武汉大学水力学课本习题解答7章

更新时间:2023-10-21 05:18:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

第 七 章 习 题 解 答

7-1 梯形断面壤土渠道,已知通过流量Q = 10.5 m3/s,底宽b = 8.9 m,边坡系数m = 1.5,正常水深h0= 1.25 m,糙率 n = 0.025,求底坡i和流速v 。

解: A = 1.25×(8.9+1.5×1.25) = 13.47 m2,χ= 8.9+2×1.25×1?1.52= 13.41 m, R = A/χ=1.005 m,C = 1.0051/6/0.025 = 40.03 m1/2·s, K = ACR1/2=540.57 m/3s i = (Q/K)2 = 0.000377, v = Q/A = 0.78 m/s

7-2 有一灌溉干渠,断面为梯形,底宽b = 2.2 m,边坡系数m = 1.5,实测得流量Q = 8.11 m3/s时,均匀流水深h0 = 2 m,在1800m长的顺直渠段水面落差Δh = 0.5 m,求渠道的糙率n。

解: i = J = JP = △h/L =1/3600, A = 2×(2.2+1.5×2 ) = 10.4 m2,

χ= 2.2+2×2×1?1.52= 9.41 m, n = AR2/3i1/2/Q = 0.0228

7-3 一石渠的边坡系数m = 0.1,糙率n = 0.020,底宽b = 4.3 m,水深h = 2.75 m,底坡i = 1/2000,求流量和流速。

解:A = 2.75×(4.3+0.1×2.75 ) = 12.58 m2,χ= 4.3+2×2.75×1?0.12= 9.83 m R = A/χ= 1.28 m ,v = R23in=1.318 m/s, Q = vA =16.58 m3/s

7-4 直径为d的圆形管道中的明槽均匀流动,试根据式(7-2-5)导出Q/Q1~h/d的关系式(Q1为h/d = 1时的流量),并论证当充满度h/d为多大时Q/Q1达到最大值。

解:

圆管 Q?A53in?23R = A/χ= 1.105 m

满流时 Q1?2

A153in?123,

d21A?(??sin?),???d ,

82 A1 =πd/4,χ1= πd

Q?A?????Q1?A?1?53??1????????231???sin??51 ?f????3, f?????22??Q/Q1取极值时, 得到两个极值点:

???sin??4?5??1?cos???2???sin???= 0 f?????3??= 0为极小值点,Q/Q1 = 0;

??h1???1?cos?=0.938, Q/Q1 =1.076 d2?2??= 5.278为极大值点,此时

7-5 有一顶盖为拱形的输水隧洞,过水断面为矩形,宽b = 3.3 m,糙率n = 0.017,底

坡i = 0.001,当流量Q = 16 m3/s时,求水深h,问流速是否超过2.0 m/s?

解: 试算,……,取h = 2.6 m,A = 3.3×2.6 = 8.58 m2,?= 3.3+2×2.6 = 8.5 m,

44

R ≈1, v = R23in=1.86 m/s, Q = vA =15.96 m3/s≈16 m3/s ∴

h = 2.6 m,

v = 1.86 m/s< 2.0 m/s

7-6 一梯形断面土渠,糙率n = 0.0225,边坡系数m = 1.5,底坡i = 0.0001,流量Q = 75 m3/s,规定流速v = 0.8 m/s,试确定渠道的底宽和水深。

解:A = Q/v =75/0.8 = 93.75 m,R?nvh0?2

?i?32 =2.415 m,??A/R?38.82 m

?15.58 m?? 2.858 m????2?4A(21?m2?m)2(21?m2?m)不是真解??17.35 m b???21?m2 h0??28.516 m? 所以 h0 =2.86 m,b = 28.52 m

7-7 一大型输水渠道为梯形断面,底坡i = 1/25000,糙率n = 0.015,设计流量Q = 500

m3/s时,正常水深为h 0 = 7.10 m 。已知某一渠段的边坡系数m = 2.0,请设计该段渠道的底宽,并计算相应的流速。

解:试算,……,取b = 40.3 m,A = 7.1×(40.3+2×7.1) = 386.95 m2, χ= 40.3+2×7.1×1?22= 72.05 m,R = A/χ= 5.37 m ,v = R23in=1.293 m/s,

Q = vA =500.35 m3/s≈500 m3/s ∴ b = 40.3 m,v = 1.293 m/s, 7-8 采用机械化方法开挖大型土质渠道或河道时,过水断面常呈抛物线形。若已知水深h和水面宽B,试推导过水断面面积和湿周的表达式。

解:如图,抛物线方程y = ax2 x = B/2时,y = h, 所以y = h(2x/B)2 A?2

?B20?h?y?dx?2h?B2?0?2x??1???B????2?2?dx?hB3??

