三角形的认识培优教学案精编

更新时间:2023-11-25 11:09:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

耿老师教研工作室-----您值得信赖的专业化个性化学习方案

认识三角形

考点·方法·破译

1.了解与三角形有关的线段(边、高、中线、角平分线),会画出任意三角形的高、中线、角平分线.

2.知道三角形两边的和大于第三边,两边之差小于第三边. 3.了解与三角形有关的角(内角、外角) . 4.掌握三角形三内角和等于180°,三角形的一个外角等于与它不相邻的两个内角的和. 5.会用方程的思想解与三角形基本要素相关的问题.

6.会从复杂的图形中找到基本图形,从而寻求解决问题的方法.

经典·考题·赏析

【例1】若的三边分别为4,x,9,则x的取值范围是______________,周长l的取值范围是______________ ;当周长为奇数时,x=______________.

【变式题组】

01.若△ABC的三边分别为4,x,9,且9为最长边,则x的取值范围是______________,周长l

的取值范围是______________.

02.设△ABC三边为a,b,c的长度均为正整数,且a<b<c,a+b+c=13,则以a,b,c为边的

三角形,共有______________个.

03.用9根同样长的火柴棒在桌面上摆一个三角形(不许折断)并全部用完,能摆出不同形状的三

角形个数是( ). A.1 B.2 C.3 D.4

【例2】已知等腰三角形的一边长为18cm,周长为58cm,试求三角形三边的长.

【变式题组】

01.已知等腰三角形两边长分别为6cm,12cm,则这个三角形的周长是( )

A.24cm B.30cm C.24cm或30cm D.18cm 02.已知三角形的两边长分别是4cm和9cm,则下列长度的四条线段中能作为第三条边的是( )

A.13cm B.6cm C.5cm D.4cm

03.等腰三角形一腰上的中线把这个等腰三角形的周长分成12和10两部分,则此等腰三角形的腰

长为______________.

书山寻宝

1

学海泛舟

耿老师教研工作室-----您值得信赖的专业化个性化学习方案

【例3】如图AD是△ABC的中线,DE是△ADC的中线,EF是△DEC的中线,FG是△EFC

2

的中线,若S△GFC=1cm,则S△ABC=______________.

AEGBDFC

【解法指导】中线将原三角形面积一分为二,由FG为△EFC的中线,知S△EFC=2S△GFC=2.又由EF为△DEC中线,S△DEC=2S△EFC=4.同理S△ADC=8,S△ABC=16.

【变式题组】

01.如图,已知点D、E、F分别是BC、AD、BE的中点,S△ABC=4,则S△EFC=______________.

AAEBFD(第2题图)CDFB(第3题图)ECAEFBD(第1题图)C

02.如图,点D是等腰△ABC底边BC上任意一点,DE⊥AB于E,DF⊥AC于F,若一腰上的高

为4cm,则DE+DF=______________.

03.如图,已知四边形ABCD是矩形(AD>AB) ,点E在BC上,且AE=AD,DF⊥AE于F,则

DF与AB的数量关系是______________.

【例4】已知,如图,则∠A+∠B+∠C+∠D+∠E =______________.

AEABC(例4题图)DBC

【解法指导】这是本章的一个基本图形,其基本方法为构造三角形或四边形内角和,结合八字形角的关系即,∠A+∠B=∠C+∠D.故连结BC有∠A+∠D=∠DBC+∠ACB,∴∠A+∠B+∠C+∠D+∠E =180°

书山寻宝

2

学海泛舟

D耿老师教研工作室-----您值得信赖的专业化个性化学习方案

【变式题组】

01.如图,则∠A+∠B+∠C+∠D+∠E =______________.

02.如图,则∠A+∠B+∠C+∠D+∠E +∠F=______________.

03.如图,则∠A+∠B+∠C+∠D+∠E +∠F =______________.

AADB(第1题图)EC

ADBEF(第3题图)EDB(第2题图)FCC

【例5】如图,已知∠A=70°,BO、CO分别平分∠ABC、∠ACB.则∠BOC = ______________.

AOBC

1∠A+90°.证法如下: ∠BOC=180°21111-∠OBC-∠OCB=180°-∠ABC-∠ACB=180°-(180°-∠A)= 90°+∠A.所以

2222【解法指导】这是本章另一个基本图形,其结论为∠BOC=

∠BOC=125°.

