五年级下册数学长方体与正方体奥数练习题
更新时间:2023-03-17 07:34:01 阅读量: 教育文库 文档下载
- 五菱宏光推荐度:
- 相关推荐
长方体和正方体(一)
一、知识要点
在数学竞赛中,有许多有关长方体、正方体的问题。解答稍复杂的立体图形问题要注意几点: 1.必须以基本概念和方法为基础,同时把构成几何图形的诸多条件沟通起来;
2.依赖已经积累的空间观念,观察经过割、补后物体的表面积或体积所发生的变化; 3.求一些不规则的物体体积时,可以通过变形的方法来解决。 二、精讲精练 【例题1】 一个零件形状大小如下图:算一算,它的体积是多少立方厘米?表面积是多少平方厘米?(单位:厘米)
练习1:
1.把一根长2米的长方体木料锯成1米长的两段,表面积增加了2平方分米,求这根木料原来的体积。
【例题2】 有一个长方体形状的零件,中间挖去一个正方体的孔(如图),你能算出它的体积和表面积吗?(单位:厘米)
练习2:
1.有一个形状如下图的零件,求它的体积和表面积。(单位:厘米)。
2.有一个棱长是4厘米的正方体,从它的一个顶点处挖去一个棱长是1厘米的正方体后,剩下物体的体积和表面积各是多少?
体积为4^3-1^3=64-1=63立方厘米 表面积不变,大小为6×42=96平方厘米
1
【例题3】 一个正方体和一个长方体拼成了一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了50平方厘米。原正方体的表面积是多少平方厘米?
练习3:
1.一根长80厘米,宽和高都是12厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的表面积减少了多少平方厘米?
2.把4块棱长都是2分米的正方体粘成一个长方体,它们的表面积最多会减少多少平方分米?
【例题4】 一个长方体,前面和上面的面积之和是209平方厘米,这个长方体的长、宽、高以厘为为单位的数都是质数。这个长方体的体积和表面积各是多少?
练习4:
1.有一个长方体,它的前面和上面的面积和是88平方厘米,且长、宽、高都是质数,那么这个长方体的体积是多少?
依题意 长*宽+长*高=88 即长*(宽+高)=88 而长宽高都是质数,长*(宽+高)=11*(5+3) 可知长宽高分别为11,5,3
长方体的体积是11*5*3=165立方厘米。
2.一个长方体的长、宽、高是三个连续偶数,体积是960立方厘米,求它的表面积。
960=10×96,而96=8×12,
表面积是2×(10×12+10×8+8×12)=592平方厘米
3.一个长方体和一个正方体的棱长之和相等,已知长方体长、宽、高分别是6分米、4分米、25分米,求正方体体积。
(6+4+2)*4=48 48/12=4 4*4*4=64
所以体积为64立方分米
2
第14讲 长方体和正方体(二)
一、知识要点
在长方体、正方体问题中,我们还会常常遇到这样一些情况:把一个物体变形为另一种形状的物体;把两个物体熔化后铸成一个物体;把一个物体浸入水中,物体在水中会占领一部分的体积。 解答上述问题,必须掌握这样几点:
1.将一个物体变形为另一种形状的物体(不计损耗),体积不变; 2.两个物体熔化成一个物体后,新物体的体积是原来物体体积的和; 3.物体浸入水中,排开的水的体积等于物体的体积。 二、精讲精练
【例题1】 有两个无盖的长方体水箱,甲水箱里有水,乙水箱空着。从里面量,甲水箱长40厘米,宽32厘米,水面高20厘米;乙水箱长30厘米,宽24厘米,深25厘米。将甲水箱中部分水倒入乙水箱,使两箱水面高度一样,现在水面高多少厘米?
练习1:
1.有两个水池,甲水池长8分米、宽6分米、水深3分米,乙水池空着,它长6分米、宽和高都是4分米。现在要从甲水池中抽一部分水到乙水池,使两个水池中水面同样高。问水面高多少?
