Idealizer Rings and Noncommutative Projective Geometry
更新时间:2023-07-27 06:50:01 阅读量: 实用文档 文档下载
- idealize推荐度:
- 相关推荐
We study some properties of graded idealizer rings with an emphasis on applications to the theory of noncommutative projective geometry. In particular we give examples of rings for which the $\chi$-conditions of Artin and Zhang and the strong noetherian pr
4
2
n
a
J
7
2
]
A
R
.
th
a
m
[
2
v
2
5
3
/
tha
m
:v
i
Xr
aIDEALIZERRINGSANDNONCOMMUTATIVEPROJECTIVEGEOMETRYDANIELROGALSKIAbstract.Westudynoetheriangradedidealizerringswhichhaveverydi er-entbehaviorontherightandleftsides.Inparticular,weconstructnoetheriangradedalgebrasToveranalgebraicallyclosed eldkwiththefollowingprop-erties:Tisleftbutnotrightstronglynoetherian;T kTisleftbutnotrightnoetherianandT kTopisnoetherian;theleftnoncommutativeprojectiveschemeT-Projisdi erentfromtherightnoncommutativeprojectiveschemeProj-T;andTsatis esleftχdforsomed≥2yetfailsrightχ1.1.IntroductionAsageneralprinciple,ringswhicharebothleftandrightnoetherianareexpectedtohaverathersymmetricpropertiesontheirleftandtherightsides.Thethemeofthispaperistoshowthatsuchintuitionfailsquiteutterlyforcertainpropertieswhichareimportantinthetheoryofnoncommutativeprojectivegeometry.Ourmainresultisthefollowing.Theorem1.1.(Theorem8.2)Foranyintegerd≥2,thereexistsaconnected nitelypresentedgradednoetheriank-algebraT,wherekisanalgebraicallyclosed eld,suchthat(1)Tisstronglyleftnoetherian,butnotstronglyrightnoetherian;(2)T kTisleftbutnotrightnoetherian,whileT kTopisnoetherian;(3)thenoncommutativeprojectiveschemesT-ProjandProj-Thaveequivalentunderlyingcategories,butnon-isomorphicdistinguishedobjects;and(4)Tsatis esχd 1butnotχdontheleft,yetTfailsχ1ontheright.Intheremainderoftheintroduction,wewillde neandbrie ydiscussalloftherelevanttermsinthestatementofthetheoremandindicatehowtheringTisconstructed.Foramoredetailedintroductiontothetheoryofnoncommutativegeometrywhichmotivatesthestudyoftheseproperties,seethesurveyarticle[18].
IfRisak-algebra,thenRiscalledstronglyleft(right)noetherianifR kBisleft(right)noetherianforeverycommutativenoetheriank-algebraB.Thestudyofthestrongnoetherianconditionforgradedringsinparticularhasrecentlybecomeimportantbecauseoftheappearanceofthispropertyinthehypothesesofseveraltheoremsinnoncommutativegeometry.Mostnotably,ArtinandZhangshowedthatifAisastronglynoetheriangradedk-algebra,thenthesetofgradedA-moduleswithagivenHilbertfunctionisparametrizedbyaprojectivescheme[3].It
We study some properties of graded idealizer rings with an emphasis on applications to the theory of noncommutative projective geometry. In particular we give examples of rings for which the $\chi$-conditions of Artin and Zhang and the strong noetherian pr
2DANIELROGALSKI
isnotaprioriobviousthatanynoetherian nitelygeneratedk-algebrawhichisnotstronglynoetherianshouldexist;in[13],RescoandSmallgavethe rst(ungraded)suchexample.Morerecently,theauthorshowedthatthereexistnoncommutativenoetheriangradedringswhicharenotstronglynoetherian(oneitherside)[14].Theorem1.1(1)showsthatitisalsopossibleforthestrongnoetherianpropertytofailononesideonlyofanoetheriangradedring.
