概率论与数理统计8习题八参考答案

更新时间:2024-04-29 14:06:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

概率统计——习题八参考答案

8.1 设t(单位:公斤)表示进货数,t?[t1,t2],进货t所获利润记为Y,则有:

?aX?(t?X)b,t1?X?t Y??at,t?X?t2??1,t1?x?t2?又X的密度函数为 f(x)??t2?t1

?其它?0,a?b2a?b2t2t[?t?(bt1?at2)t?t1]1122所以 E(Y)??[ax?(t?x)b] dx??atdx?t?tt2?t1t2?t121tt1at?bt1dE(Y)[?(a?b)t?bt1?at2]令 。 ??0,得驻点t?2dta?bt2?t1at?bt1所以该店应该进2公斤商品,才可使利润的数学期望最大。

a?bn1,第i只球与盒配对,?8.2 设Xi?? i?1,2,?,n 则X??Xi. 0,否则,?i?1n1 ?E(Xi)?P{Xi?1}?,?E(X)??E(Xi)?1.

ni?18.3 E(X)? ?E(X)?E[X(X?1)?X]?E[X(X?1)]?E(X)

??1?p1?p k2??k(k?1)p(1?p)??p(1?p)?k(k?1)(1?p)k?2?ppk?0k?221?p1?p(1?p)(2?p) ?p(1?p)2??[2(1?p)?p]?, 322p[1?(1?p)]ppk?02?kp(1?p)?p(1?p)?k(1?p)k?1?p(1?p)?kk?1??11?p?, 2p[1?(1?p)](1?p)(2?p)?1?p?1?p????. ?D(X)?E(X2)?[E(X)]2???22ppp??21?x??1?x??1?tdx??(x??)edx????tedt???? 8.4 E(X)??xf(x)dx??xe222????????1?x??1?yD(X)??[x?E(X)]2f(x)dx??(x??)2edx??y2edy?22??????????????2?yy?edy?2 0????????8.5 用切比雪夫不等式即得

1D(X)?P{|X|?2}?P{|X?E(X)|?2}?1?2, 221故 D(X)?4(1?)?2.

28.6 (1)?XY?1; (2)D(X?Y)?0.73;

(3)X与Y相互独立?F(x,y)?FX(x)FY(y);X与Y不相关??XY?0;

事件A与B互不相容?A?B??; 事件A与B互为对立事件?A?B??且A?B??或B?A;事件A与B相互独立?P(AB)?P(A)P(B)。

1178.7 E(X)???xf(x,y)dxdy??dy?x(x?y)dx?;

?0086????117 E(Y)???yf(x,y)dxdy??dx?y(x?y)dy?;

?0086????114 ?E(XY)???xyf(x,y)dxdy??ydy?x(x?y)dx?;

?083????04771?()()??; 36636??22115xf(x,y)dxdy?dyx2(x?y)dx??E(Y2), ?E(X2)??0083???? ?cov(X,Y)???22??22??22????572111111?()??D(Y), ??XY????; 36363636111115 D(X?Y)?D(X)?D(Y)?2cov(X,Y)?2()?2(?)?.

36369XYXYE(X)E(Y)1?? 8.8(1)E(Z)?E(?)?E()?E()?3232323D(X)D(Y)11XYXYXY??2??covX(,Y) D(Z)?D(?)?D()?D()?2cov(,)?323232323222111?1?4??XYD(X)D(Y)?5???3?4?3

332XY11 (2)cov(X,Z)?cov(X,?)?cov(X,X)?cov(X,Z)

3232D(X)1???XYD(X)D(Y)?0

32 ??XZ?0 D(X)? (3)因Z不一定服从正态分布,(X,Z)更不一定服从正态分布,故尽管X与Z不相关,X与Z仍不一定相互独立。

8.9由题设可知(如图所示):

111P{X?Y}?,P{X?Y}?,P{Y?X?2Y}?

424 (1)(U,V)所有可能取值为:(0,0),(0,1),(1,0),(1,1)。且

1 P{U?0,V?0}?P{X?Y,X?2Y}?P{X?Y}?

4 P{U?0,V?1}?P{X?Y,X?2Y}?0

1 P{U?1,V?0}?P{X?Y,X?2Y}?P{Y?X?2Y}?

4111 P{U?1,V?1}?1?(?)?

442 (2)由(1)的结构易知UV、U和V的分布律分别为:

?0UV~?1??21??0?1;U~?1??2??41??0?3;V~?1??4??21?1? ?2?31311于是有 E(U)?,D(U)?,E(V)?,D(V)?,E(UV)?,

4216241cov(U,V)1cov(U,V)?E(UV)?E(U)E(V)?,??? ?8D(U)D(V)3

本文来源:https://www.bwwdw.com/article/ntsg.html

Top