【变式题组】 01.如图,∠A=70°,∠B=40°,∠C=20°,则∠BOC=______________.

AOB(第1题图)CAPOBCBPOAC(第3题图)(第2题图)

°,点P、O分别是∠ABC、∠ACB的三等分线的交点,则∠OPC=______________.

03.如图,∠O=140°,∠P=100°,BP、CP分别平分∠ABO、∠ACO,则∠A=______________.

【例6】如图,已知∠B=35°,∠C=47°,AD⊥BC,AE平分∠BAC,则∠EAD=______________.

书山寻宝

3

学海泛舟

耿老师教研工作室-----您值得信赖的专业化个性化学习方案 A

BED(例6题图)C

A【变式题组】

DF01.(改)如图,已知∠B=39°,∠C=61°,BD⊥AC,AE平分

∠BAC,则∠BFE=__________. CBE(说明:原题题、图不符.由已知得∠A=98°, BD⊥AC,则点D

(第1题图)在CA的延长线上.)

A02.如图,在△ABC中,∠ACB=40°,AD平分∠BAC,∠ACB的

外角平分线交AD的延长线于点P,点F是BC上一动点(F、D不重合) ,过点F作EF⊥BC交于点E,下列结论:①∠P+∠DEF

FC为定值,②∠P-∠DEF为定值中,有且只有一个答案正确,BD请你作出判断,并说明理由.

GE

P

(第2题图)

【例7】如图,在平面内将△ABC绕点A逆时针旋转至

B'△AB′C′,使CC′∥AB,若∠BAC=70°,则旋转角α=

CC'______________.

AB

【变式题组】

01如图,用等腰直角三角形板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线后绕

点M逆时针方向旋转22°,则三角板的斜边与射线OA的直角α=______________.

ABEDααA'B'22°OMB(第1题图)AO(第2题图)AB(第3题图)C

书山寻宝

4

学海泛舟

耿老师教研工作室-----您值得信赖的专业化个性化学习方案

02.如图,在平面内将△AOB绕点O顺时针旋转α角度得到△OA′B′,若点A′在AB上时,则旋转

角α=______________.(∠AOB=90°,∠B=30°)

3.如图,△ABE和△ACD是△ABC沿着AB边,AC边翻折180°形成的,若∠BAC=130°,则∠α=______________.

演练巩固·反馈提高

01.如图,图中三角形的个数为( )

A.5个 B.6个 C.7个 D.8个

02.如果三角形的三条高的交点恰是三角形的一个顶点,那么

BC这个三角形是( ) DEA.锐角三角形 B.钝角三角形 GFC.直角三角形 D.不确定

03.有4条线段,长度分别是4cm,8cm,10cm,12cm,选其中三条组成三角形,可以组成三角形

的个数是( ) A.1个 B.2个 C.3个 D.4个 04.下列语句中,正确的是( )

A.三角形的一个外角大于任何一个内角

B.三角形的一个外角等于这个三角形的两个内角的和 C.三角形的外角中,至少有两个钝角 D.三角形的外角中,至少有一个钝角

05.若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( )

A.直角三角形 B.锐角三角形 C.钝角三角形 D.无法确定 06.若一个三角形的一个外角大于与它相邻的内角,则这个三角形是( )

A.直角三角形 B.锐角三角形 C.钝角三角形 D.无法确定

07.如果等腰三角形的一边长是5cm,另一边长是9cm,则这个三角形的周长是______________. 08.三角形三条边长是三个连续的自然数,且三角形的周长不大于18,则这个三角形的三条边长

分别是______________.

09.如图,在△ABC中,∠A=42°,∠B与∠C的三等分线,分别交于点D、E,则∠BDC的度数

是______________.

AAA2ADEB(第9题图)Cαβγ(第10题图)ⅠEFⅡB

D(第11题图)CB134D(第12题图)C10.如图,光线l照射到平面镜上,然后在平面镜Ⅰ、Ⅱ之间来回反射,已知∠α=55,∠γ=75°,

∠β=______________.

11.如图,点D、E、F分别是BC、AD、BE的中点,且S△EFC=1,则S△ABC=______________. 12.如图,已知: ∠1=∠2,∠3=∠4,∠BAC=63°,则∠DAC=______________. 13.如图,已知点D、E是BC上的点,且BE=AB,CD=CA,

A书山寻宝 5

B学海泛舟 DE(第13题图)C

本文来源:https://www.bwwdw.com/article/nvst.html

Top