(北师大版)山东省青岛市胶州市七年级(下)期中数学试卷 doc
更新时间:2023-12-18 02:57:01 阅读量: 教育文库 文档下载
- 青岛市北师大附属学校推荐度:
- 相关推荐
2019-2020学年山东省青岛市胶州市七年级(下)期中数学试卷
一、选择题(共8小题,每小题3分,满分24分)
1.(3分)下列计算错误的是( )
566232336224
A.x?x=x B.a÷a=a C.(ab)=ab D.(﹣a)=a 2.(3分)如图,直线a,b分别与c相交,在标出的角∠2,∠3,∠4,∠5中,与∠1是同位角的是( )
A.∠2 B.∠3 C.∠4 D.∠5 3.(3分)如图,OD⊥AB于点O,若∠1=∠2,则图中互补的角共有( )
A.5对 B.4对 C.3对 D.2对
82
4.(3分)已知光在真空中的速度大约为3×10m/s,太阳光照射到地球上大约需要5×10s,则地球与太阳的距离大约是( )
651011
A.0.6×10m B.6×10m C.15×10m D.1.5×10m
2
5.(3分)若(x+3)(x+n)=x+mx﹣15,则m的值为( ) A.﹣5 B.﹣2 C.5 D.2
2
6.(3分)若长方形面积是2a﹣2ab+6a,一边长为2a,则这个长方形的周长是( ) A.6a﹣2b+6 B.2a﹣2b+6 C.6a﹣2b D.3a﹣b+3 7.(3分)如图,已知∠1=∠2=∠3=50°,则∠4的度数为( )
A.50° B.100° C.130° D.150° 8.(3分)我们知道,在弹性限度内,弹簧挂上重物后会伸长.已知一根弹簧的长度(cm)与所挂重物的质量(kg)之间的关系如下表,则下列说法错误的是( )
0 1 2 3 4 5 重物的质量(kg) 12 12.5 13 13.5 14 14.5 弹簧的长度(cm) A.在这一变化过程中,重物的质量是自变量,弹簧的长度是因变量 B.当所挂重物的质量是4kg时,弹簧的长度是14cm
C.在弹性限度内,当所挂重物的质量是6kg时,弹簧的长度是16cm D.当不挂重物时,弹簧的长度应为12cm
1
二、填空题(本大题共有8小题,每小题3分,共24分)
9.(3分)计算:2xy?(﹣xy)= .
10.(3分)计算: ÷(﹣xy)=﹣6x+2y﹣1.
11.(3分)空气的密度是0.001293g/cm,把这个数据用科学记数法表示是 g/cm. 12.(3分)如图所示,一个破损的扇形零件,利用图中的量角器可以量出这个扇形零件的圆心角的度数,测量的根据是 .
3
2
2
3
13.(3分)将两个完全一样的三角板按如图位置放在一起,就可以画出两条相互平行的直线,这样画图的原理是 .
14.(3分)如图,BC⊥AE于点C,AB∥CD,∠B=48°,则∠ECD= °.
2016
15.(3分)计算:2×(﹣0.5)= .
22
16.(3分)若(x﹣2015)+(x﹣2016)=1,则(x﹣2015)(x﹣2016)= .
2015
三、作图题(本大题共有1小题,共4分)
17.(4分)已知:如图,D是∠ABC的边AB上一点. 求作:射线DE,使DE∥BC,交AC于E.
三、解答题(本大题共有8小题,共68分)
18.(12分)计算:
22233
①(﹣3xy)?(2xy)÷(﹣9xy); ②利用乘法公式计算:103×97;
2
③(2m+n)﹣(2m+n)(2m﹣n).
2
19.(6分)先化简,再求值:[(3a﹣b)(a﹣2b)﹣b(a+2b)﹣a]÷2a,其中a=,b=﹣1. 20.(6分)如图,△ABC的边AB=6cm,当AB边上的高由小到大变化时,△ABC的面积也随之发生了变化.
(1)在这个变化过程中,自变量、因变量各是什么?
2
(2)设AB边上的高为h(cm),请写出△ABC的S(cm)与高h(cm)的关系式; (3)当AB边上的高由2cm变化到10cm时,△ABC的面积是如何变化的?
