?tan?i,i?1,2,…,n,0??i?nn?2,则有

nnnxi2tan2?i22??n?1,?sin??n?1,cos?i?1.????i22i?11?xii?11?tan?ii?1i?1nnxitan?i??????sin?icos?i. 22i?11?xii?11?tan?ii?1n?n??n?22由柯西不等式得?sin?icos?i???sin?i???cos?i? i?1?i?1??i?1??1??n?1??n?1.??nxi?n?1. 21?xi?1innxi2?k?k为常数,n?3,0

xi?k?n?k?. ?21?xi?1ixi2m?k?k?n,m?R?, 命题3 若x1,x2,…,xn?0,且?2mi?11?xinnxim?k?n?k?. 则?2m1?xi?1in 13

命题2、3的证明与命题1相仿.

xi2?k(s,k为正常数,n?3, 命题4 设x1,x2,…,xn?0,且?2i?1s?xinxi?,则?0?k?n)2s?xi?1ink?n?k?s.

xi222nntx2证明 将题设化为?s2?k,作变换ti?i?i?1,2,…,n?,则题设化为?i2?k.xsi?11?tii?11?isxins?kn?k,???2xi?11?is由命题2得

ti?k?n?k?,?21?ti?1in即化简得

nxixis??kn?k,?????22s?xs?xi?1i?1iink?n?k?s.

进一步发散思维,还可得到:

xi2?k?k为常数,n?3,0?k?n?, 命题5 设x1,x2,…,xn?0,且?2i?11?xin则

?xi2?i?1nkn. n?k证明 设xi?tan?i,且?i为锐角?i?1,2,…,n?.则题设可化为

?sini?1n2?i?k,由此得?cos2?i?n?k.

i?1n?n?211??22由柯西不等式得?cos?i??cos???n, ??????i22cos?i??i?1i?1cos?i?i?1?nnnnn2n2n2kn22,n??tan?i?,??tan?i??n?, 即?sec?i?n?kn?kn?kn?ki?1i?1i?1n22即

?xi2?i?1nkn. n?k14

仿命题4的证法可将命题5推广为:

xi2?k(s,k为正常数,n?3, 命题6 设x1,x2,…,xn?0,且?2i?1s?xin2,则?xi?0?k?n)

i?1nskn. n?k对本赛题的条件再联想,又可推出

nnxi2?n?1?n?3?,则?xi??n?1?2. 命题7 设x1,x2,…,xn?0,且?2i?11?xii?1n证明 设xi?tan?i,且?i为锐角?i?1,2,…,n?.则题设可化为

?sini?1n2?i?n?1,由此得?cos2?i?1.

i?1n?n?1cos?1?cos?2?…?cos?n?1222cos2?1?cos2?2?…?cos2?n?1 ?n?11?cos2?nsin2?n??,即

n?1n?1cos?2?…?cos?n?1?sin?n,同理可得 ?n?1?n?1cos?1?2222…?cos2?n?2?cos2?n?n?1?n?1cos2?1?cos2?2??

?sin2?n?1,

…?cos2?n?n?1?n?1cos2?2?cos2?3?以上n个式子相乘,得

?sin2?1.

2?n?1?nn?cos??cos?1??cos?n???sin?1?sin?2?…?sin?n?, 2?22?有?tan?n??n?1?,即?xi??n?1?.

i?1i?1n2nn2 仿命题4的证法又可将命题7推广为:

xi2?n?1?s为常数,n?3?, 命题8 设x1,x2,…,xn?0,且?2i?1s?xin则

?xi?1ni???s?n?1???.

15

n2

命题8又可推广为:

xik?n?1?n?3,k?N且2?k?n?, 命题9 设x1,x2,…,xn?0,且?ki?11?xin则

?x??n?1?ii?1nnk.