【例题2】 将表面积分别为54平方厘米、96平方厘米和150平方厘米的三个铁质正方体熔成一个大正方体(不计损耗),求这个大正方体的体积。
练习2:
1.有三个正方体铁块,它们的表面积分别是24平方厘米、54平方厘米和294平方厘米。现将三块铁熔成一个大正方体,求这个大正方体的体积。
2.将表面积分别为216平方厘米和384平方厘米的两个正方体铁块熔成一个长方体,已知这个长方体的长是13厘米,宽7厘米,求它的高。
【例题3】 有一个长方体容器,从里面量长5分米、宽4分米、高6分米,里面注有水,水深3分米。如果把一块边长2分米的正方体铁块浸入水中,水面上升多少分米?
3
练习3:
1.有一个小金鱼缸,长4分米、宽3分米、水深2分米。把一块假山石浸入水中后,水面上升0.8分米。这块假山石的体积是多少立方分米?
2.有一块边长是5厘米的正方体铁块,浸没在一个长方体容器里的水中。取出铁后,水面下降了0.5厘米。这个长方体容器的底面积是多少平方厘米?
【例题4】 有一个长方体容器(如下图),长30厘米、宽20厘米、高10厘米,里面的水深6厘米。如果把这个容器盖紧,再朝左竖起来,里面的水深应该是多少厘米?
练习4:
1.有两个长方体水缸,甲缸长3分米,宽和高都是2分米;乙缸长4分米、宽2分米,里面的水深1.5分米。现把乙缸中的水倒进甲缸,水在甲缸里深几分米?
2.有一块边长2分米的正方体铁块,现把它煅造成一根长方体,这长方体的截面是一个长4厘米、宽2厘米的长方形,求它的长。
【例题5】 长方体不同的三个面的面积分别为10平方厘米、15平方厘米和6平方厘米。这个长方体的体积是多少立方厘米?
练习5:
1.一个长方体,不同的三个面的面积分别是25平方厘米、18平方厘米和8平方厘米,这个长方体的体积是多少立方厘米?
2.一个长方体,不同的三个面的面积分别是35平方厘米、21平方厘米和15平方厘米,且长、宽、高都是质数,这个长方体的体积是多少立方厘米?
3.一个长方体的体积是48立方厘米,并且长、宽、高是三个连续的偶数。这个长方体的表面积是多少平方厘米?
4
长方体和正方体(三)
一、知识要点
解答有关长方体和正方体的拼、切问题,除了要切实掌握长方体、正方体的特征,熟悉计算方法,仔细分析每一步操作后表面几何体积的等比情况外,还必须知道:把一个长方体或正方体沿水平方向或垂直方向切割成两部分,新增加的表面积等于切面面积的两倍。 二、精讲精练
【例题1】 一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的正方体若干块,表面积增加多少厘米?
练习1:
1.把27块棱长是1厘米的小正方体堆成一个大正方体,这个大正方体的表面积比原来所有的小正方体的表面积之和少多少平方厘米? 大正方体的表面积为3*3*6=54 小正方体的表面积为1*1*6*27=162 162-54=108
2.有一个棱长是1米的正方体木块,如果把它锯成体积相等的8个小正方体,表面积增加多少平方米?
表面积增加=8*6*1/2*1/2-6*1*1=6.
表面积增加了6平方米.
【例题2】 有一个正方体木块,把它分成两个长方体后,表面积增加了24平方厘米,这个正方体木块原来的表面积是多少平方厘米?
练习2:
1.把三个棱长都是2厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?
2.有一个正方体木块,长4分米、宽3分米、高6分米,现在把它锯成两个长方体,表面积最多增加多少平方分米?
3.有三块完全一样的长方体积木,它们的长是8厘米、宽4厘米、高2厘米,现把三块积木拱成一个大的长方体,怎样搭表面积最大?最大是多少平方厘米?
5
【例题3】 一个正方体的表面涂满了红色,然后如下图切开,切开的小正方体中: (1)三个面涂有红色的有几个? (2)二个面涂有红色的有几个? (3)一个面涂有红色的有几个? (4)六个面都没有涂色的有几个?