21.(8分)如图,AD∥BC,∠BAD=∠BCD,AE,CF分别是∠BAD,∠BCD的角平分线,由此判断AE∥CF,请说明理由.
22.(6分)如图,AB∥CD,BE⊥DE,∠B=52°,试确定∠D的度数并说明理由.
23.(8分)一天之中,海水的水深是不同的,如图是某港口从0时到12时的水深情况,结合图象回答下列问题:
(1)如图描述了哪两个变量之间的关系?其中自变量是什么?因变量是什么? (2)大约什么时刻港口的水最深?深度约是多少? (3)图中A点表示的是什么?
(4)在什么时间范围内,水深在增加?什么时间范围内,水深在减少?
2n
24.(10分)我们已经知道(a+b)=a+2ab+b,(a+b)(n为非负整数)的计算结果有什么规律呢?实际上我国宋代就有数学家进行了研究:
n
如果将(a+b)(n为非负整数)的每一项按字母a的次数由大到小排列,就可以得到下面的等式:
0
(a+b)=1,它只有一项,系数为1;
1
(a+b)=a+b,它有两项,系数分别为1,1;
222
(a+b)=a+2ab+b,它有三项,系数分别为1,2,1;
33223
(a+b)=a+3ab+3ab+b,它有四项,系数分别为1,3,3,1; …
2
2
3
如果将上述每个式子的各项系数排成如图的表格,我们可以发现一些规律,聪明的你一定也发现了,请你根据发现的规律解答下面的问题:
4
(1)尝试写出(a+b)的结果,并用整式乘法的相关知识进行验证;
5
(2)请直接写出(a+b)共有 项,各项系数的和等于 ;
n
(3)(a+b)(n为非负整数)共有 项,各项系数的和等于 .
25.(12分)将一副三角板中的两根直角顶点C叠放在一起(如图①),其中∠A=30°,∠B=60°,∠D=∠E=45°.
(1)若∠BCD=150°,求∠ACE的度数;
(2)试猜想∠BCD与∠ACE的数量关系,请说明理由;
(3)若按住三角板ABC不动,绕顶点C转动三角板DCE,试探究∠BCD等于多少度时,CD∥AB,并简要说明理由.
4
2019-2020学年山东省青岛市胶州市七年级(下)期中数学试卷
参考答案与试题解析
一、选择题(共8小题,每小题3分,满分24分)
1.(3分)(2016春?胶州市期中)下列计算错误的是( )
566232336224
A.x?x=x B.a÷a=a C.(ab)=ab D.(﹣a)=a
【分析】直接利用同底数幂的乘除法运算法则,以及积的乘方运算法则分别化简求出答案.
56
【解答】解:A、x?x=x,正确,不合题意;
623
B、a÷a=a,错误,符合题意;
2336
C、(ab)=ab,正确,不合题意;
224
D、(﹣a)=a,正确,不合题意; 故选:B.
【点评】此题主要考查了同底数幂的乘除法运算、积的乘方运算,正确掌握运算法则是解题关键. 2.(3分)(2016春?胶州市期中)如图,直线a,b分别与c相交,在标出的角∠2,∠3,∠4,∠5中,与∠1是同位角的是( )
A.∠2 B.∠3 C.∠4 D.∠5
【分析】利用同位角、内错角、同旁内角的定义判断即可. 【解答】解:A、∠1与∠2是同旁内角,此选项错误; B、∠1与∠3是内错角,此选项错误; C、∠1与∠4没有直接关系,此选项错误; D、∠1与∠5是同位角,此选项正确; 故选:D.
【点评】此题主要考查了“三线八角”,同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形是解答此题的关键. 3.(3分)(2016春?胶州市期中)如图,OD⊥AB于点O,若∠1=∠2,则图中互补的角共有( )
A.5对 B.4对 C.3对 D.2对 【分析】根据若两个角的和等于180°,则这两个角互补,即可计算本题. 【解答】解:∵∠1=∠2, ∴∠BOC=∠AOE,
∴∠1+∠BOC=∠1+∠AOE=∠2+∠BOC=∠2+∠AOE=∠AOD+∠BOD=180°, ∴图中互补的角共有5对.