Itisnaturaltosuspectthataringforwhichthenoetherianpropertyfailsaftercommutativebaseringextensionmightalsohavestrangepropertieswhentensoredwithitselforitsoppositering.Theorem1.1(2)con rmssuchasuspicion.Theexistenceofapairof nitelypresentednoetheriank-algebraswhosetensorproductisnotnoetheriananswers[6,Appendix,OpenProblem16′];ourexampleshowsthatonecaneventakethealgebrasinquestiontobeN-graded. ∞WenowexplainthethirdpartofTheorem1.1.LetA=n=0AnbeanaribtraryN-gradedk-algebra,wherekisanalgebraicallyclosed eld.Inaddition,assumethatAisconnected(A0=k)and nitelygraded(dimkAn<∞foralln≥0).TheleftnoncommutativeprojectiveschemeassociatedtoAisde nedtobethepairA-Proj=(A-Qgr,A).HereA-QgristhequotientcategoryofthecategoryofZ-gradedleftA-modulesbythefullsubcategoryofmoduleswhicharedirectlimitsofmoduleswith nitek-dimension,andA,calledthedistinguishedobject,istheimageofthemoduleAAinA-Qgr.TherightnoncommutativeprojectiveschemeProj-AofAisde nedanalogously.Themotivationforthesede nitionscomesfromthecommutativecase:ifAiscommutativenoetherianandprojA=Xisitsassociatedscheme,thenA-QgrandQchX(thecategoryofquasi-coherentsheavesonX)areequivalentcategories,andAcorrespondsunderthisequivalencetothestructuresheafOX.
TheresultofTheorem1.1(3)showsthatnoncommutativeprojectiveschemesassociatedtothetwosidesofanoncommutativenoetherianringmaywellbequitedi erent.Infact,fortheringTofthetheoremwewillseethatbothT-QgrandQgr-TareequivalenttothecategoryQchXwhereX=Pdforsomed≥2.However,Proj-Tisisomorphicto(QchX,OX),whileT-Projisisomorphicto(QchX,I)whereIisanon-locally-freeidealsheaf.
Nextwediscusstheχconditions,whicharehomologicalpropertiesofgradedringswhicharoseinArtinandZhang’sworkin[2]todevelopthetheoryofnon-commutativeprojectiveschemes.Foreachi≥0,theconnected nitelygradedk-algebraAissaidtosatisfyχiontheleft(right)ifdimkExt
indicatestheExtgroupintheungradedmodulecategory.IfAsatis esχiontheleftforalli≥0thenwesaythatAsatis esχontheleft.Theχ1conditionisthemostimportantoftheseconditions:itensuresthatonecanreconstructtheringA(inlargedegree)fromitsassociatedschemeA-Proj[2,Theorem4.5].Theotherχiconditionsfori≥2areneededtoshowthe nite-dimensionalityofthecohomologygroupsassociatedtoA-Proj[2,Theorem7.4].
Althoughtheχconditionsalwaysholdforcommutativerings,Sta ordandZhangconstructednoetherianringsforwhichχ1failsonbothsides[17].Theau-thorstudiedringsin[14]whichsatisfyχ1butfailχ2onbothsides.Theorem1.1(3)demonstratesyetmorepossiblebehaviorsoftheχconditions: rst,thatχ1mayholdononesidebutnottheotherofanoetherianring;andsecond,thatforanyd≥2thereareringswhichsatisfyχd 1butnotχd(ononeside).
We study some properties of graded idealizer rings with an emphasis on applications to the theory of noncommutative projective geometry. In particular we give examples of rings for which the $\chi$-conditions of Artin and Zhang and the strong noetherian pr
IDEALIZERRINGSANDNONCOMMUTATIVEPROJECTIVEGEOMETRY3
Finally,webrie ydescribetheconstructionoftheringsTsatisfyingTheorem1.1.RecallthatifIisaleftidealinanoetherianringS,thentheidealizerofI,writtenI(I),isthelargestsubringofSwhichcontainsIasa2-sidedideal.Explicitly,I(I)={s∈S|Is I}.NowletSbeagenericZhangtwistofapolynomialring(see§5forthede nition),whichisanoncommutativegradedringgeneratedindegree1.LetIbetheleftidealofSgeneratedbyagenericsubspaceI1 S1withdimI1=dimS1 1.TheringT=I(I) Sisthentheringofinterestwhichwillsatisfyproperties(1)-(4)ofTheorem1.1.