练习3:
1.把一个棱长是5厘米的正方体的六个面涂满红色,然后切成1立方厘米的小正方体,这些小正方体中,一面涂红色的、二面涂红色的、三面涂红色的以及六个面都没有涂色的各有多少个?
2.把若干个体积相同的小正方体堆成一个大的正方体,然后在大正方体的表面涂上颜色,已知两面被涂上红色的小正方体共有24个,那么,这些小正方体一共有多少个?
【例题4】 一个长方体的长、宽、高分别是6厘米、5厘米和4厘米,若把它切割成三个体积相等的小长方体,这三个小长方体表面积的和最大是多少平方厘米?
练习4:
1.有三块完全一样的长方体木块,每块长8厘米、宽5厘米、高3厘米。要把它们粘成一个大的长方体,这个长方体的表面积最大是多少平方厘米?最小是多少平方厘米?
2.把一个长、宽、高分别为7厘米、6厘米、5厘米的长方体,截成两个长方体,使这两个长方体的表面积的和最大,求它们的表面积和是多少平方厘米?
6
【例题3】 一个正方体的表面涂满了红色,然后如下图切开,切开的小正方体中: (1)三个面涂有红色的有几个? (2)二个面涂有红色的有几个? (3)一个面涂有红色的有几个? (4)六个面都没有涂色的有几个?
练习3:
1.把一个棱长是5厘米的正方体的六个面涂满红色,然后切成1立方厘米的小正方体,这些小正方体中,一面涂红色的、二面涂红色的、三面涂红色的以及六个面都没有涂色的各有多少个?
2.把若干个体积相同的小正方体堆成一个大的正方体,然后在大正方体的表面涂上颜色,已知两面被涂上红色的小正方体共有24个,那么,这些小正方体一共有多少个?
【例题4】 一个长方体的长、宽、高分别是6厘米、5厘米和4厘米,若把它切割成三个体积相等的小长方体,这三个小长方体表面积的和最大是多少平方厘米?
练习4:
1.有三块完全一样的长方体木块,每块长8厘米、宽5厘米、高3厘米。要把它们粘成一个大的长方体,这个长方体的表面积最大是多少平方厘米?最小是多少平方厘米?
2.把一个长、宽、高分别为7厘米、6厘米、5厘米的长方体,截成两个长方体,使这两个长方体的表面积的和最大,求它们的表面积和是多少平方厘米?
6
正在阅读:
五年级下册数学长方体与正方体奥数练习题03-17
小学数学分数说课稿07-23
广西北海市合浦县第五中学人教版七年级上册历史导学案17 西晋的03-18
七大经验助解住房难题04-25
公需科目心理健康与心理调适考试试卷04-19
2019年春人教版初中化学中考复习单元过关练习(常见气体的制取与净化)10-02
江苏省无锡市璜塘、峭岐届九年级化学上学期12月联考试题新人教版01-21
2014年商务助理年度个人总结模板03-01
外资企业股权转让程序07-28
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- 正方体
- 长方体
- 奥数
- 练习题
- 下册
- 年级
- 数学
- 微机原理与接口技术知识点总结
- 高一物理竞赛讲义八 - 平衡的种类
- 岗位说明书(修订样本) - 图文
- 从中庸章谈宗庙祭祀与治国的关系
- 电子技术基础-检测题习题解析(附带答案详解)
- 野外地质岩芯编录知识要点
- 三年级第13周第3课时 简单的时间计算 - 图文
- 金融学复习习题汇总1
- 2017年国开全核心课《现代汉语专题》形考试题及答案
- 连铸坯裂纹的影响因素和对策分析
- 第四学期调研报告(模板)
- 医院护理质量检查反馈情况
- 2014会计基础各章节习题及答案
- apm飞行操作 - 图文
- 2001年全国硕士研究生入学统一考试《数学三》真题
- 天然气涨价我们能做什么
- DS7400常用调试及故障说明
- 第三版本实例有限公司章程
- 初中文言文考前演练:《王顾左右而言他》(含题目和答案)
- 大学生网络创业交流会 word 邀请函