Equalization and Clock and Data Recovery Techniques for 10-Gbps CMOS Serial-Link Receivers - 图文
更新时间:2024-01-02 01:22:02 阅读量: 教育文库 文档下载
- equalization推荐度:
- 相关推荐
IEEEJOURNALOFSOLID-STATECIRCUITS,VOL.42,NO.9,SEPTEMBER20071999
EqualizationandClockandDataRecoveryTechniquesfor10-Gb/sCMOSSerial-LinkReceivers
SrikanthGondiandBehzadRazavi,Fellow,IEEE
Abstract—Twoequalizer?ltertopologiesandamergedequal-izer/CDRcircuitaredescribedthatoperateat10Gb/sin0.13-mCMOStechnology.Usingtechniquessuchasreversescaling,pas-sivepeakingnetworks,anddual-andtriple-loopadaptation,theprototypesadapttoFR4tracelengthsupto24inches.Theequal-izer/CDRcircuitretimesthedatawithabiterrorrateof1013whileconsuming133mWfroma1.6-Vsupply.
IndexTerms—Adaptiveequalization,analogequalization,broadbandreceivers,DFE,FFE,high-speedlinks,lossychannel,reversescaling.
withotherequalizationmethods[6]soastomitigatebotheffects.
SectionIIpresentsvariousgainpeakingmethodsthatareusedinSectionIIItodeveloptwoequalizer?ltertopologies.SectionIVdescribesanadaptiveequalizerarchitectureandSectionVthemergedequalizer/CDRcircuit.SectionVIsum-marizestheexperimentalresultsforthetwoprototypes.
II.GAINPEAKINGTECHNIQUES
A.GeneralConsiderations
CoppertracesdesignedastransmissionlinesonFR4sub-stratessufferfrombothskineffectanddielectricloss.Forex-ample,a30-intraceexhibitsalossofapproximately21dBat5GHzand34dBat10GHz(AppendixI).Theequalizer?ltermustthereforeprovideadequategainpeakingaround5GHzsoastoequalizethesignalspectrum.
Thedesignofgain-peakingcircuitsmustsatisfymanydif?cultrequirements:1)suf?cientboostathighfrequencies;2)matchingtheinverselosspro?leofthechannelwithreason-abletolerance;3)minimallow-frequencylosstominimizethenoiseaccumulationincascadedstagesandprovidesuf?cientswingsfortheCDR;4)well-behavedphaseresponsetoachievealowjitter;5)reasonablelinearitysothattheequalizertransferfunctionindeedactsastheinverseofthechannellosspro?le;
requirements;and6)smallinputcapacitancetosatisfythe
7)tunabilityoftheboosttoallowadaptation.
Inaddition,thechallengestypicallyencounteredinthedesignoflow-voltagebroadbandampli?ers–suchaslimitedbandwidthanddrivecapability–persisthereaswell.B.PeakingByComplexPolesorRealZeros
Theavailabilityofmonolithicinductorsmaysuggesttheuseofunderdampedcomplexpolestoprovidetherequiredboostathighfrequencies.Forexample,theshunt-peakingcircuitofFig.1(a)yieldsatransferfunctionoftheform
(1)
,,.Whileprovidingenoughboosttomatch
theinverseoftheFR4frequencyresponse,high-complexpolesintroducesubstantialphasedistortion.Asanexample,acascadeoftwosuchstagesisdesignedtoequalizea30-intrace[Fig.1(b)],yieldingtheequalizedeyeshowninFig.1(d).
Thisissuerestrictsrealizationstonon-feedbackstructurescontainingrealzerosandpolesorfeedbackstructureshavingwhere
I.INTRODUCTION
HEfrequency-dependentlossoftracesonFR4printedcir-cuitboards(PCBs)posesincreasinglymoredif?cultde-signchallengesasdataratesapproach10Gb/sandtracelengthsreachtensofinches.Preemphasisinthetransmittercanpartiallycompensateforthechannellossbutatthecostofdynamicrange.Forexample,the12dBpreemphasisin[1]requiresasupplyvoltageof2.5Vtoaccommodatethelargeampli?edcompo-nentswithoutsacri?cingthelow-frequencyswings.Thus,lowsupplyvoltagesandchannellossesashighas25dBdictatethatmostoftheequalizationbeperformedinthereceiver.Examplesincludeabipolarimplementationconsuming195mW[2]andaCMOSrealizationsufferingfromhighintersymbolinterference(ISI)andlackingautomaticadaptation[3].
Recentwork[1],[4],[5]hasincorporatednonlinear(e.g.,de-cision-feedback)equalizerssoastoaccommodatesharpnotchesinthechannelduetoimpedancediscontinuitiesandalsoavoidtheampli?cationofcrosstalkduetohigh-frequencypeaking.Thecomplexityandpowerdissipationofsuchrealizations(e.g.,210mWforthe6.25-Gb/s0.13-mCMOSreceiverin[5])arejusti?edforonlydemandingapplications.
Thispaperdescribesadaptiveequalizationandclockanddatarecovery(CDR)techniquessuitedto10-Gb/sbinaryreceivers.Theconceptsintroducedhereaddresstheproblemofhighlosses.Losscompensationisachievedbyusinglinearequalizationtechniquesthattendtoamplifycrosstalknoise.Ifcrosstalkandimpedancediscontinuitiesduetoconnectorsandviasalsobecomecritical,thesetechniquescanbecombined
ManuscriptreceivedJuly26,2006;revisedFebruary26,2007.ThisworkwassupportedbyKawasakiMicroelectronicsAmerica.FabricationsupportwasprovidedbyTaiwanSemiconductorManufacturingCompany.
S.GondiwaswiththeElectricalEngineeringDepartment,UniversityofCal-ifornia,LosAngeles,CA90095USA.HeisnowwithKawasakiMicroelec-tronics,SanJose,CA95131USA.
TheauthorsarewiththeElectricalEngineeringDepartment,UniversityofCalifornia,LosAngeles,CA90095USA(e-mail:razavi@icsl.ucla.edu).DigitalObjectIdenti?er10.1109/JSSC.2007.903076
T
0018-9200/$25.00?2007IEEE
2000IEEEJOURNALOFSOLID-STATECIRCUITS,VOL.42,NO.9,SEPTEMBER2007
Fig.1.Complexpolepeakingcircuit.(a)Implementation.(b)Magnituderesponse.(c)Phaseresponse.(d)transientresponse.
