毕业论文《光电传感器技术的新发展及应用》

更新时间:2024-05-05 15:39:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

摘要

摘要

在科学技术高速发展的现代社会中,人类已经入瞬息万变的信息时代,人们在日常生活,生产过程中,主要依靠检测技术对信息经获取、筛选和传输,来实现制动控制,自动调节,目前我国已将检测技术列入优先发展的科学技术之一。 由于微电子技术,光电半导体技术,光导纤维技术以及光栅技术的发展,使得光电传感器的应用与日俱增。这种传感器具有结构简单、非接触、高可靠性、高精度、可测参数多、反应快以及结构简单,形式灵活多样等优点,在自动检测技术中得到了广泛应用,它一种是以光电效应为理论基础,由光电材料构成的器件。它可用于检测直接引起光量变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其他非电量,如零件直径、表面粗糙度、应变、位移、振动、速度、加速度,以及物体的形状、工作状态的识别等。光电式传感器具有非接触、响应快、性能可靠等特点,因此在工业自动化装置和机器人中获得广泛应用。

关键字: 光电元件 传感器分类 传感器应用

摘要

ABSTRACT

The photoelectric transducer adopts the photoelectric component as the transducer measuring the component. It changes the change measured into a change of the optical signal at first, then further change the optical signal into an electric signal through the photoelectric component. The photoelectric transducer is generally made up of light source, optical thorough fare and photoelectric component three parts. The photoelectric detection method has precision high, reacts fast, advantage of exposed to ing etc.s, and can examine the parameter more, the transducer is of simple structure, the form is flexible, so, it is very extensive that the photoelectricity type transducer is employed in measuring and controlling. The photoelectric transducer realizes the key component that the photoelectricity changes in various photoelectric detection systems, it change into electric device of signal optical signal (infrared can seeing and purple other ray radiation). The photoelectricity type transducer is regarded photoelectric device as and changed the transducer of the component. It was not electric consumption that it caused the light quantity to change directly that it can be used for measuring, only strong, illuminance, radiation examine warmly, the gas composition is analyzed etc.; Other ones that can also be used and measured and can change into a light quantity and change are not the electric consumption such as part diameter, surface roughness, meets an emergency, the displacement, vibration, pace, acceleration, and the form of object, discernment of working state,etc.. The photoelectricity type transducer is not exposed to, respond the fast, reliable characteristic of performance, so won extensive application in the industrial automation device and machine philtrum. In recent years, new Devices photoelectric constantly emerge, especially CCD picture the births of transducer, transducers photoelectric the further to last chapter innovated to turn on.

Keywords: Photoelectric component Transducer classification

Application of transducer

目录 i

目录

第一章 绪论........................................................1

1.1 传感器发展史..................................................1

1.2光电传感概述...................................................2 第二章 光电传感器基本原理..........................................3

2.1 光电效应.....................................................3

2.2 光电元件及特性...............................................3 2.3 光电传感器...................................................6 第三章 CCD传感器..................................................11

3.1 光固态图象传感器............................................11

3.1.1 CCD的结构和基本原理.....................................11 3.1.2 线型CCD图像传感器.......................................12

3.1.3 面型CCD图像传感器.......................................13 3.2 CCD图像传感器应用...........................................15

3.2.1 工件尺寸检测............................................15 3.2.2 CCD传感器在公共交通上的应用.............................16 第四章 光纤传感器..................................................17

4.1 光纤传感器的原理和组成......................................17

4.2 光纤传感器的类型及特点......................................17 4.3 光纤传感器的应用领域........................................18 4.4 光纤传感器(FOS)应用原理...................................20 4.5 光纤传感器的实际应用........................................21

4.5.1 光纤液位传感器..........................................22 4.5.2 电力工业中的应用........................................22 第五章 其它光电传感器.............................................25 5.1 高速光电二极管..............................................25

5.1.1 PIN结光电二极管.........................................25 5.1.2 雪崩光电二极管(APD) .....................................26 5.2 色敏光电传感器..............................................26

目录

5.3 光位置传感器................................................27 第六章 总结与展望.................................................29 6.1 总结........................................................29 6.2 展望........................................................30 致谢...............................................................31 参考文献...........................................................33

第一章 绪论 1

第一章 绪论

1.1 传感器发展史

传感技术的发展经历了三个阶段,即结构型传感器、物性型传感器和智能型传感器,其测量技术、方法和特点的发展历程见表1。

表1 传感器的发展阶段

80年代~至 40~50年代 60年代 70年代 今 振动、位移等机械运重力、位移、尺温度、压力、流寸、速度、加速测量变量 量、物位、电压、度、湿度、气候、缘等;产品在线检测电流、功率 离子等 如表面质量、形状等; 测量技术与模拟、数字混合测量测量技术 模拟测量法 数字测量法 法 术相结合 多层扫描、数据处理、测量方法 单参数测量 复参数扫描测量 图形测量(二维) 物体识别(三维) 测量特点 静态或工作参数 动态、不接触式、质量指标 物性型传感器、物性型传感器传感器特点 结构型传感器 (直接变换) (带微处理器) 智能型传感器信息处理技感觉 态如过热、泄漏、绝指人的五官转状态;设备异常状五官感觉—

1、结构型传感器 以其结构部分变化或结构部分变化后而引起某种场的变化来反映被测量的大小及变化。

第一章 绪论 2

2、物性型传感器 利用构成传感器的某些材料本身的物理特性在被测量的作用下发生变化,从而将被测量转换为电信号或其他信号输出。

3、智能型传感器 把传感器与微处理器有机地结合成一个高度集成化的新型传感器。它与结构型、物性型传感器相比,能瞬时获取大量信息,对所获得的信息还具有信号处理的功能,使信息的质量大大提高,其功能也扩展了。以网络化智能传感器为例,它以嵌入式微处理器为核心,集成了传感单元、信号处理单元和网络接口单元,使传感器由单一功能、单一检测向多功能和多点检测发展;从被动检测向主动进行信息处理方向发展;从孤立元件向系统化、网络化发展;从就地测量向远距离实时在线测控发展,已成为传感器技术发展的主要方向之一。而光电传感器作为新型传感器更是得到了广阔应用。

1.2 光电传感器概述

光电传感器是采用光电元件作为检测元件的传感器。它首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号。光电传感器一般由光源、光学通路和光电元件三部分组成。光电检测方法具有精度高、反应快、非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测和控制中应用非常广泛。光电传感器是各种光电检测系统中实现光电转换的关键元件,它是把光信号(红外、可见及紫外光辐射)转变成为电信号的器件。