11?1. 证明 题设可化为?作变换a?,则题设化为ikk1?xii?11?xin?ai?1ni?1,且

xik?1?ai1?a1a2?a3?…?an1?, ?1?, ?x1k?a1a1aiai1k1k1k??n?1?n?1a2a3…an???n?1?n?1a2a3…an??a2?a3?…?an?x1???,即有x1???,同理可???aaa?????1?11??????n?1?n?1a1a3…an得x2??a2??以上n个式子相乘,得

???n?1?n?1a1a2…an?1??,…, xn??? .

an??????1k1k?x??n?1?ii?1nnnk.

仿命题4的证法,命题9可进一步推广为:

xik?n?1 命题10 设x1,x2,…,xn?0,且?ks?xi?1i?s为正常数,k?N且2?k?n?,则?xi???s?n?1???i?1nnk. ?a2sin2题15 求所有的正实数a,使得对任意实数x都有acos2xx?2

(第十一届高二第二试第23题) 解法1 原不等式即a21?2sin2x?a2sin2x?2 ①.设a2sin22x?t,则化为at?1?t?2?0,其中

n2ist?a2sinx?[1,a2](当a?1),t?ax?[a2,1](当0?a?1).①式即t2?2t?a?0.设

f(t)?t2?2t?a,由于f(t)在1与a2之间恒小于或等于零,所以f(1)?0且f(a2)?0,即

16

?a?15?1?42?a?1为所求. ?a?2a?a?0,解之,得2?a?0?解法2 ∵a?0,∴a2cosx2?a222sxin?a?21x2sin?a2x2sina?2si2nax?a2xn又2?2si,aaco2sx?a2sinx?2,∴a?1.设t?a2sinx(a2?t?1),记f(t)?立,∴2?f(t)max.f(t)?a?t.依题意,2?f(t)恒成ta?t在区间[a2,a]上单调递减;在区间[a,1]上单调递增.而t111f(a2)??a2?f(1)?a?1,∴f(t)max??a2(当t?a2时取最大值),故?a2?2,

aaa5?1?a?1为所求. 22解得

1?2sin解法3 原不等式即ax?a2sin2x?2.令t?a2sinx,则

2a?t?2①. t(1)若a?1,则t?1,①式显然成立. (2)若a?1,则a?a02sin2x?a2,即1?t?a2,即①式对任意t?[1,a2]恒成立

y ay?t? t(a?1) 2a 1 a a2 图1

x Oy y?t?a t(0?a?1) 2a Oa2 a 1 图2

x

由函数y?aaa?t的图象(图1)及1?a?a2,可得1??2,且a2?2?2,但这与t1a2a?1矛盾.

22sin(3)若0?a?1,则a?ax?a0,即a2?t?1.由函数y?a?t的图象(图2)及ta2?a?1,可得a2?aa2(a?1)(a?a?1)?0且a?1,又0?a?1,且,即?21??22a117

解得

5?1?a?1. 25?1?a?1为所求. 2cos2x综合(1)、(2)、(3),可得

评析 解决本题的关键是如何由a?a2sin2x?2对任意实数x恒成立,得到关于a的不?a2sin2等式.由于cos2x?1?2sin2x,故原不等式即a2sin2x1?2sin2xx?2,亦即

aa2sinx2?a2sin2x?2.

a?t?2.至此,若去分母,便将原问题转化为二次不等式恒成立taa的问题;若不去分母,应当有2?(?t)max,可通过函数f(t)??t的最大值解决问题.

tt令t?a,则原不等式就是

解法1运用函数思想,把二次不等式t?2t?a?0恒成立问题转化成二次函数

2f(t)?t2?2t?a的图象恒不在x轴上方的问题,从而得到关于a的不等式组,求出了a的范围.