Fig.2.RC-degenerateddifferentialpair.(a)Circuitimplementation.(b)Fre-quencyresponse:actualresponse(solidline);bodeapproximation(dashedline).
low-complexpoles.Ofcourse,inductorscanstillactasshunt-peakingelementstobroadenthebandwidthofequalizerstages.Anef?cientmethodofboostingbymeansofrealzerosiscapacitivedegeneration.Fig.2(a)showsade-generateddifferentialpairthatyieldsazeroat
andpolesatand
,withalow-frequencygain
.Fig.2(b)depictsof
thefrequencyresponse.Improvingthelinearityofthestage,degenerationnonethelesscreatesatrade-offbetweenthe
.Interestingly,low-frequencygainandtheboostfactor,
onecanwrite
concludingthattheproductofthegain,theboostfactor,andthe
ofthetechnology.1bandwidthofthestageislimitedbythe
Itisimportanttoappreciatetheimpactofthelimited(about75GHzin0.13-mCMOStechnology)onequaliza-tion.Forasmall-signalgainof2,anundegenerateddifferen-tialpairwithanoverdrivevoltageof300mVandfanoutofunityyieldsabandwidthoflessthan12.5GHz.Thedegener-atedstructuretradesthisgain-bandwidthproductfortheboostfactor,thelow-frequencygain,andthelinearrange.
Withtheperformanceenvelopeimposedby(2),acascadeofstagessuchasthecircuitofFig.2(a)failstoprovidetherequiredboostfactorwhileaccommodatingadatarateof10Gb/sandareasonablelow-frequencygain(e.g.,6dB–0dB).Asthenumberofstagesinthecascadeincreasestoachieveahigherboostfactor,theoverallbandwidthtendstodropunlessagreaterlow-frequencylossisallowedineachstage.Simulationsindicatethat,foratotalboostfactorof22dBat5GHzandanoverallbandwidthof5.5GHz,2threedegeneratedstageswithalow-frequencylossof6dBperstagearerequired.Suchahighlossresultsinasensitivitydegradationofabout3dB.C.PeakingByPassiveNetworks
Weproposetheuseofpassivehigh-passnetworkstopro-videboostatthefrontendofanequalizer,thusrelaxingthelinearityandgainpeakingofthesubsequentactivestagesandsavingpowerconsumption.Fig.3(a)depictsanexamplewherethezeroandpolefrequenciesarerespectivelygivenby
andandtheboostfactorbyifisneglected.Toavoiddegradingtheinput
Cincludestheinputcapacitanceofthenextstage.
2TheoverallbandwidthreferstothatoftheFR4tracealongwiththeequalizercircuit.
1Here,
(2)
GONDIANDRAZAVI:EQUALIZATIONANDCLOCKANDDATARECOVERYTECHNIQUESFOR10-GB/SCMOSSERIAL-LINKRECEIVERS2001
Fig.3.(a)Passivenetwork.(b)Proposedpassivenetworkwithseries-inductivepeaking.
Fig.4.Illustrationofthereversescalingtechnique.(a)Blockdiagram.(b)Single-endedcircuitrealization.
returnloss,,,andmustbechosenhighenough
.Also,sincetheinputcapacitance,,sothat
lowersthepolefrequencyto,were-.Forexample,if,quirethat
(foraboostof4.7dB),andfF,thenmustremainbelow20fF,restrictingthesizeofthetransistorsinthe?rstac-tivestage.
Theaboverestrictioncanbeeasedthroughtheuseofseries
providesadditionalinductivepeaking[Fig.3(b)].Here
peakingatfrequenciesabove5GHzevenforlargevaluesof
.Forexample,if,,fF,
fF,thenetworkyieldsaboostfactorof8dBandand
ofdBat10GHz.an
D.ReverseScaling
Withthetrade-offsdescribedabove,thepeakingcircuitspre-sentedthusfarprovideaboostofapproximately8dBat5GHz,dictatingtheuseofatleastthreepeakingstagesintheequalizer.Moreover,thecumulativelow-frequencylossrequirestwoad-ditionalgainstagestorestorethesignallevel.
Ifidenticalstagesarecascaded,theoverallsmall-signalbandwidthisgivenby[7]
(3)
denotesthebandwidthofasinglestageandiswhere
equalto2for?rst-orderstagesand4forsecond-orderstages.
,thenthesmall-signalbandwidthdropsbyaThus,if
factorof2.6for?vestages.Forexample,withthreepeakingandtwogainstages,thebandwidthoftheequalizerfallsbelow4GHzifnobandwidthenhancementtechniquesareemployed.Reversescaling[8]providesbandwidthimprovementinap-plicationswheretheinputimpedanceneednotbeveryhigh.Inthiswork,weproposetheconceptofreversescalingforequal-izerdesign[9].AsillustratedinFig.4,successivestagesarescaleddowninsizebyafactorofsuchthatthegainand
Fig.5.Transistor-levelsimulationsofa?ve-stageequalizerwith(a)noscaling,and(b)reversescaling.
boostcharacteristicsaremaintainedbutthetimeconstantattheoutputnodeofeachstageisreduced.Thetotalcapacitanceseen
canbeexpressedattheinterfacebetweenstagesand
,whereincludesthejunc-as
tionandoverlapcapacitancesattheoutputofthethstageand
theinputcapacitanceofthethstage.Inare-verse-scaleddesign[Fig.4(b)],thecorrespondingtimeconstant
isgivenby
(4)
revealingabandwidthimprovementresultingfromthesecondtermintheparentheses.Forexample,withfF,
fF,and,thebandwidthincreasesbyabout
33%.
,thevalueofAsevidentfromtherelationship
isdictatedprimarilybythreefactors:1)themaximumtoler-;2)theminimumacceptablevalueof(theablevalueof
inputcapacitanceoftheCDRcircuit);and3)theminimumac-ceptablenumberofstages.The?rstcomponentisdeterminedbytherequiredinputbandwidthand/orreturnloss.Iftheequal-izerpathdirectlydrivestheCDRcircuit,theminimumaccept-isgivenbythetotalinputcapacitanceoftheablevalueof
2002IEEEJOURNALOFSOLID-STATECIRCUITS,VOL.42,NO.9,SEPTEMBER2007
Fig.6.Equalizer?lterIwithreversescaling.
phasedetector—aratherlargevalue.Thus,asimplegainstage
fF.Aspreferablyfollowstheequalizer.Inourdesign,
mentionedabove,theminimumnumberofstagesisdictatedbythetrade-offbetweentherequiredpeakingandthebandwidth.Forexample,a?ve-stagecascadenecessitatesabandwidthof14GHzateachnode,limitingthetotalinputcapacitanceto
of10dBat10GHztranslates450fF.Ontheotherhand,an
toatotalinputcapacitanceof213fF.AllowingforESDand
fF.3Also,fF.padcapacitance,weassume
.Thus,
Inthiswork,ascalingfactorof1.3ischosentoachieveanimprovementof22%inspeed.Fig.5showsthesimulatedout-putsoftheequalizerforscaledandunscaleddesigns.4Theeyeopeningincreasesbyapproximatelythesamefactor.5
NotethattheuseofmonolithicT-coils[10]cangreatlyin-creasethetolerableinputcapacitanceandhenceprovideaddi-tionalbandwidthimprovementwithreversescaling.