Ourapproachinthispaperwillbeprimarilyalgebraic.Sincethisresearchwascompleted,thearticle[10]hasdevelopedageometricframeworkforthestudyofaclassofalgebrasquitesimilartotheoneswestudyhere.Weremarkthatmanyoftheresultsbelowcanbetranslatedintothisgeometriclanguage,whichwouldallowonetoshowthatthepropertiesofTheorem1.1holdforawiderclassofideal-izerrings.Speci cally,onecouldworkwithidealizersinsidetwistedhomogeneouscoordinateringsoverarbitraryintegralprojectiveschemes,insteadofthespecialcaseofZhangtwistsofpolynomialringsweconsiderhere.Sinceourmainpurposeistoconstructsomeinterestingexamples,wewillnotattempttobeasgeneralaspossibleandwewillpreferthesimpleralgebraicconstructions.
2.Idealizerringsandtheleftandrightnoetherianproperty
Asmentionedintheintroduction,themainexamplesofthispaperwillbecertainidealizerrings.Idealizershavecertainlyprovedusefulinthecreationofcounterex-amplesbefore,butitseemsthatinmanynaturalexamples(forexamplethosein
[12]or[16]),theidealizerofaleftidealisaleftbutnotrightnoetherianring.Sinceourintentionistocreatetwo-sidednoetherianexamples,inthisbriefsectionwewillgivesomegeneralcharacterizationsofboththeleftandrightnoetherianpropertiesforanidealizerring.
LetSbeanoetherianringwithleftidealI,andletT=I(I) S={s∈S|Is I}betheidealizerofI.In[16],Sta ordgivesasu cientconditionfortheleftnoetherianpropertyofT.Inthenextproposition,werestateSta ord’sresultslightlytoshowthatitcharacterizestheleftnoetherianpropertyincaseSisa nitelygeneratedleftT-module,whichoccursinmanyexamplesofinterest.
Proposition2.1.LetTbetheidealizeroftheleftidealIofanoetherianringS,andassumeinadditionthatTSis nitelygenerated.Thefollowingareequivalent:
(1)Tisleftnoetherian.
(2)HomS(S/I,S/J)isanoetherianleftT-module(orT/I-module)forallleft
idealsJofS.
Proof.By[16,Lemma1.2],ifHomS(S/I,S/J)isanoetherianleftT-moduleforallleftidealsJofScontainingI,thenTisleftnoetherian.Soifcondition(2)holds,thenTiscertainlyleftnoetherian.
Ontheotherhand,ifTisleftnoetherian,thensinceTSis nitelygenerated,TSisalsonoetherian.GivenanyleftidealJofS,wecanidentifytheleftT-moduleHomS(S/I,S/J)withthesubfactor{x∈S|Ix J}/JofTS,soHomS(S/I,S/J)isanoetherianT-module.
Next,wegiveacharacterizationoftherightnoetherianpropertyforidealizersofleftideals.ItisformallyquitesimilartothecharacterizationofProposition2.1,
We study some properties of graded idealizer rings with an emphasis on applications to the theory of noncommutative projective geometry. In particular we give examples of rings for which the $\chi$-conditions of Artin and Zhang and the strong noetherian pr
4DANIELROGALSKI
andmaybeofindependentinterest.Infact,theresultappliesmoregenerallytoallsubringsofSinsideofwhichIisanideal.
Proposition2.2.LetSbeanoetherianringwithleftidealI,andletTbeasubringofSsuchthatI T I(I).Thefollowingareequivalent:
(1)Tisrightnoetherian.
(2)T/Iisarightnoetherianring,andTorS1(S/K,S/I)=(K∩I)/KIisa
noetherianrightT-module(orT/I-module)forallrightidealsKofS.
Proof.Theidenti cationofTorS1(S/K,S/I)withthesubfactor(K∩I)/KIofTTfollowsfrom[15,Corollary11.27(iii)],anditisimmediatethat(1)implies(2).