光电式传感器是以光电器件作为转换元件的传感器。它可用于检测直接引起光量变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其他非电量,如零件直径、表面粗糙度、应变、位移、振动、速度、加速度,以及物体的形状、工作状态的识别等。光电式传感器具有非接触、响应快、性能可靠等特点,因此在工业自动化装置和机器人中获得广泛应用。近年来,新的光电器件不断涌现,特别是CCD图像传感器等的诞生,为光电传感器的进一步应用开创了新的一页。

第二章 光电传感器基本原理 3

第二章 光电传感器基本原理

2.1 光电效应

光电效应一般有外光电效应、光导效应、光生伏特效应。

光照在照在光电材料上,材料表面的电子吸收的能量,若电子吸收的能量足够大是,电子会克服束缚脱离材料表面而进入外界空间,从而改变光电子材料的导电性,这种现象成为外光电效应

根据爱因斯坦的光电子效应,光子是运动着的粒子流,每种光子的能量为hv(v为光波频率,h为普朗克常数,h=6.63*10-34 J/HZ),由此可见不同频率的光子具有不同的能量,光波频率越高,光子能量越大。假设光子的全部能量交给光子,电子能量将会增加,增加的能量一部分用于克服正离子的束缚,另一部分转换成电子能量。根据能量守恒定律:

12m?2?h?-A式中,m为电子质量,v为电子逸出的初速度,A微电子所做的功。

由上式可知,要使光电子逸出阴极表面的必要条件是h>A。由于不同材料具有不同的逸出功,因此对每一种阴极材料,入射光都有一个确定的频率限,当入射光的频率低于此频率限时,不论光强多大,都不会产生光电子发射,此频率限

??称为“红限”。相应的波长为 式中,c为光速,A为逸出功。 AKhc 当受到光照射时,吸收电子能量,其电阻率降低的导电现象称为光导效应。它属于内光电效应。当光照在半导体上是,若电子的能量大与半导体禁带的能级宽度,则电子从价带跃迁到导带,形成电子,同时,价带留下相应的空穴。电子、空穴仍留在半导体内,并参与导电在外电场作用下形成的电流。

除金属外,多数绝缘体和半导体都有光电效应,半导体尤为显著,根据光导效应制造的光电元件有固有入射光频率,当光照在光电阻上,其导电性增强,电阻值下降。光强度愈强,其阻值愈小,若停止光照,其阻值恢复到原阻值。

半导体受光照射产生电动势的现象称为光生伏特效应,据此效应制造的光电器件有光电池,光电二极管,管控晶闸管和光耦合器等。

第二章 光电传感器基本原理 4

2.2 光电元件及特性

根据外光电元件制造的光电元件有光电子,充气光电管和光电倍曾管。 1.光电管 光电管的种类繁多,典型的产品有真空光电管和充气光电管,光电管它的外形和结构如图1所示,半圆筒形金属片制成的阴极K和位于阴极轴心的金属丝制成的阳极A封装在抽成真空的玻壳内,当入射光照射在阴极上时,单个光子就把它的全部能量传递给阴极材料中的一个自由电子,从而使自由电子的能量增加h。当电子获得的能量大于阴极材料的逸出功A时,它就可以克服金属表面束缚而逸出,形成电子发射。这种电子称为光电子,光电子逸出金属表面后的初始动能为

(12)mv2

光电管正常工作时,阳极电位高于阴极,如图2所示。在人射光频率大于“红限”的前提下,从阴极表面逸出的光电子被具有正电位的阳极所吸引,在光电管内形成空间电子流,称为光电流。此时若光强增大,轰击阴极的光子数增多,单位时间内发射的光电子数也就增多,光电流变大。在图2所示的电路中,电流和电阻只上的电压降就和光强成函数关系,从而实现光电转换。当光线照射到光电阴极K上时,电子从阴极表面逸出,并被光电阳极的正电厂吸收,外电路产生电流I,在负载电阻 R上的电压U

L0光电管的光电特性如图3 所示,从图中可知,在光通量不太大时,光电特性基本是一条直线。

图1光电管结构示意图 图2光电管测量电路

图3光电管的光电特性

2.光电倍曾管 由于真空光电管的灵敏度低,因此人们研制了具有放大光电流能力的光电倍增管。图4是光电倍增管结构示意图。

第二章 光电传感器基本原理 5

结图构示意光图电倍增 从图中可以看到光电倍增管也有一个阴极K和一个阳极A,与光电管不同的是在它的阴极和阳极间设置了若干个二次发射电极,D1、D2、D3?它们称为第一倍增电极、第二倍增电极、?,倍增电极通常为10~15级。光电倍增管工作时,相邻电极之间保持一定电位差,其中阴极电位最低,各倍增电极电位逐级升高,阳极电位最高。当入射光照射阴极K时,从阴极逸出的光电子被第一倍增电极D1加速,以高速轰击D1 ,引起二次电子发射,一个入射的光电子可以产生多个二次电子, D1发射出的二次电子又被D1、D2问的电场加速,射向D2并再次产生二次电子发射??,这样逐级产生的二次电子发射,使电子数量迅速增加,这 些电子最后到达阳极,形成较大的阳极电流。若倍增电极有n级,各级的倍增率为σ ,则光电倍增管的倍增率可以认为是σN ,因此,光电倍增管有极高的灵敏度。在输出电流小于1mA的情况下,它的光电特性在很宽的范围内具有良好的线性关系。光电倍增管的这个特点,使它多用于微光测量。

3、光敏电阻 光敏电阻的工作原理是基于内光电效应。在半导体光敏材料的两端装上电极引线,将其封在带有透明窗的管壳里就构成了光敏电阻。光敏电阻的特性和参数如下:

1)暗电阻 光敏电阻置于室温、全暗条件下的稳定电阻值称为暗电阻,此时流过电阻的电流称为暗电流。

2)亮电阻 光敏电阻置于室温和一定光照条件下测得稳定电阻值称为亮电阻,此时流过电阻的电流称为亮电流。

4、伏安特性 光敏电阻两端所加的电压和流过光敏电阻的电流间的关系称为伏安特性,如图5所示。从图中可知,伏安特性近似直线,但使用时应限制光敏电阻两端的电压,以免超过虚线所示的功耗区。