III.EQUALIZERFILTERDESIGN
Inthissection,thepeakingtechniquespresentedinSectionIIIareusedtodesignequalizer?lters.Thesedesignsalsoincorpo-rateadaptiveboostingsoastoallowdifferenttracelengths.A.EqualizerFilterI
ShowninFig.6,the?rstequalizer[9]interspersesthreepeakingstageswithtwogainstagestoprovideaboostfactorofabout22dBat5GHzwhileexhibitingalow-frequencylossoflessthan3dB.6Thedesignexploitsthereversescaling
3Forthesakeofsimplicity,thesecalculationsdonotincludetheuseofpassive
Fig.7.Tuningbehaviorof?ve-stagecascade.
peakingatthefrontend.
4ThedetailsofthiscircuitareshowninFig.6.
designsincorporateotherbroadbandtechniquesaswell(SectionIII).
6Thetwogainstagespartiallycompensatethelossofthepeakingstages,pro-vidinganoutputswingofapproximately1V.
5These
techniquedescribedinSectionIIbutwithslightvariationinthevalueoffromonestagetothenexttoallowoptimizationforhigh-frequencypeakingandlow-frequencyloss.
AsmentionedinSectionII,simpleresistively-loadeddiffer-entialpairscannotyieldtherequiredbandwidth.Thus,induc-tivepeakingandnegativeMillercapacitances[11]havebeenaddedtoimprovethespeedwithoutsacri?cingthevoltagehead-room.Tosavearea,onlythreeofthestagesincorporateinduc-tivepeaking.
Thepeakingstagesintheequalizerpathemployavariable
anddegenerationresistancealongwithMOSvaractors
toprovideawideboostrange.Asthecontrolvoltagerises,theon-resistanceoffallsandsodoesthecapacitanceofand,raisingthemagnitudeofthezero.Notethatthesimul-taneouschangeoftheresistanceandcapacitancegreatlysimpli-?estheadaptationloop(SectionIV).Fig.7illustratesthesim-ulatedtuningbehaviorofthecascadeasthecontrolvoltageissweptfrom0.1Vto1.1V.
AsindicatedinFig.6,thecascadeemployscapacitivecouplingbetweensomestagestoisolatecommon-mode
GONDIANDRAZAVI:EQUALIZATIONANDCLOCKANDDATARECOVERYTECHNIQUESFOR10-GB/SCMOSSERIAL-LINKRECEIVERS2003
Fig.8.Equalizer?lterIIarchitecture.
(CM)levels.Thismitigatesthevoltageheadroomissueand,moreimportantly,avoidsvariabilityintheCMlevelseenby-duetotheprecedingstage,thusmaintainingaconstant
0.25pFarerealizedusingtuningrange.Thecapacitors
multi-?ngerfringestructureshavingaparasiticcomponentofabout3%.TheCMlevelisgeneratedusingaresistivedivider.Thecornerfrequencyassociatedwiththiscapacitivecouplingisaround3MHz,resultinginnegligibledroopwithencodeddata.
B.EqualizerFilterII
InSectionII,thehigh-passpassivenetworkwasintroducedtoprovideapeakingpro?le.Theuseofthisnetworkintheequal-izer?ltercansavepowerconsumptionbyrelaxingthelinearityandgainpeakingrequirementsoftheactivestages.Fig.8showsthesecondequalizer?lterarchitecture[12],whichincorporatesbothpassivepeakingandreversescaling.Incontrasttothe?rstequalizer,thisdesignperformsboosttuningbyinterpolationbe-tweenapeakingpathandanall-passpath(setbycoef?cientsand),thusachievingawidertuningrangethanthatob-tainedbymeansofMOSvaractorsandvariableresistors.Also,aconstant(linear)degenerationresistanceinthedifferentialpairsyieldshigherlinearityandamoreaccurately-de?nedlow-fre-quencygain.
Theuseofinterpolationnonethelesspresentsadif?cultyfor
.Thedisparatede-intermediatelinelengths,i.e.,if
laysthroughthetwopathsresultinsubstantialISIaftertheircorrespondingoutputsaresummed.Realizedasadegenerateddifferentialpair,thephaseshiftblockintheall-passpathpar-tiallycorrectsthiserror.Thezeroofthisdifferentialpairispo-sitionedsuchthatthephaseresponseapproximatestheeffectiveresponseofthethreezerosinthepeakingpathforthefrequency
rangeof1–4GHz.Thepoleprovidesadditionaladjustmentoftheoverallphaseresponseintheall-passpath.7
Theuseofseriesinductivepeaking(with3-nHinductors)inthepassivebooststageallowswideinputtransistors(
m)inthe?rstdifferentialpairandhencereversescalingthroughthecascade.Thelow-frequencylossof7dBinthepassivenetworkdegradesthesensitivitytosomeextent.WithinductivepeakingandnegativeMillercapacitances,theband-widthofeachactivestagereaches18GHz.Thesummingstageincorporatesactivefeedback[10]toimprovethespeedwhileavoidinginductors.Sinceactivefeedbacktradeslow-frequencygainforbandwidth,ithasbeenappliedtoonlyonestage.
Thechoicebetweenthetwotypesofequalizersdescribedabovesomewhatdependsontheapplication.Theformerdoesnotincorporateapassivenetworkattheinput,providinggreatersensitivitybutconsumingahigherpower.Thelatterachievesahigherlinearityandwidertuningrange.
IV.ADAPTIVEEQUALIZER
Fig.9showsthe?rstadaptiveequalizerarchitecture[9],wheretheequalizer?lterisfollowedbyaslicer,andtwoloopscontroltheboostinthe?lterandtheswingintheslicer.The
,issensedatnodeAratherthanBbecauseequalizeddata,
theslicerincorporatessomepeakingtoimproveconvergenceoftheloops,therebyleadingtolargerjitteratBthanatAwhentheloopsreachsteadystate.Theneedfortheswingcontrolloopisjusti?edasfollows.
High-speedadaptiveequalizerssetthepeakinginthe?lterstagessoastocompensateforthehigh-frequencylossofthechannel.Tothisend,theequalizeroutputissharpenedbyaslicerandtheadaptationloopadjuststhepeakingaccordingtothe
indicatethata20Tlaymismatchproduceslessthan5psof
ISIjitterattheequalizeroutput.
7Simulations
2004IEEEJOURNALOFSOLID-STATECIRCUITS,VOL.42,NO.9,SEPTEMBER2007
Fig.9.Proposedadaptiveequalizerarchitecture.
Fig.10.Spectrumbeforeandafterslicerwithswingmismatch.
