四边形知识题型总结
更新时间:2024-03-04 00:40:01 阅读量: 综合文库 文档下载
四边形知识与题型总结
二.典型题型归纳
(一)概念题
ABCD中,∠A的平分线分BC成4cm和3cm两条线段, 1.
ABCD的周长为 . 则
ABCD中,∠C=60o,DE⊥AB于E,DF⊥BC于F. 2.在
D(1)则∠EDF= ; C(2)如图,若AE=4,CF=7,
ABCD周长= ; 则FA EBABCD周长. (3) 若AE=3,CF=7,请作出对应图形,并求
3.(1)在平行四边形ABCD中,若∠C=∠B+∠D,则∠A= .
ABCD,∠A比∠B小20o,(2)已知在则∠C的度数是 . ABCD中,(3)在周长为100cm,AB-BC=20cm,则AB= , BC= .
ABCD中,(4)在周长为30cm,且AB:BC=3:2,则AB= cm.
D (5)(2007河北省)如图,若□ABCD与 A □EBCF关于BC所在直线对称, ∠ABE=90°,则∠F = °.
B C F E 4.(2007福建福州)下列命题中,错误的是( )
A.矩形的对角线互相平分且相等
B.对角线互相垂直的四边形是菱形
C.等腰梯形的两条对角线相等
D.等腰三角形底边上的中点到两腰的距离相等 5.(2007浙江义乌)在下列命题中,正确的是( )
A.一组对边平行的四边形是平行四边形 B.有一个角是直角的四边形是矩形
C.有一组邻边相等的平行四边形是菱形 D.对角线互相垂直平分的四边形是正方形 6.(2007甘肃陇南)顺次连结任意四边形各边中点所得四边形一定是 ( )
A.平行四边形 B.菱形 C.矩形 D.正方形 7.(2007四川眉山)下列命题中的假命题是( ) A.一组邻边相等的平行四边形是菱形 B.一组邻边相等的矩形是正方形
C. 一组对边平行且相等的四边形是平行四边形
A
1
BDD.一组对边相等且有一个角是直角的四边形是矩形 8.(2007四川成都)下列命题中,真命题是( )
A.两条对角线相等的四边形是矩形 B.两条对角线互相垂直的四边形是菱形
C.两条对角线互相垂直且相等的四边形是正方形 D.两条对角线互相平分的四边形是平行四边形
9.(2007浙江嘉兴)如图,在菱形ABCD中,不一定成立的( )
ABCD B.AC⊥BD C.等边△ABD D.∠CAB=∠CAD
(二)图形的性质和判定方法
A.
10.如图,已知四边形ABCD是正方形,分别过A、C两点作BM⊥
2于
1//
2,作
M,DN⊥
2于
N,直线MB、ND分别交
P1、2于
Q、P,试判
QC断四边形PQMN的形状.
l1
D
B
AMNl2
11.如图,在正方形ABCD中,E、F、G、H分别为正方形边上的点,而且AE=BF=CG=DH,求证:四边形EFGH为正方形.HA D
E
G
B CF 12.如图,在矩形ABCD中,E是CD边上一点, EDCAE=AB,AB=2AD,求∠EBC的度数 BA
2
(三)转化的思想——将梯形问题通过化归、分割、拼接转化成三角形和平行四边形问题. 如图所示:
13.填空
(1)等腰梯形上底长为3cm,腰长为4cm,其中锐角等于60o,
则下底长是 . (2)等腰梯形一个底角是60o,它的上、下底分别是8和18,则这梯形的
腰长是 ,高是 ,面积是 . (3)在直角梯形中,垂直于底的腰长5cm,上底长3cm,另一腰与下底的
夹角为30o,则另一腰长为 ,下底长为 . (4)等腰梯形两对角线互相垂直,一条对角线长为6,则高为 ,
面积为 .
(5)已知在梯形ABCD中,AD//BC,若两底AD、BC的长分别为2、8,
两条对角线BD=6,AC=8,则梯形的面积为 .
(四)推理论证的进一步巩固 14.(2007恩施自治州)如图,平行四边形ABCD的对角线AC、BD相交
于点O,E、F是直线AC上的两点,并且AE=CF,求证:四边形BFDE是平行四边形.