Nowsupposethatcondition(2)holds.SinceSisrightnoetherian,Tisrightnoetherianifandonlyif(JS∩T)/JisanoetherianrightT-moduleforall nitelygeneratedrightT-idealsJ—see[14,Lemma6.10]foraproofofthisinthegradedcase;theproofintheungradedcaseisthesame.LetJbeanarbitrary nitelygeneratedrightidealofT.SinceT/Iisrightnoetherian,(JS∩T)/(JS∩I)andJ/JIarenoetherianrightT/I-modules(the rstinjectsintoT/I,andJsurjectsontothesecond.)Then(JS∩T)/JisrightnoetherianoverTifandonlyif(JS∩I)/JIis.By[15,Corollary11.27(iii)]andthefactthatJSI=JI,wemayidentify(JS∩I)/JIwithTorS1(S/JS,S/I),whichisanoetherianrightmoduleoverTbyhypothesis.ItfollowsthatTisarightnoetherianring.
3.NoncommutativeProjofGradedidealizerrings
Startingwiththissection,wefocusourattentiononidealizerringsinsidecon-nected nitelygradedk-algebrasinparticular.Our rsttaskistostudytheprop-ertiesoftheleftandrightnoncommutativeschemesassociatedtosuchidealizerrings,andsowebeginwithareviewofsomeoftherelevantde nitions.
Below,Awillalwaysbeaconnected nitelygradedk-algebra,andwewriteA-GrforthecategoryofallZ-gradedleftA-modules.AmoduleM∈A-Griscalledtorsionifforeverym∈Mthereissomen≥0suchthat(A≥n)m=0.LetA-TorsbethefullsubcategoryofA-Grconsistingofthetorsionmodules,andde neA-QgrtobethequotientcategoryA-Gr/A-Tors,withquotientfunctorπ:A-Gr→A-Qgr.ForaZ-gradedA-moduleMwede neM[n]foranyn∈ZtobeMasanungradedmodule,butwithanewgradinggivenbyM[n]m=Mn+m.TheshiftfunctorM→M[1]isanautoequivalenceofA-GrwhichnaturallydescendstoanautoequivalenceofA-Qgrwecalls,thoughweusuallywriteM[n]insteadofsn(M)foranyM∈A-Qgrandn∈Z.
Ingeneral,anycollectionofdata(C,F,t)whereCisanabeliancategory,FisanobjectofC,andtisanautoequivalenceofCiscalledanArtin-Zhangtriple.ForeveryconnectedgradedringAthedata(A-Qgr,πA,s)givessuchatriple.Anisomorphismoftwosuchtriplesisanequivalenceofcategorieswhichcommuteswiththeautoequivalencesandunderwhichthegivenobjectscorrespond;see[2,p.237].Forexample,ifAisaconnectedgradedcommutativeringandX=projAistheassociatedscheme,thenbyatheoremofSerreonehasthat(A-Qgr,πA,s)isisomorphicto(QchX,OX, O(1)).Motivatedbythis,foranyconnectedgradedringAonecallsthepairA-Proj=(A-Qgr,πA)theleftnoncommutativeprojectiveschemeassociatedtoA,theobjectπAthedistinguishedobject,andtheautoequivalencesofA-Qgrthepolarization.Wede neanalogouslytheright-sidedversionsQgr-A,Proj-A,etceteraofallofthenotionsabove.
We study some properties of graded idealizer rings with an emphasis on applications to the theory of noncommutative projective geometry. In particular we give examples of rings for which the $\chi$-conditions of Artin and Zhang and the strong noetherian pr
IDEALIZERRINGSANDNONCOMMUTATIVEPROJECTIVEGEOMETRY5
Ouranalysisofthenoncommutativeschemesforidealizerringswillberestrictedtoringswhichsatisfythefollowinghypotheses,whichwillholdforalargeclassofexampleswestudylater.
Hypothesis3.1.Letkbea eld.LetSbeanoetherianconnected nitelyN-gradedk-algebra,letIbesomehomogeneousleftidealofSsuchthatdimkS/I=∞,andputT=I(I).AssumeinadditionthatTSisa nitelygeneratedmodule,andthatdimkT/I<∞.