Fig.11.Simulateddynamicsoftheswingandboostcontrolloops.
differencebetweenhigh-frequencycontentsofthedatabeforeandafterslicing[2],[13],[14].Notethattheslicergeneratesa
spectrum.Ifoperatingrandombinarysequencehavinga
optimally,theequalizermustdothesame.
Theadaptationrequiresthattheequalizernotslice(hard-limit)thedata.Otherwise,theinputandoutputofthe?nalslicercarrysimilarspectra,andtheerrorintheadaptationloopap-proacheszeroevenwithincompleteequalization.Thisissueinturnnecessitatesadequatelinearityintheequalizerpath,8leadingtotwoimportanteffects:1)theequalizeroutputswingis
8A
variable-gainampli?ercanprecedetheequalizertoensurelinearity.
afunctionofthetransmittedsignallevelandotherparametersinthesignalpath,whereasthesliceroutputisnot;and2)theequalizercircuitryisfundamentallydifferentfromthatintheslicer.Forexample,thedifferentialpairsintheequalizermaynotexperiencecompleteswitchingwhereasthoseintheslicermust.
Thus,asillustratedinFig.10,theadaptationmaysettlesuchthatthesignalsatAandBexhibitequalhighfrequencyener-gies(betweenand)whileAisverypoorlyequalized.Theabovedif?cultycanbealleviatedbyaddingaloopforlow-fre-quencyadaptationtomaintainequalswingsatAandB[15].In[15],however,theswingsintheequalizerpathareadjusted,po-tentiallylimitingthetuningrangeandinterferingwiththemainadaptationloop.TheapproachintroducedinthisworkisshowninFig.9,wheretheinputandoutputswingsoftheslicerarecomparedafterrecti?cation,andtheresultingerrorisusedtoadjustthesliceroutputswingratherthantheequalizeroutputswing.Theswingiscontrolledbyadjustingthetailcurrentofalimitingdifferentialpairintheslicer.Theslicerthereforegen-eratesswingsthatmatchtheequalizeroutputswings,allowingnearlycompleteoverlapofspectraatAandBafterequalization.Unlikeimplementationsthatprecedetherecti?erswithhigh-pass?lters(HPFs)[13]–[15],thisdesignemploysbandpass?l-]aroundters(BPFs)tomeasuretheenergyinaband[
5GHz.Thisisbecausethegainpeakingoccursinthevicinityofthisfrequencyandmustbecontrolledaccurately.
GONDIANDRAZAVI:EQUALIZATIONANDCLOCKANDDATARECOVERYTECHNIQUESFOR10-GB/SCMOSSERIAL-LINKRECEIVERS2005
Fig.12.Responseoftheadaptiveequalizertoa25%mismatchintheline.(a)Frequencyresponse.(b)Eyediagram.
Fig.13.Proposedmergedadaptiveequalizer/CDRarchitecture.
ThetwodynamicfeedbackloopsinthearchitectureofFig.9canpotentially“?ght”eachother,thusfailingtoconvergetoap-propriatesettings.Suchacon?ictisavoidedbychoosingsub-stantiallydifferenttimeconstantsforthetwoloops,namely,65nsforswingcontroland105nsforboostcontrol.Fig.11depictsthesimulateddynamicsofthetwoloopsastheysettletotheir?nalvaluesforworst-caseinitialconditions.(Thissim-ulationisperformedonthetransistor-levelimplementationofthecircuit.)
Apossiblepointofconcernisthesensitivityoftheproposedadaptiveequalizertomismatchesinthetransmissionline.Fig.12showstheresponseoftheadaptiveequalizerfora25%mismatchinthetransmissionlineat3.4GHz.Asexpected,thereisonlyagradualdegradationintheeyecomparedtothetransmissionlinewithminimalmismatch[Fig.5(b)].Thisdesignmaybefollowedbyamulti-tapdecision-feedbackequalizertoremovetheresultingISI.
V.MERGEDADAPTIVEEQUALIZER/CDRCIRCUIT
Inbroadbandreceivers,theequalizeristypicallyfollowedbyaCDRcircuit.ThetwofunctionscansimplybecascadedbutwerecognizethattheretimeddataproducedbytheCDRcircuitexhibitsthepropertiesofaslicedwaveform,obviatingtheneedforanexplicitslicer.Sinceslicerstypicallyconsumeseveralinductorsandconsiderablepowertoachievetherequiredbandwidthandgain,theconsolidationofequalizerandCDRcircuitscanyieldsavingsinareaandpowerdissipation.
Fig.14.Simulateddynamicsof(a)boostandswingcontrolsignals,and(b)thecontrolvoltageoftheVCOintheCDRloop.
Fig.15.CDRarchitecture.
Fig.16.VCOandbuffercircuit.
A.Architecture
ShowninFig.13isthearchitectureofthemergedequal-izer/CDRcircuit[12].Theretimeddata,
,providesbothlow-frequencyandhigh-frequencyinformationforadjustingtheboostandswingcontrols.Theswingadjustcircuitisrealizedasasingledifferentialpairwhilethe?lterandtheenergycompar-isonmechanismsaresimilartothoseinFigs.8and9,respec-tively.
ThearchitectureinFig.13entailsastart-upissue.Withhighintersymbolinterference(e.g.,fora24-intrace),iftheequalizerbeginswithminimumboost,theneachdataedgeappliedtotheCDRspansseveralbitperiods,thusprohibitingproperphase-lock.Thearchitecturecontainsthreefeedbackloopswhosetimeconstantsmustbechosencarefullytoensureconvergence.Fig.14showsthedynamicsofthethreeloopsastheyreachsteadystate.OnlywithproperphaselockcantheCDRprovidetheretimeddatatothefeedbackloop;hence,theCDRloopmustsettlebeforetheboostcontrolloop.Notethattheboostcontrolloopisinitiallyreset,providingmaximumpeakingandenablingtheCDRtolock.Also,evenwithoutphase-lock,theretimeddatafromtheCDRissuf?cientfor
2006Fig.17.XORandV/Icircuit.
Fig.18.Diephotographofadaptiveequalizer.
theswingcontrollooptoconverge.Thus,inthisdesign,theswingcontrolloopisthefastest,andtheboostcontrolloop,theslowest.
ThemergingoftheequalizerandtheCDRsavesabout19mWinpowerdissipation.Furthermore,itobviatesseveralinductorsthatwouldotherwisebenecessaryintheslicer.