??2?B201?y?dx?22?B20B2?8hx?1???dx?4h?B?2?4hB01?u2du?22???B?2h1?4h?4h??4h??? ?1???1????ln????4h?BB2BB??????????2

7-9 已知三角形断面明槽的边坡系数m,流量Q,底坡i和糙率n,试导出其正常水深

的表达式。当m = 0.75,Q = 0.3 m3/s,i = 0.0004,n = 0.013时,求正常水深h0。

解:由式(7-2-7),三角形断面β= 0,得

h0??nK?38?21?m2?????m5/81/4?21?m2????Qn???????m5/8?i?3?81/4

45

m = 0.75,Q = 0.3 m/s,i = 0.0004,n = 0.013时

h0????3?0.3?0.013?8?21?0.752???????5/80.750.0004?1/4= 0.815 m

7-10 已知梯形断面渠道的流量Q = 30 m3/s,糙率n = 0.025,边坡系数m = 1.5,底坡i =

0.0009,试分别根据水力最佳断面条件和A/Am=1.04的实用经济断面条件选择宽深比β,确定正常水深h0和底宽b,并校核流速是否满足0.6 m/s

解:(1)按水力最佳断面条件,?m????21?m2??m??Qn???h = h m=?????m?m?5/8?i?3?81/4b?2(1?1.52?1.5) = 0.608 h3?30?0.025?8?????0.608?21?1.52???????0.0009??0.608?m?5/81/4 =3.006 m

b = βm hm=1.828 m,Am = 3.006×(1.828+1.5×3.006) = 19.05 m2,v = Q/A=1.575 m

(2)按A/Am=1.04设计实用经济断面,查表7-2-2,β=3.202,h/hm = 0.683, 所以 h = 2.053 m,b =βh = 6.574 m,A = 1.04 A =19.8 m,v = Q/A = 1.514 m/s 可见两种情况下流速均满足0.6 m/s

7-11 试证明:(1)水力最佳的梯形断面水力半径R = h/2;(2)给定过水断面面积A,边坡系数m = 13(a=60°)的梯形水力最佳断面的湿周为最小。

证明:(1)?m?2(1?m2?m),

所以

2?2????b?2h1?m2?h???m?21?m??2h?21?m?m?,

????2?A = h(b+mh) = h2(βm+m) =h2??21?m?m?, R =A/χ= h/2

??1A2证毕。

1?2(2)由前式 h??21?m2?m?,则 ??????12A2?21?m2?m ????给定A时对湿周取极值时

d??dh?2m???1?= 0 1??2??21?m2?m?2?1?m????1A2得2m =1?m2,即 m =1/3

证毕。

7-12 若不对称的梯形断面两侧边坡系数分别为m1和m2,试推导其水力最佳条件。 解: A = h?b?h?m1?m2?/2?,则b = A/h -h(m1+m2)/2

22?22?? ??b???1?m1?1?m2?h?A/h??1?m1?1?m2??m1?m2?/2?h,

????取极值

d?A22???b????2??1?m?1?m?m?m/21212??dhh??h22????1?m1?1?m2?m1?m2?= 0

??46

所以水力最佳断面的宽深比

???m?1?m12?1?m22?m1?m2

7-13 矩形渠槽,底宽b = 4 m,水深 h = 1.5 m,设槽底糙率n1 = 0.0225,槽壁两边的糙率分别为n2 = 0.017和n3 = 0.012,试计算综合糙率。

解:χ1= 4 m,χ2=χ3=1.5 m,nmax/nmin=n1/n3= 0.025/0.012>2,可用下式 n?23/23/23/2??1n1??2n2??3n3?3?????1??2??3?4?0.025??????3/2?1.5?0.0173/2?1.5?0.0123/22?34?1.5?1.5?= 0.0209 ??7-14 有一土渠,经过衬砌,已知底部糙率n1 = 0.025,中部糙率n2 = 0.03,上部糙率n3 = 0.02 ,各部分相应的湿周长度分别为 c1 = 6.32 m,c2 = 5.37 m,c3 = 3.13 m,试计算综合糙率。