Undertheassumptionsof3.1,
boththeleftandrightnoncommutativeschemesfortheidealizerringTarecloselyrelatedtothosefortheringS,asweseenow.Lemma3.2.AssumeHypothesis3.1.
(1)Thereisanisomorphismoftriples(S-Qgr,πI,s)~=(T-Qgr,πT,s).
(2)Thereisanisomorphismoftriples(Qgr-S,πS,s)~=(Qgr-T,πT,s).
Proof.(1)SupposethatM∈S-Gr.ThenweclaimthatifTM∈T-Tors,thenSM∈S-Tors.Toprovethisfact,note rstthatifTMis nitelygenerated,thenMif nite-dimensionaloverk,soobviouslySM∈S-Tors.Ingeneral,TMisadirectlimitof nite-dimensionalT-modules,soM′=S TMisadirectlimitof nite-dimensionalS-modulesandthusM′∈S-Tors.SincethereisanS-modulesurjectionM′→M,thiscompletestheproofoftheclaim.
Nowwede netwofunctorsbytherules
F:T-Gr →S-Gr
→S(I TM)TM
G:S-Gr →T-Gr
→TNSN
togetherwiththeobviousactionsonmorphisms.IfTM∈T-Gr,thensincedimkT/I<∞itfollowsbycalculatingusingafreeresolutionofMthatTor
F:T-Qgr→S-Qgr.Similarly,itisclear
thatifN∈S-TorsthenG(N)=N∈T-Tors.ThenG′=π G:S-Gr→T-QgrisanexactfunctorwithG′(N)=0forallN∈S-Tors,soG′descendstoafunctor
G
F
Fand~F(πT)=πI,andallofthemapsarecompatiblewiththeshiftfunctors
s,sinceFandGarecompatiblewiththeshiftfunctorsinthecategoriesS-GrandT-Gr.
We study some properties of graded idealizer rings with an emphasis on applications to the theory of noncommutative projective geometry. In particular we give examples of rings for which the $\chi$-conditions of Artin and Zhang and the strong noetherian pr
6DANIELROGALSKI
(2)BecauseSI=I T,wehave(S/T)I=0andsosinceT/Iis nitedimen-sionalweseethat(S/T)Tistorsion.ByassumptionwealsoknowthatT(S/T)is nitelygenerated.Nowtheproofofthistripleisomorphismisentirelyanal-ogoustotheproofof[17,Proposition2.7],withtheexceptionthattheauthorsassumetherethatTisnoetherianandthenprovetherequiredequivalenceforthesubcategoriesofnoetherianobjects.Weleaveittothereadertomaketheob-viousadjustmentstotheprooftoshowwithoutthenoetherianassumptionthat(Qgr-S,πS,s)~ =(Qgr-T,πT,s).
Remark3.3.ThegradedidealizerringsstudiedbySta ordandZhangin[17]havethespecialpropertythattheidealIisaprincipalidealgeneratedbyanelementofdegree1inagradedGoldiedomainS.Inthatcase,T=I(I)isisomorphictoitsoppositering,andthusthedi erencesbetweenparts(1)and(2)ofProposition3.2mustdisappear(indeed,inthiscaseπI~=πS[ 1]).Inthegeneralcase,however,itisclearfromProposition3.2thatweshouldexpectthenoncommutativeschemesT-ProjandProj-Ttobenon-isomorphic.
TheinformationprovidedbyLemma3.2willallowustoprovewitheaseseveralfurtherresultsaboutthenoncommutativeprojectiveschemesofidealizerrings.First,wemayshowinwidegeneralitythatpassingtoaVeroneseringofTdoesnota ecttheassociatednoncommutativeprojectiveschemes.Recall thatforanN-gradedringAthenthVeroneseringofAisthegradedringA(n)=∞
i=0Ain.
Proposition3.4.AssumeHypothesis3.1,andinadditionletSbegenerated ∞in′(n)′(n)′(n)degree1.Choosen≥1andwriteT=T,S=S,andI=I=i=0Iin.′′′′LetR SbetheidealizeroftheleftidealIofS.