Theoverallperformanceoftheequalizer/CDRcascadede-pendsontheresidualISI,additivenoise,andclockjitter.Itisthereforenecessarytoquantifythetrade-offsamongthesepa-rameterssothatareasonablejitterbudgetcanbeallocatedtoeachstage.Aframeworkfortheanalysisoftheseeffectsispro-posedinAppendixII.B.CDRCircuit
Thisworkemploysafull-rateCDRcircuitconsistingofanAlexanderphasedetector(PD)[16]andanvoltage-con-trolledoscillator(VCO)(Fig.15).Whileoperatingasabang-bangcircuitandexhibitingahighgain,theAlexanderPDpro-ducesnooutputintheabsenceofdatatransitions,thusleaving
undisturbed.ThehighgainofthePDobviatesachargepumpandpermitstheuseofasimplevoltage-to-current(/)convertertodrivetheloop?lter.NotethatnodesXandYneednotprovideahighbandwidthasonlytheiraveragevoltagesaresensedbythe/converter—animportantadvantageofthisre-alizationoverthoseusingchargepumps.
Thespeed,jitter,anddrivingcapabilityrequiredoftheoscil-latorpointtotheuseofan
implementation.Fig.16depictstheVCOanditsbuffer.Resistor
setsthecorecommon-modeIEEEJOURNALOFSOLID-STATECIRCUITS,VOL.42,NO.9,SEPTEMBER2007
voltagetoapproximately
,maximizingthecapacitancerangeoftheMOSvaractorsandhencethetuningrangeoftheos-cillator.ThebufferisolatesthecorefromthelargecapacitancesassociatedwiththePDdevicesandinterconnectswhilesup-pressingthedatatransitionsthatwouldotherwisecouplefromthePD?ip-?opstotheVCOcore.
TheVCOphasenoiseisdominatedbythemodulationofthevaractorcapacitancesduetothenoisecurrentof.Inthisde-sign,thesimulatedphasenoiseofthefree-runningVCOaspre-dictedbySpectreRFisapproximatelyequalto106dBc/Hzat1-MHzoffset.
TheXORgatesusedinthePDofFig.15mustexhibitsym-metrywithrespecttotheirtwoinputsandoperatewithalowsupplyvoltage.ShowninFig.17alongwiththe/converter,
theXORgateisamodi?edversionofthatin[17].Here
–formtheXORcoreandcopiestheaverageoutputcurrent
into
.Toallowlow-voltageoperation,thedrainvoltageofisraisedbyaboveitsgatevoltage,thussavingonethresholdintheheadroom.Thereferencevoltageisapproximatelyequaltothecommon-modelevelofAandB.The/convertercopiestheaverageoutputcurrentoftheXOR,providingnearlyrail-to-railswingsfortheoscillatorcon-trolline.SensingtheaveragevoltageproducedbytheXOR,the/converterremainsfreefromadeadzone.
VI.EXPERIMENTALRESULTS
ThissectionpresentsexperimentalresultsforthetwocircuitsdescribedinSectionsIVandV.Botharefabricatedin0.13-mCMOStechnology.A.AdaptiveEqualizerI
Fig.18showsaphotographofthedie,whichmeasures0.45mm0.36mm.Thecircuithasbeentestedonahigh-speedprobestationwhilesensing10-Gb/sdatathathastraveledonanFR4board.Thepseudorandombitsequencefollowsa21pattern.Fig.19showstheequalizerinputandoutputwaveformsat10Gb/sfor30-inand6-indifferentialtracesontheFR4boardwithoutanyexternalchangesinthebiasorothercircuitconditions.Inthissetup,the30-inFR4tracehasalossof21dBat5GHz.Theresultsshowthatthehigh-frequencyadaptationloopaccommodatesvaryinglossconditions.Tochecktheoperationofthelow-frequencyadaptationloop,thepatterngeneratoroutputswingwasvariedfrom520–700mVandsimilarresultswereobtained.Notethatthepatterngenerator
GONDIANDRAZAVI:EQUALIZATIONANDCLOCKANDDATARECOVERYTECHNIQUESFOR10-GB/SCMOSSERIAL-LINKRECEIVERS2007
Fig.19.Measuredresultsbeforeandafterequalizationat10Gb/sforFR4traces,(horizontalscale:20ps/div.):(a)beforeequalizationfor30-inFR4(verticalscale:100mV/div.),(b)afterequalizationfor30-inFR4(verticalscale:100mV/div.),(c)afterequalizationfor6-inFR4(verticalscale:100mV/div.).
theequalizer.Thecircuitconsumes133mW,ofwhich41mWisdissipatedintheequalizerand92mWintheCDR.
Fig.23(a)showstherecoveredclockspectrumfora24-inFR4at10Gb/s,displayingaphasenoiseof109dBc/Hzat1-MHzoffset.ThejitterhistograminFig.23(b)suggestsanrmsjitterof2.22ps.TheVCOprovidesatuningrangefrom8.9GHzto11.6GHz.
VII.CONCLUSION
ThehighlossoflongtracesonFR4boardscanbecompen-satedthroughtheuseofequalizationtechniquessuchaspas-sivepeakingnetworks,reversescaling,andcapacitivedegener-ation.Toadapttothelinelength,equalizersmustincorporatebothboostandswingcontrolwhileguaranteeingsmooth,con-?ict-freeconvergence.Finally,theequalizationandCDRfunc-tionscanbemergedtoeliminateslicers.Thisworkhasdemon-stratedtheseconceptsforadatarateof10Gb/sandtracelengthsof24inchesin0.13-mCMOStechnology.
APPENDIXILINEMODELING
Fig.24(a)plotsthelosspro?leofadifferential30-inmicrostriplineonanFR4board.Designedforadifferentialcharacteristicimpedanceof100,thetwotraceshaveawidthof6milandaspacingof12mil.(Thispro?leisobtainedbysimulationofthestructureinSONNET.)Theskineffectand
anddependencies,dielectriclossexhibitapproximately
respectively,andthelosspro?lecanberepresentedas
(5)
whereanddependonthetraceandboardproperties,re-spectively,anddenotesthetracelength.Thus,skineffectisdominantatlowerfrequenciesanddielectricloss,athigherfre-quencies.Inthisexample,skineffectlossbecomesequaltodi-electriclossatapproximately2.5GHz.Thestrongfrequencydependenceofthelossesinthemicrostripmakesitdif?culttousethestandardtransmissionlinemodel[Fig.24(b)],wherethe
andtheparallelconductanceremaincon-seriesresistance
stantwithfrequency.
Whilebroadbandmodelshavebeendevelopedforskineffect[18],anaccuratemodelisnotavailablefordielectricloss.Itis
Fig.20.Diephotographofmergedadaptiveequalizer/CDR.
itselfsuffersfromapeak-to-peakjitterof15ps.Thecircuit(excludingtheoutputbuffer)consumes25mWfroma1.2-Vsupply.