4第二章 光电传感器基本原理 6

图5光敏电阻的伏安特性

5、光电特性 光敏电阻两极间电压固定不变时,光照度与亮电流间的关系称为光电特性。光敏电阻的光电特性呈非线性,这是光敏电阻的主要缺点之一。

6、光谱特性 入射光波长不同时,光敏电阻的灵敏度也不同。入射光波长与光敏器件相对灵敏度间的关系称为光谱特性。使用时可根据被测光的波长范围,选择不同材料的光敏电阻。

7、响应时间 光敏电阻受光照后,光电流需要经过一段时间(上升时间)才能达到其稳定值。同样,在停止光照后,光电流也需要经过一段时间(下降时间)才能恢复到其暗电流值,这就是光敏电阻的时延特性。光敏电阻上升响应时间和下降响应时间约为10-1~10-3s,即频率响应为10Hz~1000Hz,可见光敏电阻不能用在要求快速响应的场合,这是光敏电阻的一个主要缺点。

8、温度特性 光敏电阻受温度影响甚大,温度上升,暗电流增大,灵敏度下降,这也是光敏电阻的另一缺点。

9、频率特性 频率特性是指外加电压和入射光强一定是,光电流I与入射光的调制频率f之间的关系,I??(f),光电二极管的频率特性较光电三极管的频率特性好,这是由于光电三极管的基射结存在电容和载流子基区需要时间的缘故。利用内光电效率原理制造的光电元件的频率特性最差,这是由于俘获载流子和释放电荷都需要一定时间的缘故。

2.3 光电传感器

光电传感器是通过把光强度的变化转换成电信号的变化来实现控制的,它的基本结构如图6,它首先把被测量的变化转换成光信号的变化,然后借助光电元件

第二章 光电传感器基本原理 7

进一步将光信号转换成电信号.光电传感器一般由光源,光学通路和光电元件三部分组成.光电检测方法具有精度高,反应快,非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测和控制中应用非常广泛.

光电传感器一般由三部分构成,它们分为:发送器、接收器和检测电路,如图7所示,发送器对准目标发射光束,发射的光束一般来源于半导体光源,发光二极管(LED)、激光二极管及红外发射二极管。光束不间断地发射,或者改变脉冲宽度。接收器有光电二极管、光电三极管、光电池组成。在接收器的前面,装有光学元件如透镜和光圈等。在其后面是检测电路,它能滤出有效信号和应用该信号。此外,光电开关的结构元件中还有发射板和光导纤维,三角反射板是结构牢固的发射装置。它由很小的三角锥体反射材料组成,能够使光束准确地从反射板中返回,具有实用意义。它可以在与光轴0到25的范围改变发射角,使光束几乎是从一根发射线,经过反射后,还是从这根反射线返回。

图7

光电传感器是一种依靠被测物与光电元件和光源之间的关系,来达到测量目的的,因此光电传感器的光源扮演着很重要的角色,光电传感器的电源要是一个恒光源,电源稳定性的设计至关重要,电源的稳定性直接影响到测量的准确性,

第二章 光电传感器基本原理 8

常用光源有以下几种:

1、发光二极管 是一种把电能转变成光能的半导体器件。它具有体积小、功耗低、寿命长、响应快、机械强度高等优点,并能和集成电路相匹配。因此,广泛地用于计算机、仪器仪表和自动控制设备中。

2、丝灯泡 这是一种最常用的光源,它具有丰富的红外线。如果选用的光电元件对红外光敏感,构成传感器时可加滤色片将钨丝灯泡的可见光滤除,而仅用它的红外线做光源,这样,可有效防止其他光线的干扰。

3、激光 激光与普通光线相比具有能量高度集中,方向性好,频率单纯、相干性好等优点,是很理想的光源。

由光源、光学通路和光电器件组成的光电传感器在用于光电检测时,还必须配备适当的测量电路。测量电路能够把光电效应造成的光电元件电性能的变化转换成所需要的电压或电流。不同的光电元件,所要求的测量电路也不相同。下面介绍几种半导体光电元件常用的测量电路。

半导体光敏电阻可以通过较大的电流,所以在一般情况下,无需配备放大器。在要求较大的输出功率时,可用图8所示的电路。

图9(a)给出带有温度补偿的光敏二极管桥式测量电路。当入射光强度缓慢变化时,光敏二极管的反向电阻也是缓慢变化的,温度的变化将造成电桥输出电压的漂移,必须进行补偿。图中一个光敏二极管做为检测元件,另一个装在暗盒里,置于相邻桥臂中,温度的变化对两只光敏二极管的影响相同,因此,可消除桥路输出随温度的漂移。

光敏三极管在低照度入射光下工作时,或者希望得到较大的输出功率时,也可以配以放大电路,如图9所示。

第二章 光电传感器基本原理 9

由于光敏电池即使在强光照射下,最大输出电压也仅0.6V,还不能使下一级晶体管有较大的电流输出,故必须加正向偏压,如图9(a)所示。为了减小晶体管基极电路阻抗变化,尽量降低光电池在无光照时承受的反向偏压,可在光电池两端并联一个电阻。或者象图9(b)所示的那样利用锗二极管产生的正向压降和光电池受到光照时产生的电压叠加,使硅管e、b极间电压大于0.7V,而导通工作。这种情况下也可以使用硅光电池组,如图10(c)所示。

半导体光电元件的光电转换电路也可以使用集成运算放大器。硅光敏二极管通过集成运放可得到较大输出幅度,如图11(a)所示。当光照产生的光电流为时,输出电压为了保证光敏二极管处于反向偏置,在它的正极要加一个负电压。图11(b)给出硅光电池的光电转换电路,由于光电池的短路电流和光照成线性