5
故选:A.
【点评】本题考查了余角和补角,关键是掌握若两个角的和等于180°,则这两个角互补的知识点,难度适中.
8
4.(3分)(2016春?胶州市期中)已知光在真空中的速度大约为3×10m/s,太阳光照射到地球上大约
2
需要5×10s,则地球与太阳的距离大约是( )
651011
A.0.6×10m B.6×10m C.15×10m D.1.5×10m 【分析】直接利用有理数的乘法结合科学记数法表示方法得出答案.
8211
【解答】解:由题意可得,地球与太阳的距离大约是:3×10×5×10=1.5×10(m). 故选:D.
【点评】此题主要考查了科学记数法以及有理数乘法,正确掌握运算法则是解题关键.
2
5.(3分)(2016春?胶州市期中)若(x+3)(x+n)=x+mx﹣15,则m的值为( ) A.﹣5 B.﹣2 C.5 D.2 【分析】先计算(x+3)(x+n),然后将各个项的系数依次对应相等,得出m、n的方程组,解方程组求出m、n即可.
22
【解答】解:(x+3)(x+n)=x+nx+3x+3n=x+(n+3)x+3n,
2
∵(x+3)(x+n)=x+mx﹣15, 22
∴x+(n+3)x+3n=x+mx﹣15, 可得:解得:
, ,
故选:B.
【点评】本题主要考查多项式乘多项式,解题此类题目的基本思想是等式的左右两边各个项的系数相等,解题的关键是将等式的左右两边整理成相同的形式.
2
6.(3分)(2016春?胶州市期中)若长方形面积是2a﹣2ab+6a,一边长为2a,则这个长方形的周长是( )
A.6a﹣2b+6 B.2a﹣2b+6 C.6a﹣2b D.3a﹣b+3
【分析】根据长方形面积除以一边求出另一边,进而求出长方形的周长即可.
2
【解答】解:根据题意得:(2a﹣2ab+6a)÷(2a)=a﹣b+3, 则这个长方形的周长为2(2a+a﹣b+3)=6a﹣2b+6, 故选A
【点评】此题考查了整式的除法,熟练掌握除法法则是解本题的关键. 7.(3分)(2015秋?胶州市期末)如图,已知∠1=∠2=∠3=50°,则∠4的度数为( )
A.50° B.100° C.130° D.150°
【分析】据平行线的判定得出AB和CD平行,根据平行线的性质求出∠4=∠NEC,求出∠NEC即可. 【解答】解:∵∠1=∠BFE=50°, ∴∠BFE=∠2=50°, ∴AB∥CD,
6
∴∠4=∠NEC, ∵∠NEC=180°﹣∠3=180°﹣50°=130°, ∴∠4=130°, 故选(C).
【点评】本题考查了平行线的性质和判定的应用,主要考查学生的推理和计算能力. 8.(3分)(2016春?胶州市期中)我们知道,在弹性限度内,弹簧挂上重物后会伸长.已知一根弹簧的长度(cm)与所挂重物的质量(kg)之间的关系如下表,则下列说法错误的是( )
0 1 2 3 4 5 重物的质量(kg) 12 12.5 13 13.5 14 14.5 弹簧的长度(cm) A.在这一变化过程中,重物的质量是自变量,弹簧的长度是因变量 B.当所挂重物的质量是4kg时,弹簧的长度是14cm
C.在弹性限度内,当所挂重物的质量是6kg时,弹簧的长度是16cm D.当不挂重物时,弹簧的长度应为12cm
【分析】根据表格数据可得y与x成一次函数关系,设y=kx+b,取两点代入可得出y与x的关系式,进而分析得出答案.
【解答】解:由表格可得:y随x的增大而增大;在这一变化过程中,重物的质量是自变量,弹簧的长度是因变量,故选项A正确,不合题意; 设y=kx+b,
将点(0,12),(2,13)代入可得:
,
解得:.
故y=x+12,
当x=4时,y=14cm,故选项B正确,不合题意; 当x=6时,y=15cm,故选项C错误,符合题意;
当x=0时,y=12cm,即弹簧不挂物体时的长度是12cm,故选项D正确,不合题意. 故选:C.