解法2则由acos2x?a2sinx?2a及acos2x?a2sin22x?2,得a?1从而得a2?t?1.再由函数

a1?t在[a2,a]上单调减,在[a,1]上单调增,求出了f(t)的最大值?a2,由ta1af(t)?2恒成立,得?a2?2,求出了a的范围.解法3则直接根据函数f(t)??t的图象,

at分a?1,a?1,0?a?1三种情形讨论,直观地求出了a的范围. f(t)?三种解法,道出了解决恒成立问题中求参数的三种方法:解法1为函数法;解法2为最值法;解法3为图象法.当然,解决恒成立问题决不仅仅是这三种方法,比如,还有分离参数法,变更主元法,运用补集思想等.

x2?2x?2?x?1?的最小值为 ( ) 题16 函数f?x??2x?2A、-1 B、1 C、-2 D、2

(第七届高一培训题第2题)

解法1 f?x??1??1????x?1????.因为两个互为倒数的数,在它们等于?1时,其和可以2?x?1????取到绝对值的最小值.即当x?1??1,即x?2或x?0时,f?x?的绝对值最小.又x?1,故

x?2时,f?x?的绝对值最小.又f?x??0,?f?x?min?f?2??1.选B.

18

2解法2 因为x?1,联想到sec??1,于是令x?sec?,???0,???2?,则x?1?tan?. ?2?x2?2x?2?x?1??1tan2??11?1?11f?x??????tan???1,???2tan??2?x?1?2?x?1?2tan?2?tan??2tan?2当且仅当tan2??1,即x?2时,f?x?min?1.故选B. 2tan?2解法3 设??x??x?2x?2?x?1?,g?x??2x?2?x?1?.

???x??g?x??x2?2x?2??2x?2??x2?4x?4??x?2??0,???x??g?x??0.

2???x?g?x??1,即f?x??1,?f?x?min?1.故选B.

2x2?2x?2?x?1??1?x?1?.由此联想到万能公式: ?解法4 f?x??2x?22?x?1?2,故令x?1?tan??0,则f?x??g????2?1?0, ??2sin?1?tan22tan221?1,即f?x??1.?f?x?min?1.故选B. ?sin??0.又?1?sin??1,0?sin??1,

sin?sin??2?x?1??1?解法5 ?x?1,?x?1?0,f?x??2?x?1?2tan?1?tan2?x?11x?11??2??122?x?1?22?x?1?当且仅当

x?11,即x?2时取等号.?f?x?min?1.故选B. ?22?x?1?22x2?2x?2?x?2??2x?2?x?2????1?1,当x?2时解法6 ?x?1,?f?x??2x?22x?22x?2取等号.故选B.

x2?2x?22解法7 由y?去分母并整理,得x??2?2y?x?2?2y?0.?x?R,

2x?2????2?2y??4?2?2y??0,即y2?1?0,?y??1或y?1.?x?1,

2 19

?y?2?x?1??1x2?2x?2f?x???0,?y?1.当y?1时,由1?,解得x?2??1,???,

2?x?1?2x?2?f?x?min?1.故选B.

评析 解法1、6、7都是运用高一知识解决问题的,其余解法都用到了不等式知识,以解法

5、6最简捷.

解法7运用的是判别式法.运用此法是有前提的,如果将题中限制条件“x?1”去掉,此法总能解决问题.但有了“x?1”的限制,此法就不一定能奏效.只有当y?1时求出的x的值在

x?1的范围内时,1才是最小值,否则1就不是最小值,应当另寻他法加以解决.事实上,若将x2?2x?2?x?3?的最小值,此题改为“求函数f?x??”此法就失灵了.因为y?1时,

2x?2x?2??3,???.故y取不到1,也就谈不上ymin?1了.

x2?2x?2?x?1??1x?11y????若用不等式知识解:, ?x?3,?x?1?0,

2x?22?x?1?22?x?1?2?y?2x?11x?11??1,当且仅当,即x?2时取等号,但2??3,???,?22?x?1???22x?1故y取不到1,同样不能解决问题.此时我们可利用函数单调性解:

设3?x1?x2,则

22x12?2x1?2x2?2x2?2x12?2x1?2?x2?1??x2?2x2?2?x1?1?f?x1??f?x2????2x1?22x2?22?x1?1??x2?1?22x12x2?x12?x2x1?x2xx?x?x2???x1?x2??x1?x2??x1?x2??x1x2??x1?x2????121?2?x1?1??x2?1?2?x1?1??x2?1?2?x1?1??x2?1?????.