第二章 光电传感器基本原理 10

关系,因此将它接在运放的正、反相输入端之间,利用这两端电位差接近于零的 特点,可以得到较好的效果。在图中所示条件下,输出电压

由光通量对光电元件的作用原理不同所制成的光学测控系统是多种多样的,按光电元件(光学测控系统)输出量性质可分二类,即模拟式光电传感器和脉冲(开关)式光电传感器.模拟式光电传感器是将被测量转换成连续变化的光电流,它与被测量间呈单值关系.模拟式光电传感器按被测量(检测目标物体)方法可分为透射(吸收)式,漫反射式,遮光式(光束阻档)三大类.所谓透射式是指被测物体放在光路中,恒光源发出的光能量穿过被测物,部份被吸收后,透射光投射到光电元件上,如测液体、气体透明度和混浊度的光电比色计等;所谓漫反射式是指恒光源发出的光投射到被测物上,再从被测物体表面反射后投射到光电元件上,如光电比色温度计和光照度计等;所谓遮光式是指当光源发出的光通量经被测物光遮其中一部份,使投射刭光电元件上的光通量改变,改变的程度与被测物体在光路位置有关,如振动测量、工件尺寸测量;而在脉冲式光电传感器中在这种传感器中,光电元件接受的光信号是断续变化的,因此光电元件处于开关工作状态,它输出的光电流通常是只有两种稳定状态的脉冲形式的信号,多用于光电计数和光电式转速测量等场合。

第三章 CCD传感器 11

第三章 CCD传感器

3.1 光固态图象传感器

光固态图象传感器由光敏元件阵列和电荷转移器件集合而成。它的核心是电荷转移器件CTD(Charge Transfer Device),最常用的是电荷耦合器件CCD(Charge Coupled Device)。CCD自1970年问世以后,由于它的低噪声等特点,CCD图象传感器广泛的被应用在微光电视摄像、信息存储和信息处理等方面,尤其适用以上领域中的图像识别技术。

3.1.1 CCD的结构和基本原理

图12 CCD的MOS结构

CCD是由若干个电荷耦合单元组成,该单元的结构如图12所示。CCD的最小单元是在P型(或N型)硅衬底上生长一层厚度约为120nm的SiO2,再在SiO2层上依次沉积铝电极而构成MOS的电容式转移器。将MOS阵列加上输入、输出端,便构成了CCD。

当向SiO2表面的电极加正偏压时,P型硅衬底中形成耗尽区(势阱),耗尽区的深度随正偏压升高而加大。其中的少数载流子(电子)被吸收到最高正偏压电极下的区域内(如图中Ф1极下),形成电荷包(势阱)。对于N型硅衬底的CCD器件,电极加正偏压时,少数载流子为空穴。

如何实现电荷定向转移呢?电荷转移的控制方法,非常类似于步进电极的步进控制方式。也有二相、三相等控制方式之分。下面以三相控制方式为例说明控制电荷定向转移的过程。见图13(a)

第三章 CCD传感器 12

图13 电荷转移过程

三相控制是在线阵列的每一个像素上有三个金属电极P1,P2,P3,依次在其上施加三个相位不同的控制脉冲Φ1,Φ2,Φ3,见图13(b)。CCD电荷的注入通常有光注入、电注入和热注入等方式。图13(b)采用电注入方式。当P1极施加高电压时,在P1下方产生电荷包(t=t0);当P2极加上同样的电压时,由于两电势下面势阱间的耦合,原来在P1下的电荷将在P1、P2两电极下分布(t=t1);当P1回到低电位时,电荷包全部流入P2下的势阱中(t=t2)。然后,p3的电位升高,P2回到低电位,电荷包从P2下转到P3下的势阱(t=t3),以此控制,使P1下的电荷转移到P3下。随着控制脉冲的分配,少数载流子便从CCD的一端转移到最终端。终端的输出二极管搜集了少数载流子,送入放大器处理,便实现电荷移动。

3.1.2.线型CCD图像传感器

线型CCD图像传感器由一列光敏元件与一列CCD并行且对应的构成一个主体,在它们之间设有一个转移控制栅,如图14(a)所示。在每一个光敏元件上都有一个梳状公共电极,由一个P型沟阻使其在电气上隔开。当入射光照射在光敏元件阵列上,梳状电极施加高电压时,光敏元件聚集光电荷,进行光积分,光电荷与光照强度和光积分时间成正比。在光积分时间结束时,转移栅上的电压提高(平时低电压),与CCD对应的电极也同时处于高电压状态。然后,降低梳状电极电压,各光敏元件中所积累的光电电荷并行地转移到移位寄存器中。当转移完毕,转移栅电压降低,梳妆电极电压回复原来的高电压状态,准备下一次光积分周期。同时,在电荷耦合

第三章 CCD传感器 13

移位寄存器上加上时钟脉冲,将存储的电荷从CCD中转移,由输出端输出。这个过程重复地进行就得到相继的行输出,从而读出电荷图形。

目前,实用的线型CCD图像传感器为双行结构,如图14(b)所示。单、双数光敏元件中的信号电荷分别转移到上、下方的移位寄存器中,然后,在控制脉冲的作用下,自左向右移动,在输出端交替合并输出,这样就形成了原来光敏信号电荷的顺序。

图14 线性CCD图像传感器

3.1.3.面型CCD图像传感器

面型CCD图像传感器由感光区、信号存储区和输出转移部分组成。目前存在三种典型结构形式,如图15所示。

图(a)所示结构由行扫描电路、垂直输出寄存器、感光区和输出二极管组成。行扫描电路将光敏元件内的信息转移到水平(行)方向上,由垂直方向的寄存器将信息转移到输出二极管,输出信号由信号处理电路转换为视频图像信号。这种结构易于引起图像模糊。

第三章 CCD传感器 14

图15 面型CCD图像传感器结构

(a) 线转移型; (b) 帧转移型; (c) 隔离转移型

线转移面型CCD的结构:由行扫描发生器、感光区和输出寄存器等组成。 行扫描发生器将光敏元件内的信息转移到水平(行)方向上,驱动脉冲将信号电荷一位位地按箭头方向转移,并移入输出寄存器, 输出寄存器亦在驱动脉冲的作用下使信号电荷经输出端输出。

特点:有效光敏面积大,转移速度快,转移效率高等,但电路比较复杂, 易引起图像模糊。

图(b)是帧转移面型CCD的结构:由光敏元面阵(感光区)、存储器面阵和输出移位寄存器三部分构成。

图像成像到光敏元面阵,当光敏元的某一相电极加有适当的偏压时,光生电荷将收集到这些光敏元的势阱里,光学图像变成电荷包图像。 当光积分周期结束时,信号电荷迅速转移到存储器面阵, 经输出端输出一帧信息。当整帧视频信号自存储器面阵移出后,就开始下一帧信号的形成。

特点:是结构简单,光敏单元密度高, 但增加了存储区。

图(c)是隔离转移面型CCD的结构:将光敏单元与垂直转移寄存器交替排列。 在光积分期间,光生电荷存储在感光区光敏单元的势阱里;当光积分时间结束,转移栅的电位由低变高, 信号电荷进入垂直转移寄存器中。随后,一次一行地移动到输出移位寄存器中,然后移位到输出器件,在输出端得到与光学图像对