【点评】本题考查了函数关系式及函数值的知识,解答本题的关键是观察表格中的数据,得出y与x的函数关系式.
二、填空题(本大题共有8小题,每小题3分,共24分)
9.(3分)(2016春?胶州市期中)计算:2xy?(﹣xy)= ﹣2xy .
【分析】根据积的乘方,可得单项式的乘法,根据单项式的乘法,可得答案.
23354
【解答】解:原式=2xy?(﹣xy)=﹣2xy,
54
故答案为;﹣2xy.
【点评】本题考查了单项式乘单项式,单项式乘单项式,系数乘系数,同底数的幂相乘.
10.(3分)(2016春?胶州市期中)计算: (3xy﹣xy+xy) ÷(﹣xy)=﹣6x+2y﹣1.
2
2
2
3
54
7
【分析】直接利用整式的除法运算法则进而求出答案.
【解答】解:由题意可得:(﹣6x+2y﹣1)×(﹣xy)=3xy﹣xy+xy. 故答案为:(3xy﹣xy+xy).
【点评】此题主要考查了整式的除法运算等知识,正确掌握运算法则是解题关键.
3
11.(3分)(2016春?胶州市期中)空气的密度是0.001293g/cm,把这个数据用科学记数法表示是 1.293
﹣32×10 g/cm.
【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【解答】解:空气的密度是0.001293g/cm,把这个数据用科学记数法表示是 1.293×10g/cm, 故答案为:1.293×10.
【点评】本题考查用科学记数法表示较小的数,一般形式为a×10,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定. 12.(3分)(2016春?胶州市期中)如图所示,一个破损的扇形零件,利用图中的量角器可以量出这个扇形零件的圆心角的度数,测量的根据是 对顶角相等 .
﹣n
﹣3
﹣n
22
22
3﹣32
【分析】由题意知,一个破损的扇形零件的圆心角与其两边的反向延长线组的角是对顶角,根据对顶角的性质解答即可;
【解答】解:由题意得,扇形零件的圆心角与其两边的反向延长线组的角是对顶角.因为对顶角相等,所以利用图中的量角器可以量出这个扇形零件的圆心角的度数. 故答案为:对顶角相等.
【点评】本题考查了对顶角的定义、性质,有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角. 13.(3分)(2016春?胶州市期中)将两个完全一样的三角板按如图位置放在一起,就可以画出两条相互平行的直线,这样画图的原理是 内错角相等,两直线平行 .
【分析】利用三角形板的特征可确定∠1=∠2,然后根据平行线的判定方法可判断a∥b. 【解答】解:如图,
由画法得∠1=∠2, 所以a∥b.
故答案为内错角相等,两直线平行.
8
【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作. 14.(3分)(2016春?胶州市期中)如图,BC⊥AE于点C,AB∥CD,∠B=48°,则∠ECD= 42 °.
【分析】由BC与AE垂直,得到三角形ABC为直角三角形,利用直角三角形两锐角互余,求出∠A的度数,再利用两直线平行同位角相等即可求出∠ECD的度数. 【解答】解:∵BC⊥AE, ∴∠ACB=90°,
在Rt△ABC中,∠B=48°, ∴∠A=90°﹣∠B=42°, ∵CD∥AB,
∴∠ECD=∠A=42°, 故答案为:42.
【点评】此题考查了平行线的性质,以及垂线,熟练掌握平行线的性质是解本题的关键.
20152016
15.(3分)(2016春?胶州市期中)计算:2×(﹣0.5)= 0.5 . 【分析】直接利用积的乘方运算法则将原式变形求出答案.
20152016
【解答】解:2×(﹣0.5)
2015
=[2×(﹣0.5)]×(﹣0.5) =﹣1×(﹣0.5) =0.5.
故答案为:0.5.
【点评】此题主要考查了积的乘方运算,正确应用积的乘方运算法则是解题关键.
22
16.(3分)(2016春?胶州市期中)若(x﹣2015)+(x﹣2016)=1,则(x﹣2015)(x﹣2016)= 0 .