ThedoubletracevisibleinFig.19(c)fora6-inlineresultsfromapproximately2dBofrippleinthecascadefrequencyre-sponseoftheFR4boardandtheequalizer.Con?rmedbysim-ulations,thisripplepossiblyarisesfromtheimperfectmatchbetweenthepeakingpro?leprovidedbytheequalizerandtheinverseofthechannelfrequencyresponse.B.MergedEqualizer/CDRCircuit
Fig.20showsthephotographofthedie,whichmeasures0.94mm0.65mm.Themergedequalizer/CDRcircuituti-lizestheequalizer?lterarchitectureproposedinSectionIII.B.Thecircuithasbeentestedinachip-on-boardassemblywitha10-Gb/s21bitsequence.
Fig.21depictsthemeasuredinputandoutputeyediagramsforanFR4tracelengthof24incheshavingalossof18dBat5GHz.Forthissetup,theequalizer/CDRcircuitwastestedwithasupplyvoltageof1.6V.ThesensitivityofthemergedcircuitisplottedinFig.22,indicatingabiterrorrate(BER)oflessthan
foradifferentialtransmittedvoltageof640mV.Thissensitivitycanbeimprovedbyaddingasimplegainstageafter
2008IEEEJOURNALOFSOLID-STATECIRCUITS,VOL.42,NO.9,SEPTEMBER2007
Fig.21.Measuredresultsbeforeandafterequalization/datarecoveryat10Gb/sforFR4traces(horizontalscale:20ps/div.):(a)beforeequalization/datarecoveryfor24-inFR4(horizontalscale:10ps/div.,verticalscale:75mV/div.),(b)afterequalization/datarecoveryfor24-inFR4(horizontalscale:20ps/div.,verticalscale:20mV/div.),(c)afterequalization/datarecoveryfor6-inFR4(horizontalscale:20ps/div.,verticalscale:20mV/div.).
Fig.22.BERsensitivitygraphforequalization/datarecoveryfor24-inFR4at10Gb/s.
Fig.24.(a)Losspro?leof30-inmicrostriponFR4board.(b)Narrowbandlossmodel.
Fig.23.Measuredresultsafterequalization/clockrecoveryfor24-inFR4at10Gb/s.(a)Recoveredclockspectrum.(b)Recoveredclockjitterhistogram(horizontalscale:5ps/div.).
possibletoextractthe-parametersofagivenlineacrossafre-quencybandusingavectornetworkanalyzerora?eldsimulatorandprovideittoatoolcapableofgeneratingaspicemodel(e.g.,SONNET).However,thisapproachprovideslittleintuitionand,moreimportantly,requiresentirelydifferentsetsofdatafordif-ferentlinelengths.Itisthereforedesirabletodevelopaphys-ical,scalablecircuitmodelthatincludesfrequency-dependentdielectriclossandeasilylendsitselftocircuitsimulations.Suchamodelmustalsorepresentthephasepro?leofthelinewithreasonableaccuracy.
ModelingbeginswithacorrectionofthecircuitinFig.24(b)toaccommodatefrequency-dependentskineffect.Illustratedin
andisadded[18],Fig.25(a),thesectionconsistingof
()modelingthelow-frequencyresistanceofwith
forcingthehigh-frequencycurrentthrough,thelineand
Fig.25.(a)Modelforvariableskineffect.(b)Proposedbroadbandmodelfor
a1-intrace.
thusraisingthelossathigherfrequencies.Additionalsectionscanbeaddedtore?nethemodel,butsimulationsindicatethatonebranchisadequateformodelingupto7GHz.
Inordertoincludethedielectricloss,theconstantparallelconductance,,inFig.24(b)isreplacedwithafrequency-de-pendentimpedancethatincursgreaterlossathigherfrequencies
GONDIANDRAZAVI:EQUALIZATIONANDCLOCKANDDATARECOVERYTECHNIQUESFOR10-GB/SCMOSSERIAL-LINKRECEIVERS2009
Fig.26.Pro?lesofactualmicrostrip(dashedlines)andscalablemodel(solidlines)fora30-intrace.(a)Magnitudepro?le.(b)Phasepro?le.
[Fig.25(b)].Theconductancetothesubstrate,therefore,in-creaseswithfrequency.Accuratemodelingofthedielectricloss
necessitatesatleasttwosuchsections:thelossinthe
–branchbecomesappreciableabove0.4GHzandthatinthe–branchabove20GHz,thusprovidinggoodaccuracyupto7GHz.Theabovemodelcansimplybecascadedtorepresentlongertraces.Fig.26comparesthelossandphasepro?lesfora30-intraceaspredictedby?eldsimulationsandthemodel,demonstratingareasonable?t.9
APPENDIXIIBERESTIMATION
TheBERofequalizer/CDRchainsisafunctionofadditivenoise,ISI,andCDRskewandjitter.Inthissection,weproposeamethodofestimatingtheBERbasedontheseparameters.Theobjectiveistodevelopanintuitiveunderstandingofthetradeoffsandhencearriveatareasonablecompromise.
ConsidertheeyediagramshowninFig.27(a),whereanddenotethepeakreceivedswingandthepeakeyeopening,respectively.We?rstexcludeclockjitter.TheISIduetolimitedbandwidthorincompleteequalizationleadstoa
roughlyuniformdistributionoftheamplitudebetween
and.Denotingthisdistributionbyandthatofadditive
Gaussiannoiseby
,weobservethatanerroroccursifnoisecausesalevelbetweenandtofallbelowzero
(oralevelbetween
andtoexceedzero).Thus,theprobabilityoferrorisgivenby
(6)
Also,
(7)(8)
and
(9)
9Simulations
indicatethatiftheproposedmodelisalteredtoincuronemore
dBoferror,theequalizeroutputsuffersfrom2.6dBofadditionalverticalclo-sureand0.03UIofadditionaljitter.
Fig.27.(a)Errorduetoadditivenoisebasedonthesamplingpointsintheeye.(b)BERasafunctionofclockskew.
where
denotesthermsvalueofnoise.Carryingouttheinte-grationin(6)andneglectinghigher-orderterms,wehave
(10)
Forexample,with
mV,mV,mV,10andsamplinginthemiddleoftheeye,weobtain.
Inthepresenceofclockskewandjitter,thesamplingpointde-viatesfromthemaximumeyeopening,rapidlyraisingtheBER.(SincetheISI-inducedjitterinthedatawaveformcontainspre-dominantlyhigh-frequencycomponents[19],theCDRcircuitfailstotrackthecorrespondingphasevariations.)FortoinFig.27(a),weapproximatetheeyeopeningas
andplotasafunctionofthe
clockskew[Fig.27(b)].Here,theabovevaluesof,,areusedand.