3
15.如图,在平行四边形ABCD中,E、F分别是直线AB、CD的中点,
AF、DE相交于点G,CE、BF交于点H.求证:四边形GEHF是平行四边形. AFD HG BEC16.平行四边形ABCD中,点E、F分别在BC、AD上,且AF=CE,,求证: 四边形AECF是平行四边形. AFD
BEC
17.求证:正方形的两条对角线将之分成四个全等的等腰直角三角形.
18.已知点E、F在正方形ABCD的边BC、CD上,
(1)若BE=CF,如图13(1).求证:AE=BF并且AE⊥BF;
A D
F G BCE
4
(2)若E、F分别是BC、EF的中点,如图13(2),求证:GD=AD.
AD
F
G
BCE
19.(2007浙江金华)国家级历史文化名城——金华,风光秀丽,花木葱茏.某广场上一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列说法中错误的是( ) A E 绿紫 A.红花、绿花种植面积一定相等 红
黄 B.紫花、橙花种植面积一定相等
蓝 橙
C.红花、蓝花种植面积一定相等 D D.蓝花、黄花种植面积一定相等 G H
B C F
ABCD的面积为4,对角线交于O, 20.(06盐城)已知
则S△AOB= .
21.若A,B,C三点不共线,则以其为顶点的平行四边形共有( ) A.1个 B.2个 C.3个 D.4个
22.平行四边形一边长为10,一条对角线长为6,则它的另一条对角线a的取值范围是( )
A.4
23.平行四边形中一边长为10cm,那么两条对角线的长度可以是( ) A.4cm和6cm B.6cm和8cm C.8cm和12cm D.20cm和30cm
24.(07北京市23)如图,已知△ABC.
(1)请你在BC边上分别取两点D,E(BC的中点除外),连结AD,AE,写出使此图中只存在两对面积相等的三角形的相应条件,并表示出面积相等.....的三角形;
5
(2)请你根据使(1)成立的相应条件,证明AB?AC?AD?AE. A
C B
25.如图已知△ABC,过顶点A作∠B、∠C的平分线的 A垂线,AD⊥BD于D,AE⊥CE于E.求证:ED//BC.
E F
CB
26.如图,已知BD、CE是⊿ABC的两条高,
M、N分别是BC、DE的中点. 求证:(1)EM=DM;(2)MN⊥DE. 27.(1)如图27(1),正方形ABCD,E、F分别为BC、CD边上一点.
FDC①若∠EAF=45o.求证:EF=BE+DF.
6
EAB②若⊿AEF绕A点旋转,保持∠EAF=45o,
问⊿CEF的周长是否随⊿AEF位置的变化而变化?
(2)如图27(2),已知正方形ABCD的边长为1, FDCBC、CD上各有一点E、F,如果⊿CEF的周长为2. 求∠EAF的度数. E
AB
图27(2)
(3)如图27(3),已知正方形ABCD,F为BC中点 E为CD边上一点,且满足∠BAF=∠FAE . 求证:AE=BC+CE.
(五)知识的联系与综合
ABCD的顶点A、B、C的坐标为(-2,3),(-5,-4),(1,-4),则D点28.已知
坐标为
ABCD的两条对角线AC与BD交于平面直角坐标系的29. 如图,已知
原点,点A的坐标为(-2,3),则点C的坐标为( )
A、(-3,2) B、(-2,-3) C、(3,-2) D、(2,-3)
y
ADx7
O
?BOAyA1CO第32题图
BAx?O'?第30题图 30.如图,两平面镜?、?的夹角为?,入射光线AO平行于?入射到?,两次反射后的光线O`B平行于?,则角?等于 .