222
【分析】由[(x﹣2015)﹣(x﹣2016)]=(x﹣2015)﹣2(x﹣2015)(x﹣2016)+(x﹣2016)可得1=1﹣2(x﹣2015)(x﹣2016),即可知答案.
22
【解答】解:∵[(x﹣2015)﹣(x﹣2016)]=(x﹣2015)﹣2(x﹣2015)(x﹣2016)+(x﹣2016)2,
22
且(x﹣2015)+(x﹣2016)=1, ∴1=1﹣2(x﹣2015)(x﹣2016), ∴(x﹣2015)(x﹣2016)=0, 故答案为:0.
2
【点评】本题主要考查完全平方公式,观察原式的特点发现[(x﹣2015)﹣(x﹣2016)]=(x﹣2015)22﹣2(x﹣2015)(x﹣2016)+(x﹣2016)是解题的关键.
三、作图题(本大题共有1小题,共4分)
17.(4分)(2016春?胶州市期中)已知:如图,D是∠ABC的边AB上一点. 求作:射线DE,使DE∥BC,交AC于E.
9
【分析】作一个角等于已知∠B即可,根据同位角相等,则两直线平行.
【解答】解:作法:①以B为圆心,以任意长为半径画弧交BA、BC于F、G, ②以D为圆心,以BF长为半径画弧交BA于H, ③以H为圆心,以FG长为半径画弧,两弧交于M, ④作射线DM,交AC于E, 则射线DE就是所求作的射线;
理由:∵∠ADE=∠B, ∴DE∥BC;
【点评】本题考查了基本作图﹣作一个角等于已知角,同时也考查了平行线的判定:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行.
三、解答题(本大题共有8小题,共68分)
18.(12分)(2016春?胶州市期中)计算:
22233
①(﹣3xy)?(2xy)÷(﹣9xy); ②利用乘法公式计算:103×97;
2
③(2m+n)﹣(2m+n)(2m﹣n). 【分析】(1)根据整式的混合运算法则,先乘方后乘除的法则计算即可. (2)利用平方差公式计算即可.
(3)利用完全平方公式以及平方差公式化简计算即可.
422332
【解答】解:(1)原式=9xy?2xy÷(﹣9xy)=﹣xy.
2
(2)原式=(100+3)(100﹣3)=100﹣9=9991.
22222
(3)原式=4m+4mn+n﹣(4m﹣n)=4mn+2n.
【点评】本题考查整式的混合运算法则、乘法公式、利用乘法公式简便运算等知识,解题的关键是灵活应用这些知识解决问题,记住利用公式可以简便运算,属于中考常考题型. 19.(6分)(2016春?胶州市期中)先化简,再求值:[(3a﹣b)(a﹣2b)﹣b(a+2b)﹣a]÷2a,其中a=,b=﹣1.
【分析】原式中括号中利用多项式乘以多项式,单项式乘以多项式法则计算,去括号合并后利用多项式乘以单项式法则计算得到最简结果,把a与b的值代入计算即可求出值.
10
【解答】解:原式=(3a﹣7ab+2b﹣ab﹣2b﹣a)÷2a
2
=(3a﹣8ab﹣a)÷2a =﹣4b﹣,
当a=,b=﹣1时,原式=+4﹣=3.
【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键. 20.(6分)(2016春?胶州市期中)如图,△ABC的边AB=6cm,当AB边上的高由小到大变化时,△ABC的面积也随之发生了变化.
(1)在这个变化过程中,自变量、因变量各是什么?
2
(2)设AB边上的高为h(cm),请写出△ABC的S(cm)与高h(cm)的关系式; (3)当AB边上的高由2cm变化到10cm时,△ABC的面积是如何变化的?
222
【分析】(1)△ABC的面积也随高线的变化而变化,因而AB边上的高是自变量,△ABC的面积是因变量.
(2)根据三角形的面积公式就可以得到.
(3)已知h的几个值就可以求出相应的函数值.得到图表,根据图表就可以得到当h每增加1cm时,S的变化. 【解答】解:(1)在这个变化过程中,AB边上的高是自变量,△ABC的面积是因变量.
(2)S=×6h=3h,即S与h之间的关系式是S=3h.