第三章 CCD传感器 15

应的一行行视频信号。

特点:感光单元面积减小, 图像清晰, 但单元设计复杂。

3.2 CCD图像传感器应用

3.2.1 工件尺寸检测

CCD图像传感器在许多领域内获得了广泛的应用。前面介绍的电荷耦合器件(CCD)具有将光像转换为电荷分布,以及电荷的存储和转移等功能,所以它是构成CCD固态图像传感器的主要光敏器件,取代了摄像装置中的光学扫描系统或电子束扫描系统。

CCD图像传感器具有高分辨率和高灵敏度,具有较宽的动态范围,这些特点决定了它可以广泛应用于自动控制和自动测量,尤其适用于图像识别技术。CCD图像传感器在检测物体的位置、工件尺寸的精确测量及工件缺陷的检测方面有独到之处。下面是一个利用CCD图像传感器进行工件尺寸检测的例子。

应用线型CCD图像传感器测量物体尺寸系统。物体成像聚焦在图像传感器的光敏面上,视频处理器对输出的视频信号进行存储和数据处理, 整个过程由微机控制完成。根据光学几何原理,可以推导被测物体尺寸的计算公式,

D?npM式中: n——覆盖的光敏像素数; p——像素间距; M——倍率。 微机可对多次测量求平均值,精确得到被测物体的尺寸。 任何能够用光学成像的零件都可以用这种方法,实现不接触的在线自动检测的目的。

图16 CCD图像传感器工件尺寸检测系统

第三章 CCD传感器 16

3.2.2 CCD传感器在公共交通上的应用

目前,在公共交通中方面大量采用CCD传感器,对马路进行监测,对违章车辆进行拍照处理。一般车辆在被拍照后会传至指挥中心。指挥中心收到图片,会将车牌号信息与车管所信息相比对,从而调出车辆的综合信息,如车主、车型、颜色等,然后由信息处理人员录入北京市公安交通管理局网站, 以使违章车主能够进行查询。这样的麻烦事增加了管理人员的工作量。采用先进的CCD传感器对拍到的图片进行智能处理,通过某种算法,使CCD传感器能够智能的识别车牌号码,这样将大大减少管理人员的工作量。

这里一种方法是直接利用传感器后续处理的算法,建立一个数字、字符的像素字符库,把拍摄到的图像与该字符库中的图片进行对比,通过某种算法来确定具体的车牌号。

另一种方法则是更改硬件的方法,对车牌号的数字进行特殊处理,比如不同数字运用不同颜色,这样CCD拍摄到的图像信息的灰度的值将会有一定的差异,通过这个差异来确定具体的号码。还有就是利用其他设备辅助CCD,在不同数字符号上加入特殊的化学元素,利用红外来感应这些元素,以确定车牌号码。

第四章 光纤传感器 17

第四章 光纤传感器

4.1 光纤传感器的原理和组成

光纤传感器主要由光源、光纤与探测器3部分组成,光源发出的光耦合进光纤,经光纤进入调制区,在调治区内,外界被测参数作用于进入调区内的光信号,是其光学性质如光的强度、相位、偏振态、波长等发生变化成为被调制的信号光,再经过光纤送入光探测器而获得被测参数,光纤传感器中的光纤通常由纤芯、包层、树脂涂层和塑料护套组成,纤芯和包层具有不同的折射率,树脂涂层对光纤起保护作用。光纤主要分为两类﹐一是渐变光纤﹐一是跃阶光纤。前者的折射率是渐变的﹐而后者的折射率是突变的。另外还分为单模光纤及多模光纤 近年来﹐又有新的光子晶体光纤问世。依材质:石英玻璃、多组份玻璃、氟化物、塑料、液芯。 依转输方式分:单模、多模级射、多模斜射。 依折射率分:阶跃型、渐变型光纤。依工作波长分:短波长光纤、长波长光纤、超长波长光纤。光纤是基于光的全反射原理而工作的。当入射角 在此范围内时,光在界面产生全反射,并在光纤内部一同样的角度反复逐次反射,知道传播到光纤的另一端面。如果工作需要光纤微弯曲,只要仍满足全反射定律,则光仍然可以继续前进。如果入射角

超出上述范围,则进入光纤的光线便会在截面上发生折射,并透入包层。

4.2 光纤传感器的类型及特点

1、特点:灵敏度高,耐腐蚀,电绝缘,防爆性好,抗电磁干扰,光路可挠曲,易于与电脑连接,便于遥测等;而且:结构简单,尺寸小,质量轻,频带宽,可进行温度、应变、压力等多种参数的分布式测量。因此自从光纤传感技术随着光纤通信技术的发展逐步形成之后,它就得到了深入的研究和广泛的应用,现今光纤传感器已经能够对温度、压力、温度、振动、电流、电压、磁场等物理量进行测定,其应用范围深入至国防军事、航天航空、土木工程、电力、能源、环保 医学等,发展空间相当广阔!

2、分类:

第四章 光纤传感器 18

①按光纤传感器中光纤的作用可分为传感型和传光型两种类型。

传感型光纤传感器又称为功能型光纤传感器,主要使用单模光纤,光纤不仅起传光作用,同时又是敏感元件,它利用光纤本身的传输特性经被测物理量作用而发生变化的特点,使光波传导的属性(振幅、相位、频率、偏振)被调制。因此,这一类光纤传感器又分 为光强调制型,偏振态调制型和波长调制型等几种。对于传感型光纤传感器,由于光纤本身是敏感元件,因此加长光纤的长度可以得到很高的灵敏度。

传光型光纤传感器又称非功能型光纤传感器,它是将经过被测对象所调制的光信号输入光纤后,通过在输出段进行光信号处理而进行测量的。在这类传感器中,光纤仅作为传光元件,必须附加能够对光纤所传递的光进行调治的敏感元件才能组成传感元件