31.已知矩形的对角线长为13,周长为34,则这个矩形的面积为 . 32.(05,潍坊)如图,在直角坐标系中,将长方形OABC沿OB对折,使点A落在A1处,已知OA=3,AB=1,则点A1的坐标是( ) A.(
3333313) D.(,) ,) B.(,3) C.(,2222222(六)面积的问题:各种四边形面积的求法和等积变换
ABCD边CD上一点,ABCD的面积为S,33.如图,E为则△ABE
的面积为( ) A、S B、
E111S C、S D、S 234CDDCABA第34题图 B第33题图 34.如图,在ABCD中,AD⊥BD,∠A=
1∠ABC,如果AD=2, 2那么ABCD的周长是 ,面积是 . 35.如图,在矩形ABCD中,过BD上一点K分别作矩形两边的平行线MN和PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的大小关系是S1 S2 (填“>”、“=”或“<”)
8
PAADD NMKQ
B CPCBQ 第36题图 第35题图
ABCD中,点P在BC上,PQ∥BD交CD与Q,则图中36.如图,在
和△ABP面积相等的三角形有 个,它们分别是: . 37.如图,E是平行四边形ABCD的边AB延长线上一点,
EDE交BC于F.求证:S?ABF?S?EFC
BFCAD第37题图 ABCD的边DC、CB上, 38.如图,点E、F分别在
且AE=AF,DG⊥AF,BH⊥AE,G、H是垂足. DEC求证:DG=BH. H
GF
AB
第38题图
(七)运动变换的思想在本章中的应用. 39.(希望杯第9届初二第二试)已知ABCD的周长为52,自顶点D作DE⊥AB,DF⊥BC,E、F为垂足,若DE=5,DF=8,求BE+BF的值.
第39题图1 9
第39题图2
40.在矩形ABCD中,AB=3,AD=4,P是AD边上的动点,PE⊥AC于E,PF⊥BD于F,则PE+PF= .
PPA D ADF
FEOO
E CBBC第40题图第40题图
41.(1)如图41(1)(2),已知⊿ABD,⊿BCE,⊿ACF是等边三角形, 求证:四边形ADEF是平行四边形. DE AF
BC图41(1)
ED FA
BC图41(2) ED
(2)如图41(3),已知⊿ABC,以AB、AC为边分别作等边
10
ABCF图41(3)
三角形⊿ABD,⊿ACF,再以AD、AF为邻边作平行四边形ADEF,求证:三角形BCE是等边三角形.
(3)如图41(4),已知⊿ABD,⊿BCE是等边三角形,A,F是CE,EB上一点,且CA=EB,求证:四边形ADFC是平行四边形. DE F A
BC图42(4)
42、(2007浙江台州)把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H(如图).试问线段HG与线段HB 相等吗?请先观察猜想,然后再证明你的猜想. D C
D C G G H
H F F
A B A B E E
第42题图 第42题图
43、(2007江苏扬州)如图,正方形ABCD绕点A逆时针旋转n后得到正方形AEFG,边EF与CD交于点O.
(1)以图中已标字母的点为端点连结两条线段(正方形的对角线除外),要
11
F G D O C 求所连结的两条线段相交且互相垂直,并说明这两条线段互相垂直的理由; .......
(2)若正方形的边长为2cm,重叠部分(四边形
AEOD)的面积为
43cm2,求旋转的角度n. 344.(2007甘肃陇南)四边形ABCD、DEFG都是正方形,连接AE、CG. (1)求证:AE=CG;
(2)观察图形,猜想AE与CG之间的位置关系,
并证明你的猜想.
第44题图
45.(2007淄博)已知:如图,在△ABC中,AB=AC,AD⊥BC,
M 垂足为点D,AN是△ABC外角∠CAM的平分线, CE⊥AN,垂足为点E,
E A N (1)求证:四边形ADCE为矩形;
12
B D 第45题图
C (2)当△ABC满足什么条件时,四边形 ADCE是一个正方形?并给出证明.
46.(05,青岛)如图,在等腰梯形ABCD中,AD∥BC,M、N分别为AD、
MBC的中点,E、F分别是BM、CM的中点. AD⑴求证:△ABM≌△DCM;
⑵四边形MENF是什么图形?请证明你的结论; FE⑶若四边形MENF是正方形,则梯形的高与底边 BC有何数量关系?并请说明理由.
BNC
47.(2007四川资阳)如图47(1),已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F. (1) 求证:BP=DP;
(2) 如图47(2),若四边形PECF绕点C旋转,在旋转过程中是否总有BP=DP?若是,请证明之;若不是,请举出反例; (3) 试选取正方形ABCD的两个顶点,分别与四边形PECF的两个顶点连结,
第47题图1 第47题图2
使得到的两条线段在旋转的过程中长度始终相等,并证明之.
13
(八)函数的思想在本章中的运用
48、(2007南充改编)等腰梯形ABCD中,AB=15,AD=20,∠C=30o. M、N同时以相同速度分别从点A、点D开始在AB、AD(包括端点)上运动. (1)设ND为x,用x表示出点N到AB的距离,并写出x的取值范围. (2)设t=10-x,用t表示△AMN的面积.
