2019届高考数学专题十一数列求通项公式精准培优专练理

更新时间:2024-05-20 16:33:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

培优点十一 数列求通项公式

1.累加、累乘法

例1:数列?an?满足:a1?1,且an?1?an?2n?1,求an. 【答案】an?2n?n?2.

【解析】ann?1?an?2?1,a?11n?an?1?2n?1,L,a2?a1?2?1, 1累加可得:an?a1?2?22?L?2n?1??n?1??2?2n??1?2?1?n?1?2n?n?3,

?an?2n?n?2.

2.Sn与an的关系的应用

例2:在数列?a2S2nn?中,a1?1,an?2S,则?an?的通项公式为_________.n?1?1【答案】a?1?1?2n?3,n?2n??2n.

??1,n?1【解析】∵当n?2,n?N?时,an?Sn?Sn?1,

?S2S2nn?Sn?1?2S?2S2n?Sn?2SnSn?1?Sn?1?2S2n,

n?1整理可得:Sn?1?Sn?2SnSn?1,?1S?1?2, nSn?1???1??为公差为2的等差数列,?1?1??n?1??2?2n?1,?Sn?SS

n1?1?S1??1,n?2n?2n?1,an??2n?12n?3.

??1,n?1

3.构造法

例3:数列?an?中,a1?1,an?3an?1?2,求数列?an?的通项公式. 【答案】a1n?2?3n??1.

1

【解析】设an???3?an?1???即an?3an?1?2?,对比an?3an?1?2,可得??1, ?an?1?3?an?1?1?,??an?1?是公比为3的等比数列,

?an?1n?1??a1?1??3,?an?2?3n?1?1.

对点增分集训

一、单选题 1.由aan1?1,an?1?3a给出的数列?an?的第34项是( ) n?1A.

1100 B.100 C.

34 1103D.

4 【答案】A

【解析】由aan1?1,an?1?3a?1, n11则a1112?3?1?14,a3?43?1?7,a4?71?10, 4?13?7?111a5?10?1,a6?13?13?110?1133?1,L,

13?116由此可知各项分子为1,分母构成等差数列?bn?,首项b1?1,公差为d?3, ∴b34?b1??34?1?d?1?33?3?100,∴a15?100,故选A. 2.数列?a1n?满足a1?2,a?1?1n?1a,则a2018等于( )

nA.

12 B.?1

C.2

D.3

【答案】B

【解析】n?1时,a2?1?2??1,a3?1???1??2,a14?1?2?12,a5?1?2??1,∴数列的周期是3,∴a2018?a?3?372?2??a2??1.故选B.

2

3.在数列?an?中,若a1?2,且对任意正整数m、k,总有am?k?am?ak,则?an?的前n项和为Sn?( ) A.n?3n?1? B.

n?n?3??3n?1?2

C.n?n?1?

D.

n2

【答案】C

【解析】递推关系am?k?am?ak中,令k?1可得:am?1?am?a1?am?2, 即am?1?am?2恒成立,

据此可知,该数列是一个首项a1?2,公差d?2的等差数列, 其前n项和为:Sn?na1?n?n?1?2d?2n?n?n?1?2?2?n?n?1?.故选C.

4.数列?an项和为S?n?的前n,若Sn?2n?1?n?N?,则a2017的值为( )

A.2 B.3 C.2017 D.3033

【答案】A

【解析】a2017?S2017?S2016?2,故选A.

5.已知数列?an?是递增数列,且对n?N?,都有an?n2??n,则实数?的取值范围是( A.????72,?????

B.??1,??? C.??2,??? D.??3,???

【答案】D

【解析】∵?an?是递增数列,∴an?1?an,

∵a2n?n2??n恒成立,即?n?1????n?1??n2??n,

∴???2n?1对于n?N?恒成立,而?2n?1在n?1时取得最大值?3, ∴???3,故选D.