(1)T′andR′areisomorphicinlargedegree.
(2)ThereareisomorphismsofnoncommutativeprojectiveschemesT-Proj~=′′T-ProjandProj-T~=Proj-T.
Proof.(1)Asungradedrings,wemayidentifyR′,T′andS′withsubringsofS.′Supposethatx∈(Rm),sothatI′x I′.ThensincetheleftidealIofSisgeneratedinsome nitedegree,weseethatintheringSwehave(I≥p)x Iforsomep≥0,wherex∈Snm.SincethetorsionsubmoduleofS(S/I)is nitedimensional,ifm 0thenIx Iandhencex∈T.ThenasanelementofS′,x∈T′.SincetheinclusionT′ R′isobvious,T′andR′mustagreeinlargedegree.
(2)SinceTSis nitelygeneratedanddimkT/I<∞,weseethatT′S′is nitelygeneratedanddimkT′/I′<∞.ThenbecauseT′andR′agreeinlargedegreebypart(1),itfollowsthatR′S′is nitelygeneratedandthatdimkR′/I′<∞.Also,sinceSisnoetherian,S′mustbenoetherian[2,Proposition5.10(1)].
Nowweclaimthatwehaveisomorphismsofnoncommutativeprojectiveschemes(Qgr-T,πT)~=(Qgr-S,πI)~=(Qgr-S′,πI′)~=Qgr-(R′,πR′)~=Qgr-(T′,πT′).Toseethis,notethatsinceSisgeneratedindegree1,thereisanisomorphismProj-S~=Proj-S′[2,Proposition5.10(3)];theassociatedequivalenceofcategoriesQgr-S Qgr-S′sendsπItoπI′.Thesecondisomorphismfollows,andthe rstandthirdfollowfromProposition3.2(1),appliedtoT SandtoR′ S′,st,the nalisomorphismfollowsfrompart(1).AltogetherthischainofisomorphismssaysthatProj-T~=Proj-T′.
We study some properties of graded idealizer rings with an emphasis on applications to the theory of noncommutative projective geometry. In particular we give examples of rings for which the $\chi$-conditions of Artin and Zhang and the strong noetherian pr
IDEALIZERRINGSANDNONCOMMUTATIVEPROJECTIVEGEOMETRY7
Theargumentontheleftsideisverysimilar,exceptusingtheothertripleisomorphismofProposition3.2,andislefttothereader.
Nextwewillshowthatundermildhypothesesthenoncommutativeprojec-tiveschemesassociatedtoSandT(oneitherside)havethesamecohomo-logicaldimension;wereviewthede nitionofthispropertynow.CohomologygroupsiforthenoncommutativeprojectiveschemeA-Projarede nedbysettingH(M)=Exti
ofA-ProjA-Qgr(πA,M)forallM∈A-Qgr.Thenthecohomologicaldimen-sionis
cd(A-Proj)=max{i|Hi(M)=0forsomeM∈A-Qgr}
andtheglobaldimensionofthecategoryA-Qgris
gd(A-Qgr)=max{i|ExtiA-Qgr(M,N)=0forsomeM,N∈A-Qgr}.
Theright-sidedversionsofthesenotionsarede nedsimilarly.
Proposition3.5.AssumeHypothesis3.1.
(1)cd(Proj-T)=cd(Proj-S).
(2)AssumeinadditionthatSisadomainwithgd(S-Qgr)=cd(S-Proj)<∞.
Thencd(T-Proj)=cd(S-Proj).
Proof.(1)ThispartisimmediatefromthetripleisomorphismofProposition3.2(2).
(2)Byproposition3.2(1),wehavetheisomorphismoftriples(T-Qgr,πT,s)~=(S-Qgr,πI,s).Fromthisitquicklyfollowsthat
cd(T-Proj)≤gd(T-Qgr)=gd(S-Qgr)=cd(S-Proj).