②光纤传感器根据其测量范围还可分为点式光纤传感器,分布式光纤传感器。 单点光纤传感器,只能对某一点做连续测量,分布式光纤传感器是理想的结构应变分布的监测器 ,它能在对结构无损伤的情况下 ,利用光导纤维具有的传感运输双重特性,迅速实现对待测场沿光纤分布的多点甚至连续点测量,以达到取代多台独立点传感器的目的。分布式光纤系统的基本原理为:光源发出脉冲光经分光束进入光纤,光纤中的背向散射光经分光束耦合进入调制器,调制器把待测对广播参数的调制变成功率的变化并进入光点检测器。根据背向散射光的功率及其相对于注入光脉冲的时延可以得出测场沿光纤的分布。

4.3 光纤传感器的应用领域

1、在航天器及船舶中的应用

先进的复合材料抗疲劳、抗腐蚀性能较好,而且可以减轻船体或航天器的重量,对于快速航运或飞行具有重要意义,因此复合材料越来越多地被用于制造航空航海工具(如飞机的机翼)。 为全面衡量船体的状况,需要了解其不同部位的变形力矩、剪切压力、甲板所受的抨击力,对于普通船体大约需要100个传感器,因此波长复用能力极强 的光纤光栅传感器最适合于船体检测。光纤光栅传感系统可测量船体的弯曲应力,而且可测量海浪对湿甲板的抨击力。具有干涉探测性能的16路光纤光栅复用系统 成功实现了在带宽为5kHz范围内、分辨率小于

第四章 光纤传感器 19

10nε/(Hz)1/2的动态应变测量。另外,为了监测一架飞行器的应变、温度、振动、起落驾驶状态、超声波场和加速度情况,通常需要100多个传感器,故传感器的重量要尽量轻,尺寸尽量小,因 此最灵巧的光纤光栅传感器是最好的选择。另外,实际上飞机的复合材料中存在两个方向的应变,嵌人材料中的光纤光栅传感器是实现多点多轴向应变和温度测量的理想智能元件。 2、在民用工程结构中的应用

民用工程的结构监测是光纤光栅传感器最活跃的领域。力学参量的测量对于桥梁、矿井、隧道、大坝、建筑物等的维护和状况监测是非常重要的。通过测量上述结构的应变分布,可以预知结构局部的载荷及状况。光纤光栅传感器可以贴在结构的表面或预先埋入结构中,对结构同时进行冲击检测、形状控制和振动阻尼检 测等,以监视结构的缺陷情况。另外,多个光纤光栅传感器可以串接成一个传感网络,对结构进行准分布式检测,可以用计算机对传感信号进行远程控制。 ①光纤传感器在温度测试中的应用

它是利用光在光纤中传输能够产生后向散射,在光纤中注入一定能量和宽度的激光脉冲,那么它在光纤中传输的同时不断产生后向散射光波,这些后向散射光波的状态受到所在光纤散射点的温度影响而有所改变,将散射回来的光波经波分复用、检测解调后,送入信号处理系统便可将温度信号实时显示出来,并且由光纤中光波的传输速度和背向光回波的时间对这些信息定位 ②光纤传感器在裂缝监测中的应用

当地下深部发生变形时,必将挤压砂浆体产生相应形变,导致裂缝或滑移(错动)的产生,进而引起埋入光纤的微弯,该处的微弯将破坏光波导的全反射条件,使光损耗增加,产生衰减,利用光纤监测地下深部变形,就是基于微弯衰减的传感机制。埋入洞内的光纤,全部是传感部分,受深部变形作用,光纤产生微弯或挠曲,致使光损耗增大;OTDR检测到全过程的散射光强分布。(OTDR是一种用于光纤通信故障定位的技术,现在普遍运用于分布式光纤传感器系统中) ③光纤传感器在光纤光缆中的应用

光缆通信在我国已有20多年的使用历史,这段历史也就是光通信技术的发展史和光纤光缆的发展史。光纤光缆在我国的发展可以分为这样几个阶段:对光缆可用性的探讨;取代市内局间中继线的市话电缆和PCM电缆;取代有线通信干线上的高频对称电缆和同轴电缆。这两个取代应该说是完成了;现正在取代接入网

第四章 光纤传感器 20

的主干线和配线的市话主干电缆和配线电缆,并正在进入局域网和室内综合布线系统。目前,光纤光缆已经进入了有线通信的各个领域,包括邮电通信、广播通信、电力通信和军用通信等领域。 ④光纤传感器在智能大桥中的应用

它是将传感元件、驱动元件以及信息处理控制系统集成于主体材料中 ,使制成的构件不仅具有承受载荷、传递运动的能力 ,而且具有检测多种参数 (如应力、应变、损伤、温度、压力等 )、分析、处理及控制等多种功能。它出现时间不长 ,但已成为目前国内外研究的热点。具有智能材料结构特点的智能桥梁能对 智能材料结构的动作流程图桥梁的施工质量、运营中的应力状态以及其它多种参数进行长期实时在线监测 ,并根据对大量传感信息的实时综合分析采取适当、及时的控制措施 ,因而可以极大地提高工程结构的安全性和可靠性 ,避免灾难性事故的发生。

3、在电力工业中的应用

光纤光栅传感器因不受电磁场干扰和可实现长距离低损耗传输,从而成为电力工业应用的理想选择。电线的载重量、变压器绕线的温度、大电流等都可利用光纤光栅传感器测量。 4、在医学中的应用

光纤光栅传感器还可用来测量心脏的效率。在这种方法中,医生把嵌有光纤光栅的热稀释导管插入病人心脏的右心房,并注射人一种冷溶液,可测量肺动脉血液的温度,结合脉功率就可知道心脏的血液输出量,这对于心脏监测是非常重要的。

5、在化学传感中的应用

光纤光栅传感器可用于化学传感,因为光栅的中心波长随折射率的变化而变化,而光栅间倏失波的相互作用以及环境中的化学物质的浓度变化都会引起折射率的变化。

4.4 光纤传感器(FOS)应用原理

光纤传感器一般由光源、光导纤维、光传感器元件、光调制机构和信号处理器等部分组成。其工作原理是:光源发出的光经光导纤维进入光传感元件,而在

第四章 光纤传感器 21

光传感元件中受到周围环境场的影响而发生变化的光再进入光调制机构,由其将传感元件测量检测的参数调制成幅度、相伴、偏振等信息,这一过程也称为光电转换过程,最后利用微处理器如频谱仪等等进行信号处理。其结构如17图所示:

图17 光纤传感器的结构图

被测量 光纤 电信号 信号输出 光源 传感头 光电转换 信号处理 如前所述可以看出光纤传感器的传感机理表面上与电磁类传感器有着相似的思路,只不过电磁类传感器的电线或者测量空间的信息传播载体是电磁波而光导纤维中的载体是光波,然而也正是由于光波不同于电磁波的独特性质使其具有以下几个突出的优点:①利用不导电的玻璃纤维制成,其信息传播载体是光子而不是电子,故无电磁干扰(EMI)和射频干扰(RFI)的影响,可在各种电磁场复杂的环境中不受影响的工作;②有较大的灵活性,可制成各种形状,并可用于各种危险、恶劣环境和探测微细变化;③其光信号不仅能直接感知,而且可与高度发展的电子装置相匹配,帮助其实现智能化、多功能化和远距离的实时监控。

光纤传感器有三种分类方法:

1、按光纤与光的作用机理分,可分为本征型和非本征型,前者是利用光纤直接与环境中的光相互作用来调制光信号,适用于测量转速、加速度、声源、压力和振动等;后者则是将光纤作为传送和接收光的通道,然后在光纤外部调制光信号,适用于测量纯属和角度位置、温度、液位及过程控制中的流量等。

2、按光纤内传输的模式数量分,可分为单模器件和多模器件。前者的纤芯很细,能大大降低信号的失真和损失程度;后者能传输更多的光,但由于具有多个通道,并对入射光的散射点数和存在模式色散,所以损失的信号较多,信号的失真也较严重。

3、按信号在光纤中被调制的不同方式分,还可将光纤传感器分为强度调制、相伴调制、偏振态调制、频率调制和波长调制等多种不同类型。

第四章 光纤传感器 22

4.5 光纤传感器的实际的应用

光纤传感技术是伴随着光通讯技术和半导体技术发展而衍生的一种新的传感技术,是光传感、光通讯、电子技术互相交叉、互相渗透的高科技技术,是国家“十五”重点支持发展的信息产业的重要组成部分。 4.5.1 光纤液位传感器

在我国石油化工、冶金以及国防等部门,对油品和化工产品等易燃易爆液体类物质的储存、检测和安全管理一直是个难题。长期以来,大多企业是采用人工对其进行检测和管理,劳动强度大,又有危险性,储罐爆炸事件和人员伤亡事故时有发生。光纤液位传感器某检测湘度高,使用方便、稳定可靠,特别是采用光纤光缆采集和传输信号,做到现场无电检侧,本质安全防爆,特别适于易燃易爆场所的储罐检测。即将投产的光纤液位传感器价调查和分析表明,目前全国年需求量应在1万台以上,而目前市场需求仍在快鹏长如。

4.5.2 电力工业中的应用

电力工业中的设备大多处在强电磁场中,一般电器类传感器无法使用。高压开关的在线监测,高压变压器绕组、发电机定子等地方的温度和位移等参数的实时检测都要求绝缘性能好,体积小。光纤光栅具有的抗电磁干扰和它的安全性能恰恰能满足在这种环境条件下使用。

在强电磁环境中,关键基础用电设备的安全运行是企业生产的必要保障,也是整个国民经济正常运转的基本保证。电气设备产生故障的大部分原因是设备过热引起的,主要可以分为外部热故障和内部热故障。电气设备的外部热故障主要指裸露接头由于压接不良等原因,在大电流作用下,接头温度升高,接触点氧化引起接触电阻增大,恶性循环造成隐患。此类故障占外部热故障的90%以上。统计近几年来检测到的外部热故障的几千个数据,可以发现线夹和刀闸触头的热故障占整个外部热故障的77%,它们的平均温升约在30度左右,其它外部接头的平均温升在20-25度之间。

根据对电力事故分析,电缆故障引起的火灾导致大面积电缆烧损,造成被迫停机,短时间内无法恢复生产,造成重大经济损失。通过事故的分析,引起电缆

第四章 光纤传感器 23

沟内火灾发生的直接原因是电缆中间头制作质量不良、压接头不紧、接触电阻过大,长期运行所造成的电缆头过热烧穿绝缘,最后导致电缆沟内火灾的发生。

从电缆头或变电设备的过热到事故的发生,其发展速度比较缓慢、时间较长,通过电缆/设备温度在线监测系统完全可以防止、杜绝此类事故的发生。在电力工业中,电流转换器可把电流变化转化为电压变化,电压变化可使压电陶瓷(PZT)产生形变,而利用贴于PZT上的光纤光栅的波长漂移,很容易得知其形变,进而测知电流强度。这是一种较为廉价的方法,并且不需要复杂的电隔离。另外,由大雪等对电线施加的过量的压力可能会引发危险事件,因此在线检测电线压力非常重要,特别是对于那些不易检测到的山区电线。光纤光栅传感器可测电线的载重量,其原理为把载重量的变化转化为紧贴电线的金属板所受应力的变化,这一应力变化即可被粘于金属板上的光纤光栅传感器探测到。这是利用光纤光栅传感器实现远距离恶劣环境下测量的实例,在这种情况下,相邻光栅的间距较大,故不需快速调制和解调。

第四章 光纤传感器 24

第五章 其它光电传感器 25

第五章 其它光电传感器

5.1 高速光电二极管

5.1.1 PIN结光电二极管

PIN管是光电二极管中的一种。它的结构特点是,在P型半导体和N型半导体之间夹着一层(相对)很厚的本征半导体。这样,PN结的内电场就基本上全集中于 I 层中,从而使PN结双电层的间距加宽,结电容变小。 由式τ = CjRL与 f = 1/2πτ知,Cj小,τ则小,频带将变宽。 内电场较大,电子加速运动,响应时间快。

图18 PIN管结构示意图

最大特点:频带宽,可达10GHz。另一个特点是,因为I层很厚,在反偏压下运用可承受较高的反向电压,线性输出范围宽。由耗尽层宽度与外加电压的关系可知,增加反向偏压会使耗尽层宽度增加,从而结电容要进一步减小,使频带宽度变宽。

不足:I层电阻很大,管子的输出电流小,一般多为零点几微安至数微安。目前有将PIN管与前置运算放大器集成在同一硅片上并封装于一个管壳内的商品出售。

5.1.2 雪崩光电二极管(APD)

雪崩光电二极管是利用PN结在高反向电压下产生的雪崩效应来工作的一种二极管。P区外侧增加高浓度P+层。

这种管子工作电压很高,约100~200V,接近于反向击穿电压。结区内电场极强,光生电子在这种强电场中可得到极大的加速,同时与晶格碰撞而产生电离

第五章 其它光电传感器 26

雪崩反应。因此,这种管子有很高的内增益,可达到几百。当电压等于反向击穿电压时,电流增益可达106,即产生所谓的雪崩。这种管子响应速度特别快,带宽可达100GHz,是目前响应速度最快的一种光电二极管。