解: nmax/nmin=n2/n3= 0.03/0.02 = 1.5 <2

综合糙率 n??1n1??2n2??3n36.32?0.025?5.37?0.03?3.13?0.02?= 0.0258

?1??2??36.32?5.37?3.137-15 某小河在汛期洪水漫滩,实测纵向水面坡度JP = 0.0003,主槽水深h1 = 3 m,水

面宽B1 = 120 m,滩地水深h2 = 1.5 m,水面宽B2 = 230 m。糙率分别为n1 = 0.025,n2 = 0.035。试估算洪水流量。

解: 如图划分断面 A1≈h1B1=3×120 = 360 m2, A2≈h2B2=230×1.5=345 m2, 宽浅断面,R1≈h1= 3 m,R2≈h2=1.5 m,J≈JP=0.0003

K1 = A1R12/3/n1 =29953 m3/s,K2 = A2R22/3/n2 =29953 m3/s 洪水流量 Q = Q1+Q2 = (K1+K2) J1/2 = (29953+12917)×0.0003 0.5 = 742.7 m3/s

7-16 已知甲、乙两河的流量、流速和水面宽,试判断其水流的流态。(1)甲河:Q = 173 m3/s,v = 1.6 m/s,B = 80 m;(2)乙河:Q = 1730 m3/s,v = 6.86 m/s,B = 90 m 。

解:(1)甲河:A = Q/v = 108.1 m2,c =

gA/B=3.64 m/s>v,缓流。

(2)乙河:A = Q/v = 252.2 m2,Fr?vgA=1.309 >1 急流 B7-17 一梯形断面渠道,底宽b = 10 m,边坡系数m = 1.5,流量Q = 20 m3/s,分别对底坡i = 0.0005和i = 0.3两种情况确定其临界水深。

解:(1)i = 0.0005, cosθ= 1?i2?1 试算:……,

取h = 0.714 m, A = 0.714×(10+1.5×0.714) =7.905 m2,

?Q2BgA3?1?202?12.149.8?7.9053?0.997?1,

B = 10+2×1.5×0.714 = 12.14 m,a=1.0,所以 hK = 0.714 m

(2)i = 0.3, cosθ= 1?0.32?0.954

47

试算:……,

取h = 0.726 m, A = 0.726×(10+1.5×0.726) =8.05 m2,

?Q2BgA3B = 10+2×1.5×0.726 = 12.19 m,?0.953≈cosθ,所以 hK = 0.726 m

7-18 有一矩形断面渠道,宽度B = 6 m,糙率n = 0.015,流量Q = 15 m3/s,求临界水深hK和临界坡度iK 。

解:q = Q/b = 2.5 m/s,

2

hK?3?q2= 0.86 m,AK = 6×0.86 =5.16 m2, gχK= 6+2×0.86 = 7.72 m, RK = AK/χK= 0.668 m, 临界坡度

iK?Q222AkCkRk

CK = RK1/6/n = 62.34

?1525.162?62.342?0.668?0.0039

7-19 有一梯形断面渠道,底宽b = 6 m,边坡系数m = 2.0,糙率n = 0.0225,通过流量

Q = 12 m3/s。求临界坡度iK 。

解: 试算求hK,……,取h = 0.684 m,A =5.04 m2,B = 8.736 m

a=1.0,

?Q2BgA3?1?122?8.7369.8?5.0432

?1.003?1,所以 hK = 0.684 m, AK =5.04 m,

χK = 6 +2×0.684×(1+4)1/2 = 9.06 m,RK = AK/χK= 0.556 m,CK = RK1/6/n = 40.31 临界坡度

iK?Q222AkCkRk?1225.042?40.312?0.556?0.00628

7-20 某工程施工截流时,龙口近似为矩形断面,宽度b = 100 m,水深h = 3 m,流量Q

= 2100 m3/s,试计算龙口处微幅波向上游和下游传播的绝对波速,并判断水流是急流还是缓流。

解:v = Q/(bh) = 7 m/s,c =

gh=5.42 m/s

向下游传播的波速c下= v + c = 12.42 m/s

向上游传播的波速c上= c - v = -1.58 m/s < 0,微幅波不能向上游传播,流态为急流。

7-21 判断题7-1中渠道底坡是陡坡还是缓坡?流态是急流还是缓流? 解:Q = 10.5 m3/s,b = 8.9 m,m = 1.5,正常水深h0= 1.25 m时 A = 1.25×(8.9+1.5×1.25) = 13.47 m2,B = 8.9+2×1.5×1.25 = 12.65 m v = Q/A =0.78 m/s,Fr?vgA= 0.241 < 1 ,缓流 B因为均匀流时流态为缓流,所以底坡为缓坡。

7-22 试证明,当流量给定时,矩形断面明槽的临界坡度随宽度b的增加而变化的规律为:b<3.98(aQ2/g)1/5时,iK随b的增加而减小;b>3.98(aQ2/g)1/5时,iK随b的增加而增大。

