4.3运用公式法分解因式
更新时间:2023-04-22 19:14:01 阅读量: 实用文档 文档下载
—平方差公式
温故知新 什么叫因式分解? 因式分解与整式乘法有 什么联系? 我们学过哪些乘法公式?
温故知新1) ( x 5)( x 5) _______ x 252
9x y 2) (3x y )(3x y ) ______2
2
观察以上式子是满足什么乘法公式运算?
(a b)( a b) a b (整式乘法)2 2
a b (a b)(a b) (分解因式)2 2
利用乘法公式把某些多项式因式分解的方法叫做公式法
说一说 找特征
b a ▲2
2
(a ▲ b )( a b) ▲
①左边 两个因式的平方差;只有两项
②右边
两因式和 与差相乘
相同项 相反项
牛刀小试下列多项式能转化成( )2-( )2的形式吗?如果 能,请将其转化成( )2-( )2的形式。 (1) m2 -81 = m2 -92 (2) 1 -16b2 = 12-(4b)2 (3) 4m2+9 不能转化为平方差形式
(4) a2x2 -25y 2 = (ax)2 -(5y)2 (5) -x2 -25y2 不能转化为平方差形式
多项式具有什么特征时, 可以用平方差公式因式分解? (1)多项式是 二项式
(2)每一项都可以写成 平方 的形式; (3)两项的符号 相反,一正一负
落实基础下列多项式是否可以用平方差公式分解因式?
x y22
2
×
x y2
2
√
x y
2
×
x ( y )2
2
√
例1:把下列各式分解因式
(1)25 16 x2
2
1 2 ( 2) 9 a b 4
(1)25 16 x 2 2 5 (4 x)2
第一步,将两 项写成平方的 形式;找出a、b =(5+4x)(5-4x) 第二步,利用 a2-b2=(a-b)(a+b) 分解因式 学会了吗?
1 ( 3a b)( 3a 2
1 2 ( 2) 9 a b 4 1 2 2 (3a) ( b) 22
第一步, 将两项写 成平方的 形式;找 出a、b 第二步, 2利用 a 1 2 b)b =(a2 b)(a+b)分 解因式
把下列各式因式分解
(1)a2-81 =(a+9)(a-9)2 (2)1-16b =(1+4b)(1-4b)
(3)169x2-4y2 =(13x+2y)(13x-2y)2 2 (4)9a p 2 2 bq
=(3ap+bq)(3ap-bq)
例2 :把下列各式分解因式
(1)4(m n) (m n)2
2
( 2 )2 x 8 x3
2(m n) (m n)2
(1)解: 4( m n) ( m n)2
2
2
2(m n) (m n) 2(m n) (m n)
=(2m+2n+m-n)(2m+2n-m+n)=(3m+n)(m+3n)
解 2x 8 x 2 =2 x ( x -4) =2 x(x +2)(x -2)3
有公因式先 提公因式, 然后再进一 步分解因式
通过本题你总结出什么经验来了吗?
分解因式时,通常先考虑是否能提 公因式,然后再考虑能否进一步分 解因式.
a b22
2
( a b )( a b )
(1)32-22=(3+2)(3-2)=5
1 2 1 1 (2)9a b (3a b)(3a b) 4 2 2 (3) 4 ( m n ) 2 ( m n ) 2=(3m+n)(m+3n)
结论: 公式中的a、b无论表示数、单项式、还是多 项式,只要被分解的多项式能转化成平方差 的形式,就能用平方差公式因式分解。
4 4 a -b =?4 a -1=?
4 4 解:a -b2 2 2 2 =(a ) -(b ) 2 2 =(a+b)(a-b)(a +b ) 2 2 2 2 =(a -b )
(a +b )
分解因式一直分解到不能分解为 止.因此分解后一定检查括号内是 否能继续分解.
把下列各式分解因式:(1)(m+n)2-n2 (2)49(a-b)2-16(a+b)2
(3) (2x+y)2-(x+2y) (4) (x2+y2)2-x2y22 4 (5)3ax -3ay
(6)p4-1
把下列各式分解因式:(1)(m+n)2-n2 (2)49(a-b)2-16(a+b)2
(3) (2x+y)2-(x+2y) (4) (x2+y2)2-x2y22 4 (5)3ax -3ay
(6)p4-1
正在阅读:
4.3运用公式法分解因式04-22
2017咨询师继续教育-工程项目资源节约利用分析评价方法试卷100分09-12
青年五四奖章集体事迹材料04-03
化学九年级上1-3单元测试题及答案04-14
开学的第一周日记300字11-21
2017年高考化学二轮复习精品资料:(押题专练)专题19+无机化工流03-08
第五套气化炉仪表电缆敷设施工方案04-27
PSCAD基本使用指南05-05
一期钻石湾答客问06-16
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- 因式
- 分解
- 公式
- 运用
- 4.3
- “友善用脑”在物理教学中的应用
- 第八章 医疗社会保障
- 《沟通协调能力》(本次得分90分)
- 全国英语等级考试三级英语写作
- 培育动漫产业市场主体的若干对策
- 最新新课标语文五年级上册《钓鱼的启示》教学设计(精品)
- 苏教版六年级数学小升初测试卷附答案
- 压缩式热泵在火电厂余热回收中的应用
- 《创意经济》读后感
- 土地使用权所有权转让合同
- 笔记本电脑管理规定
- 作文材料:关于雪的古诗词
- 人教版六年级数学上册第三单元测试题
- 北京顺义区二手房销售套数(附房地产百强企业)_九舍会智库
- 2015年中考英语分块总复习
- 防止驰名商标异化_司法解释的制度设计及其评价
- 2PSK仿真课程设计报告
- 《健全风险管理和监测预警机制 有效应对突发事件》考试答案
- 资料之一戴维新讲课PPT-无领导小组讨论
- 班主任考核学生满意度测评表