Letd=cd(S-Proj).To nishtheproofthatcd(T-Proj)=cd(S-Proj)wehaveonlytoshowthatthereissomeF∈S-QgrsuchthatExtd
choosesomeinjectionS[ m]→SI-Qgr(πI,F)=0.Since
Sisadomain,wemayforsomem≥0,andpassingtoS-Qgrwehaveashortexactsequence0→πS[ m]→πI→N→0forsomeN.SinceS-ProjhascohomologicaldimensiondwemaychoosesomeF∈S-QgrwithExtdS-Qgr(πS[ m],F)=0.ButExtdS+1-Qgr(N,F)=0sincetheglobaldimensiondofS-Qgrisd,soweconcludefromthelongexactsequenceinExtthatExtS-Qgr(πI,F)=0.
4.Theχconditionsforgradedidealizers
Thegoalofthissectionistobeginananalysisoftheχconditions,whichwede nedintheintroduction,forthecaseofgradedidealizerringsTsatisfyingHy-pothesis3.1.ThemainresultbelowwillshowthatifSitselfsatis esleftχ,thentheleftχconditionsfortheidealizerringTmaybecharacterizedintermsofhomo-logicalalgebraoverSonly.WealsostudytherightχconditionsforT;theanalysisoftheseturnsouttobeamuchsimplermatter.
Wereviewseveralde nitionswhichwewillneedbeforeprovingthemainre-sultofthissection.AmoduleM∈A-GrisrightboundedifMn=0forn 0,leftboundedifMn=0forn 0,andboundedifitisbothleftandrightbounded.Mis nitelygradedifdimkMn<∞foralln∈Z.ForM,N∈A-Gr,HomA(M,N)meansthegroupofdegree-preservingmodulehomo-morphisms,andExtiA(M, )istheithrightderivedfunctorofHomA(M, ).WealsosetHom
We study some properties of graded idealizer rings with an emphasis on applications to the theory of noncommutative projective geometry. In particular we give examples of rings for which the $\chi$-conditions of Artin and Zhang and the strong noetherian pr
8DANIELROGALSKI
homomorphismsintheungradedcategoryifMis nitelygenerated.Moregener-ally,wewriteExt
i
A-grbethesubcategoryofAall-Qgr(M,N)=
noetherianmodules n∈ZExti
inAA-Qgr(M,N[n]).Finally,let
-Gr.
Notethatwehavede nedtheχconditionsfornotnecessarilynoetherianalge-bras;itiseasytoprove,however,thattheleftχ0conditionforaconnectedgradedringAisequivalenttotheleftnoetherianpropertyforA.RecallalsothatifAisconnectedgradedleftnoetherianwithmodulesM∈A-grandN∈A-Gr,thenforanyj≥0wehaveExtj
A(M≥n,N)[2,Propo-
sition7.2(1)].Inparticular,inthiscasethereisanaturalmapofvectorspacesExtj
A-Qgr(πM,πN).Intheproofofthefollowingpropositionwe
willuseseveralresultsofArtinandZhangfrom[2]whichinterprettheχconditionsintermsofthepropertiesofsuchmaps.
Proposition4.1.AssumeHypothesis3.1,andassumealsothatSsatis esχontheleft.ThenTsatis esχiontheleftforsomei≥0ifandonlyifdimkExt
S(S/I,M)isanoe-
therianleftT/I-module(equivalently,of nitek-dimension)forallM∈S-gr.SincetheleftnoetherianpropertyforTisequivalenttoleftχ0forT(asweremarkedbeforetheproposition),thecharacterizationofthepropositionholdswheni=0.