证明:由式(7-3-22),

iK?gn2?K13?RKBK?43gn2?K13?bAK?gn2?b?2hK?b4313hK?43

48

diKgn2?b?2hK?1/38hK?iKdhK ???4/31/3dbb?hdb3?bhKK?iKgn2?b?2hK?136hK?bdhK2hKd?Q23。当Q给定时, ????24313?hKhdbdb3bgb3?bhKK所以

diK2gn2?b?2hK?1/310hK?b ??4/31/3dbb9?bhK显然,hK = b/10,即b = 3.98(aQ2/g)1/5 为极值点。b<3.98(aQ2/g)1/5时,diK /db < 0,iK随

b的增加而减小;b>3.98(aQ2/g)1/5时,diK /db > 0,iK随b的增加而增大。证毕。

7-23 一瀑布,在跌坎上游约4 m处测得水深为1.0 m,试估算其单宽流量。

23解:依情况判断,此处水深为临界水深,hK≈1.0 m,q =ghK/?=3.13 m/s

7-24 某矩形断面平坡渠道,底宽b = 8 m,流量Q = 16 m3/s,设跃前水深h′= 0.6 m,求跃后水深h″和水跃长度。

解:q = 16/ 8= 2 m2/s,Fr1??q2gh?3= 1.375 <1.7

1lj?6.9(h???h?)= 1.84 m h???h?1?Fr12 = 0.867 m,

27-25 有一底宽为12 m的矩形断面渠道中发生水跃,已知渠底高程为120.43 m,流量Q = 60 m3/s,测得跃后水位高程为123.5 m,试求水跃中单位体积水体所消耗的能量和消能率。

解:q = 60/12 = 5 m2/s,h″=123.5-120.43 = 3.07,Fr2??q2gh??3= 0.297

??1h??h??(1?8Fr22?1).=0.47 m

22水跃水头损失?Ej?E1?E2?h??h???q(1?1)=3.05 m

2gh?2h??单位体积水体消耗能量 = gΔEj = 3.05×9800 = 29.89 kJ/m3 水跃消能效率

?EjE1??Ej2??q?h??? = 48.7% 2???2gh??7-26 一直径D = 1.0 m的水平无压圆管中发生水跃,已知流量Q = 1.0 m/s,跃前水深h′

为0.4 m,求跃后水深h″。

解:令a为中心角的一半,r = D/2 = 0.5 m,A = r2(a -sina cosa), 过水断面形心的水下深度

2rsin3?yc??rcos??

3??sin?cos?跃前???2sin?1h?/D=1.3694,A1 = 0.2933 m,yc1 = 0.1672 m

??Q2J(h?)??yc1A1= 0.397

gA1??试算:…… 取a″=2.22,A = 0.6754,yc = 0.3646 m,J(h) = 0.3974 = J(h′)

49

所以 h″= r (1-cos2.22) = 0.802 m

7-27 试证明与水跃函数的极小值 Jmin相应的水深满足条件1?dJ?h?dd???Q2??ycA????dhdhdh?gA??Q2dA?Q2B????? ??2dh2?gAgA???Q2BgA3?0。

证明:取极值时

??= 0 ??其中:

?Q2d???

dh??gA又,水深增加△h,面积矩Ayc的增量

△(AyC)=[A(yc+△h)+△A·△h/2]-Ayc=(A+△h/2)△h 所以

d?Ayc??lim??Ayc??A,

?h?0dh得

??Q2BgA3

dJ?h???Q2B?A?= 0, 2dhgA 即 1??0 为极值条件。而

d2JdA??Q2?dBdA???Q2B??Q2?3dB?A?3B2dB??? ???2B)???A??B(1??3B?A???2333dhgA?dhdh?dh?B?Adh?dhgAgA??一般情况下大于零,所以得到的极值是极小值Jmin。

证毕。

7-28 试证明:在边坡系数为m的平底梯形断面明槽中,水跃前、后的水深之间满足以

下关系

2??3?5?3?3??3??22?????1??????1????1???????1??????3??0

?2??2????1????2?4其中

??h??/h?, ??b, mh???Qg12mh?52

1mh32证明:梯形断面的面积矩 Ayc?bh?