(3)列表格如下: h(cm) 2 3 4 2 s(cm) 6 5 6 7 8 9 15 18 221 4 27 29 12 10 30 由表可看出,当h每增加1cm时,S增加3cm.
【点评】本题主要考查列函数关系式,利用三角形的面积公式S=ah,可找出问题的突破口,体会高与面积之间的变化关系. 21.(8分)(2016春?胶州市期中)如图,AD∥BC,∠BAD=∠BCD,AE,CF分别是∠BAD,∠BCD的角平分线,由此判断AE∥CF,请说明理由.
【分析】由角平分线和已知条件组成∠DAE=∠BCF,由平行线的性质得出∠DAE=∠AEB,证出∠AEB=∠BCF,即可得出AE∥CF.
【解答】证明:∵AE,CF分别是∠BAD,∠BCD的角平分线,
11
∴∠DAE=∠BAD,∠BCF=∠BCD,
∵∠BAD=∠BCD, ∴∠DAE=∠BCF, ∵AD∥BC,
∴∠DAE=∠AEB, ∴∠AEB=∠BCF, ∴AE∥CF.
【点评】本题考查了平行线的判定与性质;熟记平行线的判定与性质,证出∠AEB=∠BCF是解决问题的关键. 22.(6分)(2016春?胶州市期中)如图,AB∥CD,BE⊥DE,∠B=52°,试确定∠D的度数并说明理由.
【分析】首先过点E作EF∥AB,由AB∥CD,即可得EF∥AB∥CD,根据两直线平行,内错角相等,即可得∠1=∠B,∠2=∠D,又由BE⊥DE,即可求得∠B与∠D互余. 【解答】解:∠B+∠D=90°. 理由:过点E作EF∥AB, ∵AB∥CD,
∴EF∥AB∥CD,
∴∠1=∠B,∠2=∠D, ∵BE⊥DE, ∴∠1+∠2=90°, ∴∠B+∠D=90°, ∴∠D=90°﹣∠B=90°﹣52°=38°.
【点评】此题考查了平行线的性质与垂直的定义.注意两直线平行,内错角相等.注意掌握辅助线的作法是解此题的关键. 23.(8分)(2016春?胶州市期中)一天之中,海水的水深是不同的,如图是某港口从0时到12时的水深情况,结合图象回答下列问题:
(1)如图描述了哪两个变量之间的关系?其中自变量是什么?因变量是什么? (2)大约什么时刻港口的水最深?深度约是多少? (3)图中A点表示的是什么?
(4)在什么时间范围内,水深在增加?什么时间范围内,水深在减少?
12
【分析】直接根据图象信息回答即可. 【解答】解:(1)表格反映了港口的水深和时间之间的关系,其中时间是自变量,港口的水深是因变量;
(2)3时港口的水最深,深度约是7m; (3)图中A点表示的是6时港口的水深;
(4)从0时到3时及从9时到12时水深在增加,从3时到9时水深在减少.
【点评】本题考查了函数的图象的读图能力,正确根据图象的性质和数据进行分析,读出实际意义.
222n
24.(10分)(2016春?胶州市期中)我们已经知道(a+b)=a+2ab+b,(a+b)(n为非负整数)的计算结果有什么规律呢?实际上我国宋代就有数学家进行了研究:
n
如果将(a+b)(n为非负整数)的每一项按字母a的次数由大到小排列,就可以得到下面的等式:
0
(a+b)=1,它只有一项,系数为1;
1
(a+b)=a+b,它有两项,系数分别为1,1;
222
(a+b)=a+2ab+b,它有三项,系数分别为1,2,1;
33223
(a+b)=a+3ab+3ab+b,它有四项,系数分别为1,3,3,1; …
如果将上述每个式子的各项系数排成如图的表格,我们可以发现一些规律,聪明的你一定也发现了,请你根据发现的规律解答下面的问题:
4
(1)尝试写出(a+b)的结果,并用整式乘法的相关知识进行验证;
5
(2)请直接写出(a+b)共有 6 项,各项系数的和等于 32 ;
nn
(3)(a+b)(n为非负整数)共有 n+1 项,各项系数的和等于 2 .