(3)求△AMN的面积的最大值,并判断取最大值时△AMN的形状.
A B M P B M A N N C D C D
49.(2006泰州)将一矩形纸片OABC放在直角坐标系中,O为原点, C在x轴上,OA=6,OC=10.
(1)如图1,在OA上取一点E,将△EOC沿EC折叠,使O点落在AB边上的D点,求E点的坐标;
(2)如图2,在OA′、OC′边上选取适当的点E′、F,将△E′OF沿E′F折叠,使O点落在A′B ′ 边上的D′点,过D ′作D 'G//A′O 交E′F于T点,交OC ′于G点,求证:TG=A ′E′.
(3)在(2)的条件下,设T(x,y),探求:y与x之间的函数关系式.并指出变量x的取值范围.
(4)如图3,如果将矩形OABC变为平行四边形OA"B"C",使OC"
14
yy=10, OC"边上的高等于6,其他条件均不变,探求:这时T(x,y)的坐标y与 x之间是否仍然满足(3)中所得的函数关系,若满足,请证明之;若不满足,写出你认为正确的函数关系式.
50.(08通州22改编)如图,在
ABCD中,AB=8 cm,AD=6 cm,
∠DAB=60°,点M是边AD上一点,且DM=2 cm,点E、F分别是边AB、BC上的点,EM、CD的延长线交于G,GF交AD于O,设AE=CF=x, ⑴试用含x的代数式表示△CGF的面积; ⑵当GF⊥AD时,求AE的值.
第50题图 (九)翻折问题(特殊四边形的折叠问题) 51.沿特殊四边形的对角线折叠
(06.浙江嘉兴)如图,矩形纸片ABCD,AB=2, ∠ADB=30°,沿对角线BD折叠(使△ABD和△EBD落在同一平面内),则A、E两点间的距离为____________. E?C?DFDCC
AD FEG
BABAE F?2??1?BC第51题图 第52题图
52.沿特殊四边形的对称轴折叠
15
如图,已知矩形ABCD的边AB=2,AB≠BC,矩形ABCD的面积为S, 沿矩形的对称轴折叠一次得到一个新的矩形,则这个新矩形对角线长为__________.
53.使特殊四边形的对角顶点重合折叠 (05,山东威海)如图,梯形纸片ABCD, ∠B=60°,AD∥BC,AB=AD=2, BC=6,将纸片折叠,使点B与点D重合,折痕为AE,则CE=___________. DCDBDA??C F EE AD'BC'CABEFB
第53题图 第54题图 第55题图
54.使特殊四边形一顶点落在其一边上而折叠
如图,折叠矩形的一边CD,使点C落在AB上的点F处,已知AB=10cm, BC=8cm,则EC的长为________.
55.使特殊四边形两顶点落在其一边上而折叠
(崇文)如图,在梯形ABCD中,DC∥AB,将梯形对折,使点D、C分别落在AB上的D′、C′处,折痕为EF,若CD=3cm,EF=4cm,则AD′+BC′=________cm.
56.使特殊四边形一顶点落在其对称轴上而折叠(1)
如图,已知EF为正方形ABCD的对称轴,将∠A沿DK折叠,使它的顶点A落在EF上的G点处,则∠DKG=_____. MAD DAP
KQ
EFG
BCNB第56题图 C 第57题图 57.使特殊四边形一顶点落在其对称轴上而折叠(2)
如图,有一块面积为1的正方形ABCD,M、N分别为AD、BC边的中点,将C点折至MN上,落在点P的位置,折痕为BQ,连结PQ. (1)求MP的长度; ⑵求证:以PQ为边长的正方形的面积等于13.
16
D58.两次不同方式的折叠
'(06.淄博市)如图,将一矩形形纸片按如图方式折叠, AE'BC、BD为折痕,折叠后AB与EB在同一条直线上, C则∠CBD的度数为( ) EABA.大于90° B.等于90° C.小于90° D.不能确定 59.三次不同方式的折叠
(03,山西)如图,取一张矩形的纸片进行折叠,具体操作过程如下: 第一步:先把矩形ABCD对折,折痕为MN,如图①;
第二步:再把B点叠在折痕MN上,折痕为AE,点B在MN上的对应点为B′,得Rt△AB′E,如图②;
第三步:沿EB′线折叠得折痕EF,如图④. 利用展开图③探究: ⑴△AEF是什么三角形?证明你的结论;
⑵ 对于任意的矩形,按照上述方法是否都能折出这种三角形? 并证明之.