23则水跃函数

Q211mh32J(h)??bh?

g?b?mh?h23代入水跃基本方程,各项同除以h′-h″,整理得

b?m?h??h???Q2bm???h??h????h?2?h?h???h??2?0 g?b?mh???b?mh???h?h??23??令??h??/h?,??Q3b,??12,方程各项同乘以??????,整理、合并同类mh?gmh?52mh?2项得

2??3?5?3?3??3??22?????1??????1????1???????1??????3??0 。证毕。

?2??2????1???2??450

7-29 矩形断面斜坡明槽上发生水跃,假设水跃区水体的重量 G?1K?L?h??h???(L为2水跃段长度,K为修正系数),试推导水跃方程,并证明其跃前、跃后水深满足

h??1??? 1?8W12?1??

?h?2?式中

KLsin???W12?Fr12?cos??,Fr12??q2gh?3 ?h??h??????

h′ G h″ L

证明:假设摩擦阻力可以忽略,且a1′=a2′= a′=a,列动量方程式

∑Fx= P1-P2+Gsinθ=ρQa′(v2-v1)

???Q2???Q2?yc1A1??Gsin???yc2A2?

A1A2这是倾斜渠道的水跃方程。矩形断面,A = bh,yc = h/2

222

γ(h′ - h″)bcosθ/2+γKLsinθ(h′+h″)b/2= ρQa(1/h″-1/h′)/b

1h?2?h??2得 2??2KLsin???q2?2h??h??h????h??h????Fr1 ?cos????????????h?hghhh??整理得 求解得

h???h???2?1???2W1 h??h??h??1??? 1?8W12?1??。

?h?2? 证毕。

7-30实验水槽中的水流现象如图所示,且流量不变,若提高或降低尾门,试分析水跃

位置向哪边移动?为什么?

答:如图,收缩断面下游有壅水曲线段,末端有水跃与尾水衔接。提高尾门,将提高尾水水位,增加跃后水深h″,减小跃前水深h′,水跃位置向左(上游)移动;降低尾门,则降低尾水水位,减小跃后水深h″,增大跃前水深h′,水跃位置向右(下游)移动。尾门很低时,水槽中将不会发生水跃。

7-31 试定性分析下面各种情况下渠道里的水面曲线形式,假设各段渠道均充分长,且流量、糙率、断面形状及尺寸均相同。 (1) (2)

51

(3)

(4)

(5)

(6)

(7) (8) (9) (10) 7-32 一排水渠上段底坡i1=0.0005,下段底坡i2=0.00033,排水入下游河道中,已知在排泄一定流量时两段渠道中均匀流水深均大于临界水深,下游河水位很低,试分析渠道中的

52

水面曲线。

7-33 一矩形断面渠道,底宽b = 5 m,底坡i = 0.005,分为充分长的两段,糙率分别为n1 = 0.0225 和n2 = 0.015。当流量Q = 5 m3/s时,试判断两段渠道底坡的性质,并定性绘出水面曲线。

解:q = Q/b =1 m/s, hK?2

3?q2= 0.467 m g渠道1的正常水深为 h01 = 0.544 m > hK,缓坡

( 试算:A=5×0.544 = 2.72 m2,χ= 5+2×0.544 = 6.088 m,R=2.72/6.088 = 0.447 m, Q = 2.72×0.4772/3×0.0051/2/0.0225 = 4.997 m3/s ) 渠道2的正常水深为 h02 = 0.420 m < hK,陡坡

( 试算:A=5×0.42 = 2.1 m2,χ= 5+2×0.42 = 5.84 m,R=2.1/5.84 = 0.36 m,

Q = 2.1×0.362/3×0.0051/2/0.015 = 5.01 m3/s ) 水面曲线如图。

7-34 矩形断面渠道,上、下两段宽度相等,底坡i1 > i2 ,当单宽流量q = 4 m2/s时,正常水深分别为h01 = 0.66 m和h02 = 1.55 m,试绘制水面曲线,并确定水跃发生在哪段渠道中。

解: hK1?42?= 1.18 m

9.83渠道1,h01 = 0.66 m < hK,陡坡,远处均匀流为急流;渠道2,h02 = 1.55 m > hK,缓坡,远处均匀流为缓流。

急流、缓流必以水跃衔接,水面曲线可能有图示的三种情况。若水跃发生在渠道2中,则

1h″ = h02, Fr2??q2gh??3= 0.662,h??h??(1?8Fr22?1)=0.87 m > h01

2所以用实线表示的水面曲线是正确的。

7-35 梯形断面明槽,底宽b = 10 m ,边坡系数m = 1.0,糙率n = 0.025,分为底坡不同的三段:i1 = 0.001,l1 = 5000 m,i2 = 0,l2 = 150 m,i3 = 0.05,l3 = 500 m。设流量Q = 15 m3/s,试分析和计算其水面曲线。M2

53

本文来源:https://www.bwwdw.com/article/nqpf.html

Top