?3?x1?x2,?x1?x2?0,x1x2??x1?x2??0,?x1?1?0,x2?1?0, ?f?x1??f?x2??0,f?x1??f?x2?,已知函数是?3,???的单调增函数. ?ymin32?2?3?25?f?3???.

2?3?24拓展 本题的函数模型实际就是f?x??x?k?x?0,k?0?,容易证明,该函数在(0,k]上x 20

单调递减,在[k,??)上单调递增.于是关于其最值,我们有下面的

定理 已知函数f?x??x?⑴当x?m0?m?⑵当0?x?n?⑶当x?p?k?x?0,k?0?,则 x?k时,f?x?有最小值2k;

?k时,f?x?有最小值f?n?;

k时,f?x?有最小值f?p?;

⑷当q?x?rq??k?r时,f?x?有最小值2k,且有最大值max?f?q?,f?r??.

?4在?1,???上有最小值24?4;在?0,1?上有最小值x4413f?1??1??5;在?3,???上有最小值f?3??3??;在?1,3?上有最小值24?4,最大

133例如,函数f?x??x?值max?f?1?,f?3???max?5,?13???5. ?3??题17 已知x,y,z?R,且

123yz ???1,则x??的最小值是 ( )

xyz23A、5 B、6 C、8 D、9

(第十一届高二第二试第9题、高二培训题第14题) 解法1 ?x,y,z?R,且

?yz?yz??123?123???1,?x????x???????

23?23??xyz?xyz?y2x??z3x??2z3y??3?????????????3?2?2?2?9,当且仅当x?3,y?6,z?9时取

?2xy??3xz??3y2z?等号.故选D.

解法2 由a,x?0时有

ax??2,可知 xa1?1231?369?1?xyz?1?yz??????????2??2??2???2??x???,xyz3?xyz?3?369?9?23??x?3x6y9zyz??9,当且仅当?,?,?,即x?3,y?6,z?9时取等号.故选D .

x3y6z923 21

解法3 x?yz?y???x??23?2?z?123yz?3x???3????3?3???3xyz23???123???9,当且仅当 xyz1231???,即x?3,y?6,z?9时取等号.故选D. xyz3解法4 由柯西不等式,x?2yz?yz??123????x??????? 23?23??xyz??1y2z3?,当且仅当x?3,y?6,z?9时取等号.故选D. ???x?x?2?y?3?z???9??解法5 利用“三个正数的算术平均值不小于它们的调和平均值”,立得

x?yz?yz323? ?3,?x???9.当且仅当x?3,y?6,z?9时取等号.故选D.

123233??xyz解法6 若?、?、?是长方体一条对角线与相邻三棱所成的角,

则cos??cos??cos??1.?x,y,z?R,且

222?123???1,故不妨设 xyz1a22b23c2?,?,?(其中a、b、c是长方体的长宽高).则xa2?b2?c2ya2?b2?c2za2?b2?c2yza2?b2?c2a2?b2?c2a2?b2?c2b2a2c2a2c2b2x??????3?2?2?2?2?2?2?3+222223abcabacbc+2+2=9,当且仅当a?b?c,即x?3,y?6,z?9时取等号.故选D.

?1??2y??3z?解法7 构造二次函数f(t)??

?xt?x?????yt?2?????zt?3?????????123?yz???????t2?2(1?1?1)t??x???,?f(t)?0,???0,

23???xyz?即6?4?x?2222??yz??123?123yz???????0,又???1,?x???9.故选D. 23??xyz?xyz23解法8 设

1y1z1123,?,m1?m2?m3?1, ?m1,?m2,?m3,则x?,?m12m23m3xyz22

?1yz11111??x??????(m1?m2?m3)?????9.故选D.