Wecannowincorporatetheeffectofclockjitterbyweighting
(10)accordingtothejitterdistribution,
,wheredenotestherandomdepartureofthesamplingpointfromthe
centeroftheeye.AsillustratedinFig.28(a),if
placesthesamplinginstantat,then
islowerandtheeffectofmorepronounced.Theerrorprobabilitydensityfunctionacrossthebitperiodcanthereforebeexpressedas
(11)
PlottedinFig.28(b)foraGaussianjitterdistributionhavinganrmsvalueofps,thisresultrevealsthaterrorsaremostlikelytooccurinthevicinityofps,wherethe
dramaticriseinstillcompensatesforthefallin
.Beyondthispointtheclockjitterbecomessoimprobablethaterrorsarelessandlesslikelytooccur.
Theframeworkdevelopedabovecanbeusedtoformulatethetrade-offsbetweenrequiredswings,additivenoise,ISI,and
tolerableclockjitter.Forexample,with
mVand,theplotsinFig.29canbegenerated,where
10The
additivenoiseisobtainedbyintegratingthenoiseattheoutputofthe
equalizerpathupto100GHz.
2010Fig.28.(a)Errorduetoadditivenoiseandclockskew.(b)Errorprobabilitydensityacrossthebitperiod.
Fig.29.BERcurvesfordifferentcombinationofreceivedswingsandclockjitter.
eachcurverepresentstheacceptablecombinationofand
thatyieldsagivenBER.Worthnotinghereisthesharpriseintherequiredswingastheclockjitterexceeds3ps.Also,theexperimentalresultinFig.23(b)indicatesanrmsjitterof2.2ps,whichfromFig.29,woulddictateaminimumswingof
520mVforBER
.Thisvalueisfairlyclosetothemeasuredresultof640mVinFig.22.
ACKNOWLEDGMENT
TheauthorswishtothankV.PathakandKawasakiMicro-electronicsAmericaforsupportofthiswork,Dr.J.Leeforde-signassistance,andTSMCforfabricationsupport.
REFERENCES
[1]K.Krishna,D.A.Yokoyama-Martin,S.Wolfer,C.Jones,M.
Loikkanen,J.Parker,R.Segelken,J.L.Sonntag,J.Stonick,S.Titus,andD.Weinlader,“Amultigigabitbackplanetransceivercorein0.13??mCMOSforserialdatatransmissionacrosshighlosslegacybackplanechannels,”IEEEJ.Solid-StateCircuits,pp.2658–2666,Dec.2005.
[2]G.ZhangandM.M.Green,“ABICMOS10Gb/sadaptivecableequal-izer,”inIEEEInt.Solid-StateCircuitsConf.Dig.Tech.Papers,Feb.2004,pp.482–483.
[3]Y.Tomita,M.Kibune,J.Ogawa,W.W.Walker,H.Tamura,and
T.Kuroda,“A10-Gb/sreceiverwithseriesequalizerandon-chipISImonitorin0.11??mCMOS,”IEEEJ.Solid-StateCircuits,pp.986–993,Apr.2005.
IEEEJOURNALOFSOLID-STATECIRCUITS,VOL.42,NO.9,SEPTEMBER2007
[4]T.Beukema,M.Sorna,K.Selander,S.Zier,B.L.Ji,P.Murfet,J.
Mason,W.Rhee,H.Ainspan,B.Parker,andM.Beakes,“A6.4Gb/sCMOSSerDescorewithfeed-forwardanddecision-feedbackequal-ization,”IEEEJ.Solid-StateCircuits,pp.2633–2645,Dec.2005.[5]R.Payne,P.Landman,B.Bhakta,S.Ramaswamy,W.Song,J.
D.Powers,M.U.Erdogan,A.-L.Yee,R.Gu,W.Lin,Y.Xie,B.Parthasarathy,K.Brouse,W.Mohammed,K.Heragu,V.Gupta,L.Dyson,andW.Lee,“A6.4Gb/sCMOSSerDescorewithfeed-forwardanddecision-feedbackequalization,”IEEEJ.Solid-StateCircuits,pp.2646–2657,Dec.2005.
[6]M.Meghelli,S.Rylov,J.Bulzacchelli,W.Rhee,A.Rylyakov,H.
Ainspan,B.Parker,M.Beakes,A.Chung,T.Beukema,P.Pepelju-goski,L.Shan,Y.Kwark,S.Gowda,andD.Friedman,“A10Gb/s5-Tap-DFE/4-Tap-FFEtransceiverin90nmCMOS,”inIEEEInt.Solid-StateCircuitsConf.Dig.Tech.Papers,Feb.2006,pp.80–81.[7]R.P.Jindal,“Gigahertz-bandhigh-gainlow-noiseAGCampli?ersin
?ne-lineNMOS,”IEEEJ.Solid-StateCircuits,vol.22,pp.512–521,Aug.1987.
[8]E.SackingerandW.C.Fischer,“A3-GHz32-dBCMOSlimitingam-pli?erforSONETOC-48receivers,”IEEEJ.Solid-StateCircuits,vol.35,pp.1884–1888,Dec.2000.
[9]S.Gondi,J.Lee,andB.Razavi,“A10Gb/sCMOSadaptiveequal-izerforbackplaneapplications,”inIEEEInt.Solid-StateCircuitsConf.Dig.Tech.Papers,Feb.2005,pp.328–329.
[10]S.GalalandB.Razavi,“10-Gb/slimitingampli?erandlaser/modu-latordriverin0.18-??mCMOStechnology,”IEEEJ.Solid-StateCir-cuits,vol.38,pp.2138–2146,Dec.2003.
[11]J.A.Mataya,G.W.Haines,andS.B.Marshall,“IFampli?erusing
Cpp.compensated401–407,Dec.transistors,1968.
”IEEEJ.Solid-StateCircuits,vol.SC-3,[12]S.Gondi,“A10-Gb/sCMOSmergedadaptiveequalizer/CDRcircuit
forserial-linkreceivers,”inIEEESymp.VLSICircuitsDig.Tech.Pa-pers.,Jun.2006,pp.240–241.
[13]M.H.Shakiba,“A2.5Gb/sadaptivecableequalizer,”inIEEEInt.
Solid-StateCircuitsConf.Dig.Tech.Papers,Feb.1999,pp.396–397.[14]A.J.Baker,“Anadaptivecableequalizerforserialdigitalvideorates
to400Mb/s,”inIEEEInt.Solid-StateCircuitsConf.Dig.Tech.Papers,Feb.1996,pp.174–175.
[15]J.-S.Choi,M.-S.Hwang,andD.-K.Jeong,“A0.18??mCMOS
3.5-Gb/scontinuous-timeadaptivecableequalizerusingenhancedlow-frequencygaincontrolmethod,”IEEEJ.Solid-StateCircuits,pp.419–425,Mar.2004.
[16]J.D.H.Alexander,“Clockrecoveryfromrandombinarydata,”Elec-tron.Lett.,vol.11,pp.541–542,Oct.1975.