4
【分析】(1)根据规律写出(a+b)的结果,并用整式乘法的法则进行计算即可;
(2)根据各项系数以及字母指数的变化规律写出各项,得出项数以及各项系数的和即可;
n
(3)根据项数以及各项系数的和的变化规律,得出(a+b)的项数以及各项系数的和即可.
4432234
【解答】解:(1)(a+b)=a+4ab+6ab+4ab+b
4
验证:(a+b)
22
=(a+b)(a+b)
2222=(a+2ab+b)(a+2ab+b) 432234=a+4ab+6ab+4ab+b
5
(2)根据规律可得,(a+b)共有6项, 各项系数分别为:1,5,10,10,5,1, 它们的和等于32; 故答案为:6,32;
13
(3)根据规律可得,(a+b)共有(n+1)项,
0
∵1=2
1
1+1=2
2
1+2+1=2
3
1+3+3+1=2
nn
∴(a+b)各项系数的和等于2
n
故答案为:n+1,2
【点评】本题主要考查了完全平方式的应用,能根据杨辉三角得出规律是解此题的关键.在应用完全平方公式时,要注意:①公式中的a,b可是单项式,也可以是多项式;②对形如两数和(或差)的平方的计算,都可以用这个公式. 25.(12分)(2016春?胶州市期中)将一副三角板中的两根直角顶点C叠放在一起(如图①),其中∠A=30°,∠B=60°,∠D=∠E=45°. (1)若∠BCD=150°,求∠ACE的度数;
(2)试猜想∠BCD与∠ACE的数量关系,请说明理由;
(3)若按住三角板ABC不动,绕顶点C转动三角板DCE,试探究∠BCD等于多少度时,CD∥AB,并简要说明理由.
n
【分析】(1)由∠BCD=150°,∠ACB=90°,可得出∠DCA的度数,进而得出∠ACE的度数;
(2)根据(1)中的结论可提出猜想,再由∠BCD=∠ACB+∠ACD,∠ACE=∠DCE﹣∠ACD可得出结论;
(3)根据平行线的判定定理,画出图形即可求解. 【解答】解:(1)∵∠BCA=∠ECD=90°,∠BCD=150°, ∴∠DCA=∠BCD﹣∠BCA=150°﹣90°=60°, ∴∠ACE=∠ECD﹣∠DCA=90°﹣60°=30°;
(2)∠BCD+∠ACE=180°,理由如下: ∵∠BCD=∠ACB+∠ACD=90°+∠ACD, ∠ACE=∠DCE﹣∠ACD=90°﹣∠ACD, ∴∠BCD+∠ACE=180°;
(3)当∠BCD=120°或60°时,CD∥AB. 如图②,根据同旁内角互补,两直线平行, 当∠B+∠BCD=180°时,CD∥AB,此时∠BCD=180°﹣∠B=180°﹣60°=120°; 如图③,根据内错角相等,两直线平行, 当∠B=∠BCD=60°时,CD∥AB.
14
【点评】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.熟练掌握定理并且能够准确识图是解题的关键.
15
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- 胶州市
- 青岛市
- 数学试卷
- 山东省
- 北师大
- 期中
- 年级
- doc
- 关于深化中小学教师职称制度改革的指导意见
- 建筑工程质量与安全管理期末试题
- 课后测试
- 国家税务总局关于土地增值税若干具体问题的公告(讨论稿)68
- 会计基础习题集第一到第三章
- 松江区2016年高三历史一模试卷 - 图文
- 中国装配式住宅行业研究分析报告目录
- 城市长期发展战略 - 2036伦敦空间发展战略规划
- 关于加强县域文化的几点思考
- 《计算机网络》第五版课后习题答案完整版(包含十章) - 图文
- 《马克思主义基本原理》课程模拟题(2012B)
- WPE制作外挂教程超详细
- EDA 数字时钟的课程设计论文(宁波工程学院电科版)
- 少大队委宣传委竞选演讲稿
- 南集中心小学五语文上周末练习题18
- IPMP课堂练习题汇总(答案)
- 上交大媒体与设计学院考研初试经验分享
- 客户拒绝的26条应对法则
- 郭一男 水产微生物综合实验报告 - 图文
- 关于云南白药股份有限公司股票投资分析报告修改后汇编