6.在数列?an?中,已知a1?2,an?2an?1a,?n?2?,则an等于( )

n?1?2A.

23n?1 B.

2n C.

n D.

3n?1 【答案】B 【解析】将等式an?2an?111a两边取倒数得到??1,1?1?1, n?1?2anan?12anan?12??1?111?a?是公差为的等差数列,n?2a?12,

3

) 111n??n?1??,故an?2.故选B. ??根据等差数列的通项公式的求法得到

an222n17.已知数列?an?的前n项和Sn,若a1?1,Sn?an?1,则a7?( )

3A.47 【答案】B

B.3?45 C.3?46 D.46?1

1111【解析】由Sn?an?1,可得Sn?1?an,n?2.两式相减可得:an?an?1?an,n?2.

3333即an?1?4an,n?2.数列?an?是从第二项起的等比数列,公比为4,

1又Sn?an?1,a1?1.∴a2?3,S1?3.∴a7?a247?2?3?45.故选B.

31???1??n?1?8.已知F?x??f?x???2是R上的奇函数,an?f?0??f???L?f???f?1?,2nn??????n?N?则数列?an?的通项公式为( )

A.an?n 【答案】B

B.an?2?n?1?

C.an?n?1 D.an?n2?2n?3

1??【解析】由题已知F?x??f?x???2是R上的奇函数,

2???1??1?故F??x???F?x?,代入得:f??x??f??x??4,?x?R?,

?2??2??1?

∴函数f?x?关于点?,2?对称,

?2?

11?x,则?x?1?t,得到f?t??f?1?t??4, 22?1??n?1?∵an?f?0??f???L?f???f?1?,an?f?1??f?n??n?令t??n?1??1??L?f?????f?0?,

?n??n?倒序相加可得2an?4?n?1?,即an?2?n?1?,故选B. 9.在数列?an?中,若a1?0,an?1?an?2n,则A.

111??L?的值( ) a2a3ann?1 nB.

n?1 nC.

n?1 n?1D.

n n?1【答案】A

【解析】由题意,数列?an?中,若a1?0,an?1?an?2n,

则an??an?an?1???an?1?an?2??L??a2?a1??a1?2??1?2?L??n?1????n?n?1?,

4

1111???∴, ann?n?1?n?1n∴

111?1??11?1?1n?1?1??L???1???????L?????1??,故选A. a2a3an?2??23?nn?n?1n?n?1?10.已知数列?an?的首项a1?1,且满足an?1?an?????n?N??,如果存在正整数n,

?2?使得?an????an?1????0成立,则实数?的取值范围是( ) ?1?2? A.?,?2??2?1? B.?,?3??1?1? C.?,?2??25?D.?,?

?36?【答案】C

【解析】由题意n?2时,

?1??1??1?an?a1??a2?a1???a3?a2??L??an?an?1??1?????????L?????2??2??2?2n?12??1???1????3???2?n????,

由?an????an?1????0,即???an????an?1??0, 2??1??a?a???aa???a∴2k?1????2k?1且2k2k?1,k?N,2k3???2?2k?2?1????1?2k?, ??3?2?2k?12?3?12??1??2?1?其中最小项为a2??1???,a2k?1??1???????1?2k?1?,

3?4?23???2???3?2?其中最大项为a1?1,因此

1???1.故选C. 2n*11.已知数列?an?满足a1?1,an?1?an?2n?N,Sn是数列?an?的前n项和,则( )

??A.a2018?22018

B.S2018?3?21009?3 D.数列?an?是等比数列

C.数列?a2n?1?是等差数列 【答案】B

n*【解析】数列数列?an?满足a1?1,an?1?an?2n?N,

??当n?2时,an?an?1?2n?1an?1?2, 两式作商可得:an?1∴数列?an?的奇数项a1,a3,a5,L,成等比,偶数项a2,a4,a6,L,成等比,

5

本文来源:https://www.bwwdw.com/article/nvh7.html

Top