23m1m2m3mmm23??1评析 解法1、2、3、4、5、8都是利用一些重要的基本不等式解决问题的.解法6、解法7分别通过构造长方体、函数将原问题转化,根据图形特征解决问题.根据解法2的思路,很容易得下面的错误解法:

123yz1y2z3?x,y,z?R?,?,,,x,,?R?,?x??2(1),??2(2),??2(3),xyz23x2y3z?x??123?yz?1??2??3????2????2????2???6??????6?1?5, 23?x??y??z??xyz?yz????x????5.故选A.

23?min?错误原因就在于(1)、(2)、(3)式取等号的条件分别是x?1,y?2,z?3,而此时

123yz???3,与已知矛盾.故x??取不到5. xyz23拓展 本题可作如下推广:

推广1 若xi,ai?R,ai为常数(i?1,2,?,n),且

?aa1a2????n?1, x1x2xn则??x1x2x?????n??n2.

an?min?a1a2xn?x1x2xn??a1a2an?x1x2???????????????? 证明 ?a1a2an?a1a2an??x1x2xn??n?nx1x2?xnaa?anaaa1?n?n12?n2,当且仅当1?2???n?时取等号.

a1a2?anx1x2?xnx1x2xnn?xxx???1?2???n??n2.

an?min?a1a2推广2 若xi,ai?R,ai为常数(i?1,2,?,n),且

?aa1a2????n?k, x1x2xn 23

?x1x2xn?n2?????. 则??an?mink?a1a2证明

xxx1x21?xx????n???1?2???na1a2ank?a1a2an???k ?x??aaa1?xx???1?2???n??1?2???nk?a1a2an??x1x2xn?1x1x2?xna1a2?ann2?n?n?,当且仅???n?nkaa?axx?xk12n12n??x1x2xn?ankn2a1a2当?????时取等号.????????.

an?minkx1x2xnn?a1a2推广3 若xi,ai?R,ai为常数(i?1,2,?,n),且则(x1?x2???xn)min?证明 ??aa1a2????n?k, x1x2xn1(a1?a2???an)2. kaa1a2????n?k,?运用柯西不等式有 x1x2xn?a1a2an?11x1?x2???xn??(x1?x2???xn)?k?(x1?x2???xn)??????kkxn??x1x2an?1a1a21???x1??x2????xn???(a1?a2???an)2, k?x1x2xn???ka1x1x1a2x2x2anxnxn2当且仅当????,即ana1a2????时取等号. x1x2xn?(x1?x2???xn)min?1(a1?a2???an)2. k根据推广1、2,立得本题所求最小值为9. 由

123111???1,得???1.根据推广3, xyzxyz23x?111yz1??,即x?3,y?6,z?9时取等号. ??(1?1?1)2?9,当且仅当yzx23123 24

yz????x????9.故选D.

23?min?再看一例:

例 已知x,y,z?R,且

?247y???5,求2x??7z的最小值. xyz4解 由

2474149???5,得???5.根据推广3,

yxyz2x7z42x?4149y1,即x?z?2,y?8时取???7z?(4?1?49)2?20.当且仅当

y2x7z454??y??7z??20. 4?min等号.??2x?题18 设x,y,a,b为正实数,a,b为常数,且

ab??1,则x?y的最小值为_______. xy(第十一届高二培训题第36题)

?a2?cos?,??x解法1 设?

b??sin2?,??y则x?y?asec??bcsc??a?b?atan??bcot?

2222?a?b?2ab,当atan2??bcot2?,即tan4???(x?y)min?a?b?2ab.

b时取等号, a?解法2 x?y?(x?ab?ayy)?????a?b?x?xy?bx??a?b2yaybx???a?b2xy, ab当且仅当

aybx时取等号,?(x?y)min?a?b?2ab. ?xy??2?2???2???ab???解法3 令m?(x,y),n???x,y??,则m?n?a?b,?m?n?m?n,

?? 25

本文来源:https://www.bwwdw.com/article/nvud.html

Top