[17]B.Razavi,Y.Ota,andR.G.Swartz,“Designtechniquesforlow-voltagehigh-speedbipolarcircuits,”IEEEJ.Solid-StateCircuits,vol.29,pp.332–339,Mar.1994.
[18]C.S.Yen,Z.Fazarinc,andR.L.Wheeler,“Time-domainskin-effect
modelfortransientanalysisoflossytransmissionlines,”Proc.ofIEEE,vol.70,pp.750–757,Jul.1982.
[19]V.StojanovicandM.Horowitz,“Modelingandanalysisofhigh-speed
links,”inIEEECustomIntegratedCircuitsConf.Dig.Tech.Papers,Sep.2003,pp.589–594.
SrikanthGondireceivedtheB.E.(Hons.)degreeinelectricalandelectronicsengineeringfromBirlaIn-stituteofTechnologyandScience,Pilani,India,in1997,theM.Sc.degreeincomputerengineeringfromIowaStateUniversity,Ames,in2002,andthePh.D.degreeinelectricalengineeringfromUniversityofCalifornia,LosAngeles,in2006.
HewasaResearchAssistantatIowaStateUni-versityuntil1999,wherehefocusedonmixed-signalcircuitsforthegigabitethernettransceiverandthe1394home-networkingapplications.From2000to
2002,hewasaMixed-SignalDesignEngineeratTexasInstruments,Dallas,TX,workingonhigh-speedinterfacearchitecturesandcircuitsforwirelineapplica-tions,realizedinBiCMOStechnologies.HewasaGraduateStudentResearcherattheUniversityofCalifornia,LosAngeles,from2002to2006,wherehedevel-opedcircuitsandarchitecturesforserializer-deserializer(SerDes)applications.HeiscurrentlyaSeniorDesignEngineerintheR&DDivisionofKawasakiMicroelectronicsAmerica,workingonanalogfront-endsforbothwirelessandwirelineapplications.Hiscurrentresearchinterestsincludemixed-signalequal-izers,dataconverters,phase-lockingandclockrecoveryfordatacommunica-tions.
GONDIANDRAZAVI:EQUALIZATIONANDCLOCKANDDATARECOVERYTECHNIQUESFOR10-GB/SCMOSSERIAL-LINKRECEIVERS2011
BehzadRazavi(S’87–M’90–SM’00–F’03)re-ceivedtheB.S.E.E.degreefromSharifUniversityofTechnology,Tehran,Iran,in1985andtheM.S.E.E.andPh.D.E.E.degreesfromStanfordUniversity,Stanford,CA,in1988and1992,respectively.
HewaswithATTBellLaboratoriesandHewlett-PackardLaboratoriesuntil1996.Since1996,hehasbeenAssociateProfessorandsubsequentlyProfessorofelectricalengineeringattheUniversityofCali-fornia,LosAngeles.HewasanAdjunctProfessoratPrincetonUniversityfrom1992to1994,andat
StanfordUniversityin1995.HeistheauthorofPrinciplesofDataConversionSystemDesign(IEEEPress,1995),RFMicroelectronics(PrenticeHall,1998)(translatedtoChineseandJapanese),DesignofAnalogCMOSIntegratedCir-cuits(McGraw-Hill,2001)(translatedtoChineseandJapanese),DesignofInte-gratedCircuitsforOpticalCommunications(McGraw-Hill,2003),andFunda-mentalsofMicroelectronics(Wiley2006),andtheeditorofMonolithicPhase-LockedLoopsandClockRecoveryCircuits(IEEEPress,1996)andPhase-LockinginHigh-PerformanceSystems(IEEEPress,2003).Hiscurrentresearch
includeswirelesstransceivers,frequencysynthesizers,phase-lockingandclockrecoveryforhigh-speeddatacommunications,anddataconverters.
Prof.RazavireceivedtheBeatriceWinnerAwardforEditorialExcellenceatthe1994ISSCC,thebestpaperawardatthe1994EuropeanSolid-StateCircuitsConference,thebestpanelawardatthe1995and1997ISSCC,theTRWInno-vativeTeachingAwardin1997,andthebestpaperawardattheIEEECustomIntegratedCircuitsConferencein1998.Hewastheco-recipientofboththeJackKilbyOutstandingStudentPaperAwardandtheBeatriceWinnerAwardforEd-itorialExcellenceatthe2001ISSCC.Hewasrecognizedasoneofthetop10authorsinthe50-yearhistoryofISSCC.HereceivedtheLockheedMartinEx-cellenceinTeachingAwardin2006andtheUCLAFacultySenateTeachingAwardin2007.HeservedontheTechnicalProgramCommitteesoftheInter-nationalSolid-StateCircuitsConference(ISSCC)from1993to2002andVLSICircuitsSymposiumfrom1998to2002.HehasalsoservedasGuestEditorandAssociateEditoroftheIEEEJOURNALOFSOLID-STATECIRCUITS,IEEETRANSACTIONSONCIRCUITSANDSYSTEMS,andInternationalJournalofHighSpeedElectronics.HeisanIEEEDistinguishedLecturerandaFellowofIEEE.
正在阅读:
Equalization and Clock and Data Recovery Techniques for 10-Gbps CMOS Serial-Link Receivers - 图文01-02
脚手架术语大全10-11
红烧对虾作文350字07-09
可爱的秋姑娘作文300字06-21
试卷发下来了作文400字07-15
关于教育的作文02-05
妈妈的“小时候”作文1000字07-02
2013版本复习资料-新版人力资源开发与管理 - 图文04-16
大专毕业自我鉴定02-24
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- Equalization
- Techniques
- Receivers
- Recovery
- 图文
- Serial
- Clock
- Data
- Gbps
- CMOS
- Link
- 10
- 北师大版小学数学教材二年级上册《数松果》教学案例
- 脲醛树脂胶黏剂热分解特性研究 - 图文
- 学校2016年今冬明春火灾防控专项行动工作总结
- 小学心理健康教育工作计划
- 二次结构施工方案(改)
- 基于matlab的IIR数字滤波器设计(doc 19页)(正式版)
- 2015年文秘管理与应用写作形成性考核册答案(最新完整)
- 高效节能农用水泵电机产品生产线技术改造工程项目可行性研究报告
- 26.残疾人扶贫 - 图文
- 财务分析
- 水利水电勘测设计现行标准名录2011101 - 图文
- 数学实验报告
- 浅谈高校大学生品德教育
- 器械法规
- 高等数学复旦大学出版社习题答案三
- 王羲之草诀百韵歌原帖及解释 - 图文
- 微观经济学期中试卷
- 最新-2020统编版人教版一年级数学第一学期概念知识点整理
- 部编人教版八年级道德与法治上册第二单元测试题(含答案)
- 2018-信任背摔拓展项目-优秀word范文(3页)