缺点:噪声大。由于雪崩反应是随机的,所以它的噪声较大,特别是工作电压接近或等于反向击穿电压时,噪声可增大到放大器的噪声水平,以至无法使用。但由于APD的响应时间极短,灵敏度很高,它在光通信中应用前景广阔。

5.2 色敏光电传感器

色敏光电传感器实际上是光电传感器的一种特殊类型。它是两只结深不同的的光电二极管组合体,其结构和工作原理的等效电路如图19所示。

图19 色敏光电传感器和等效电路

双结光电二极管的P+-N结为浅结,N-P结为深结。当光照射时,P+,N,P三个区域及其间的势垒区均有光子吸收,但是吸收的效率不同。紫外光部分吸收系数大,经过很短距离就被吸收完毕;因此,浅结对紫外光有较高灵敏度。而红外光部分吸收系数小,光子主要在深结处被吸收;因此,深结对红外光有较高的灵敏度。即半导体中不同的区域对不同波长分别具有不同灵敏度。这一特性为识别颜色提供了可能性。利用不同结深二极管的组合,即可构成测定波长的半导体

第五章 其它光电传感器 27

色敏传感器。

具体使用时,首先对该色敏器件进行标定,也就是测定在不同波长光照射下,深结的短路电流ISD2与浅结的短路电流ISD1的比值 ISD2 / ISD1 。 ISD2在长波区较大,ISD1在短波区较大;因而 ISD2 / ISD1与入射单色光波长的关系就可以确定。根据标定曲线,实测出某一单色光的短路电流比值,即可确定该单色光的波长。

5.3 光位置传感器

当半导体光电器件受光照不均匀时,有载流子浓度梯度将会产生侧向光电效应。

当光照部分吸收入射光子的能量产生电子空穴对时,光照部分载流子浓度比未受光照部分的载流子浓度大,就出现了载流子浓度梯度,因而载流子就要扩散。如果电子迁移率比空穴大,那么空穴的扩散不明显,则电子向未被光照部分扩散,就造成光照射的部分带正电,未被光照射部分带负电,光照部分与未被光照部分产生光电动势。基于该效应的光电器件如半导体光电位置敏感器件(PSD)。

第五章 其它光电传感器 28

第六章 总结与展望 29

第六章 总结与展望

6.1 总结

以上介绍了光电传感器的基本原理和其特点,并列举了一些在生活实际中的

创新应用实例。从这些实例中我们可窥见光电传感器无限的发展应用前景。光电式传感器在科学技术领域、工农业生产以及日常生活中发挥着越来越重要的作用。人类社会对传感器提出的要求越来越高是其发展的强大动力,突飞猛进现代科学技术的则为其提供了坚强的 后盾,我们相信在不懈地探索中,光电传感器的应用定会有新的飞跃。

6.2 展望

随着科学技术的发展人们对测量精度有了更高的要求,这就促使光电传感器不得不随着时代步伐而更新,改善光电传感器性能的主要手段就是应用新材料、新技术制造性能更优越的光电元件。

光电传感器是一种非接触式测小型电子测量设备,依靠检测出其接收到的光强的变化,来达到测量目的,同时它也是一种容易受到外界干扰而失去测量准确度的器件。所以在设计时除了选择先进光电元件,还必须设置参比信号和温度补偿措施,用来削弱或消除这些因素的影响。

光电传感器必须经过光波调制,光波的调制像无线电波的传送和接收,将收音机调到某台,就可以忽略其他的无线电波信号未经调制的传感器只有通过使用长焦距镜头的机械屏蔽手段,使接收器只能接收到发射器发出的光,才能使其能量变得很高.相比之下,经过调制的接收器能忽略周围的光,只对自己的光或具有相同调制频率的光做出响应.未经调制的传感器用来检测周围的光线或红外光的辐射,如刚出炉的红热瓶子,在这种应用场合如果使用其它的传感器,可能会有误动作。

光电传感器由于非接触、高可靠性等优点,在测量时对变被测物体损害小, 所以自其发明以来就在测量领域有着举足轻重的地位,目前它已广泛应用于测量机械量、热工量、成分量、智能车系统等。现在它在电力系统自动并网装置中起

第六章 总结与展望 30

到了非常重要的作用,因为发电机投入电网运行常采用准同法,必须满足:三相线序一致,频率一致,相位一致,电压幅值相等,其中的一个条件在系统设计时已经满足,后三个条件必须同时满足才能并网,当然人工并网比较困难,光电并网比较容易。

时代在发展,科学技术在更新,光电传感器种类也日益增多,应用领域也越来越广泛,例如近来一种红外光电传感器已在智能车方面得了到应用,其中一种基于红外传感器的智能车的核心就是反射式红外传感器,它运用反射式红外传感器设计路径检测模块和速度监测模块;另外一种基于红外传感器的自寻迹小车则利用红外传感器来采集数据.

光电传感器具有其他传感器所不能取代优越性,因此它发展前景非常好,应用也会越来越广泛.

致谢 31

致谢

致谢 32

致谢 33

参考文献

[1] 余瑞芬.传感器原理.北京航空工业出版社.1995 [2] 金捷.机电检测技术.中国人民大学出版社.2002年 [3] 贾伯年,俞朴. 传感器技术.东南大学出版社,1999年

[4] 董晓娇 苏绍兴 颜晓河.<<电子工业专用设备>>.光电传感器器及其应

用.2006年第35 卷第1期

[5] 作者不详.<<传感器世界>>.BS5系列微型光电传感器.2010年的2期 [6] 玲.<<内江科技>>.浅谈光电传感器在工业中的应用2010年第31卷第2期 [7] 邱娜 梁宪光 吴涛.<<电子工业设备>>.激光对光电传感器的损伤阀

值.2009年第7期

[8] 程军.传感器及实用检测技术. 西安电子科技大学出版社.2008年8月第一版

[9] 杨崇志.特殊新型电子元器件手册.沈阳:辽宁科学技术出版社,2001 [10] 李科杰.新编传感器技术手册.北京:国防工业出版社,2003

本文来源:https://www.bwwdw.com/article/ns2g.html

Top