BMACNDEPAB'(2)CNDEB'ACNBEB'ECND⑴F(3)DA(4)F
(十)动手操作实践
60.(2007湖南怀化)如图,将一张等腰直角三角形纸片沿中位线剪开可以拼成不同形状的四边形,请画出所有可能四边形并写出的它的名称
61.(05枣庄,9分)如图1,四边形ABCD是等腰梯形,AB∥DC,由四个这样的等腰梯形可以拼出图2所示的平行四边形. (1)求出梯形ABCD四个内角的度数;
(2)试探究梯形ABCD四条边之间存在的等量关系,并证明之;
17
(3)现有图1 中的等腰梯形若干个,利用它们你能拼出一个菱形吗?
DC
62.(06.宁波)如图,剪四刀把等腰直角三角形分成五块,请用这五块拼成一AB个平行四边形或梯形(请按1:1的比例画出所拼的图形) 图1图2
第62题图 第63题图
DQAC(十一)动点问题
PB63.如图所示,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/s的速度移动, 点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t表示运动的时间(0≤t≤6),那么: (1)当t为何值时,△QAP为等腰三角形?
(2)求四边形QAPC的面积;提出一个与计算结果有关的结论.
64.如图,矩形ABCD的边AC在x轴上,点A在原点,AB=3,AD=5.若矩形以每秒2个单位长度沿x轴正方向运动,同时点P从A点出发以每秒1个单位长度沿A-B-C-D的路线运动,当P点运动到D点时停止运动,矩形ABCD也停止运动.
(1)求P点从A点运动到D点所需的时间; (2)设P点运动时间为t(秒); ①当t=5时,求出点P的坐标; y②若△OAP的面积为S,试求S与t之间的函数关系式.
18
BCO(A)Dx(并写出相应的自变量t的取值范围).
(十二)开放探究
65.(2005 资阳)如果一个三角形和一个矩形满足条件:三角形的一边与矩形的一边重合,且三角形的这边所对的顶点在矩形这边的对边上,则称这样的矩形为三角形的“友好矩形”.如图1矩形ABEF即为△ABC的“友好矩形”.显然,当△ABC是钝角三角形时,其“友好矩形′只有一个. (1)仿照以上叙述,说明什么是一个三角形的“友好平行四边形”.
(2)如图2,若△ABC为直角三角形,且∠C=90°,在图2中画出△ABC的所有“友好矩形” ,并比较这些矩形面积的大小.
(3)若△ABC是锐角三角形,且BC>AC>AB,在图3中画出△ABC的所有“友好矩形”,指出其中周长最小的矩形并证明之. AA CFE
BA CBC(1)(2)B(3) 19
正在阅读:
四边形知识题型总结03-04
2015年管理类联考MBA综合能力数学真题及答案解析(1) - 图文12-03
人力资源311-03
齐鲁书社版五年级传统文化备课01-04
《有理数的乘法》解答题-掌门1对110-14
【语言测试】HSK甲乙级语法大纲05-23
明星类阅读素材03-05
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 四边形
- 题型
- 总结
- 知识
- 2015黑龙江省教师资格证小学《综合素质》考题猜想:教师职业道德
- 援疆支教教师事迹材料(多篇)
- 监理合同补充协议
- XX2导游年审答案
- 提醒信息(车辆保养)
- word选择题
- 研究性学习方式在高中历史教学中的应用
- 浅谈沈从文《长河》的思想主题探究
- (工作计划范文)留守儿童工作规划-3篇
- 综合气象观测系统发展规划(2010-2015年) - 图文
- 高锰酸钾法测定过氧化氢
- 提高农村民办幼儿园教师专业能力的策略
- 风电场安全规程考试题库(附答案)
- 2016年下半年内蒙古建筑电工模拟试题
- 《数列的极限》教学设计精品
- 浅谈如何促进小学生安全行为习惯的养成
- 2015年高考全国卷1作文评析汇编
- 百度不收录内页的6个关键点分析
- 英语外研五下 Module 9测试卷及答案
- 施工期末考试