NowassumethatTisleftnoetherian.Thereisanisomorphismoftriples(S-Qgr,πI,s)~=(T-Qgr,πT,s)byProposition3.2(1).ForanyM∈S-grwehaveadiagram
MγHom
HomHom
.Itis
straightforwardtocheckthatthisdiagramcommutes.NowsinceShasχ,themapβisanisomorphisminlargedegree[2,Proposition3.5(3)].Furthermore,χ1holdsontheleftforTifandonlyifthemapαhasrightboundedcokernelforallM∈T-gr[2,Proposition3.14(2a)].NotethatitisequivalenttorequirethatαhaveboundedcokernelforallM∈S-gr,asfollows:ifM∈T-gr,thenIM∈S-grwithdimkM/IM<∞andthusπM=πIM;conversely,ifM∈S-grthenM∈T-grsinceTSis nitelygeneratedandTisleftnoetherian.Thusfromthediagramitfollowsthatχ1holdsforTontheleftifandonlyifγhasrightboundedcokernelforallM∈S-gr.ButthecokernelofγisExt
j(πM)=Ext
We study some properties of graded idealizer rings with an emphasis on applications to the theory of noncommutative projective geometry. In particular we give examples of rings for which the $\chi$-conditions of Artin and Zhang and the strong noetherian pr
IDEALIZERRINGSANDNONCOMMUTATIVEPROJECTIVEGEOMETRY9
torequirethisconditionforallM∈S-gr.NowforeveryM∈S-grandj≥1wehaveasequenceofmaps
ExtExtExtExt
,thenat-
uralmapαisanisomorphisminlargedegreesinceSsatis esχ[2,Proposition
3.5(3)],andthe nalisomorphismcomesfromtheisomorphismoftriplesinPropo-sition3.2(1).Inaddition,Ext
j
S(S/I,M)isrightbounded
(equivalently, nitedimensionaloverksinceitisalwaysleftboundedand nitelygraded)forall2≤j≤iandallM∈S-gr.Thisprovesthecharacterizationofχifori≥2,andconcludestheproofoftheproposition.
IncontrasttoProposition4.1,ontherightsideonlytheχ0conditionforT(equivalently,therightnoetherianpropertyforT)ispotentiallysubtletoanalyze.Thehigherχconditionsautomaticallymustfail,asfollows.
Proposition4.2.AssumeHypothesis3.1.ThenTfailsχiontherightforalli≥1.
Proof.WemayassumethatTisrightnoetherian,sinceotherwiserightχ0failsforTandsobyde nitionrightχifailsforalli≥0.Also,weneedonlyshowthatTfailsrightχ1.Forthis,thesameargumentoutlinedin[17,p.424]workshere;sinceitissimplewebrie yrepeatit.Byhypothesis,wehaveSI=I,dimkT/I<∞,anddimkS/I=∞.Sothenaturalmap
T→HomQgr-T(πI,πI)
hasacokernelwhichisnotrightbounded,sinceS Hom
We study some properties of graded idealizer rings with an emphasis on applications to the theory of noncommutative projective geometry. In particular we give examples of rings for which the $\chi$-conditions of Artin and Zhang and the strong noetherian pr
10DANIELROGALSKI
NowwewillidealizeleftidealsofSwhicharegeneratedbyacodimension-1subspaceoftheelementsofdegree1.Speci cally,fromnowonwewillconsiderthefollowinghypothesisandnotations.
Hypothesis5.1.Letkbeanalgebraicallyclosedbase eld.Choosesomed≥2,apointc∈Pd,andanautomorphism ∈AutPd.LetφbeagradedautomorphismofU=k[x0,...,xd]suchthat isthecorrespondingautomorphismofprojU=Pd,andde neS=S( )tobetheleftZhangtwistofU=k[x0,...,xd]bytheautomorphismφ.(Althoughtheautomorphismφcorrespondingto isdeterminedonlyuptoscalarmultiple[7,Example7.1.1],itiseasytocheckthatchangingφbyanonzeroscalardoesnotchangetheringSuptoisomorphism.)LetIbetheleftidealofSconsistingofallhomogeneouselementsvanishingatthepointc.De neT=T( ,c)=I(I) S.Alsowritecn= n(c)forn∈Z.
Ingeneral,thepropertiesoftheringT=T( ,c)dependonthepropertiesoftheorbitC={cn}n∈Z.Wearemostinterestedinthe“generic”case,andsowewillusuallyassumeatleastthatCisin nite.Undersuchanassumption,weseenextthattheidealizerringsThavethefollowingbasicproperties.
Lemma5.2.AssumeHypothesis5.1.Ifthepoints{cn}n∈Zarealldistinct,then
(1)T=k+I.
(2)T(n)isnotgeneratedindegree1foranyn≥1.
(3)dimk(S/IS)<∞.
(4)TSis nitelygenerated.
(5)Tisa nitelygeneratedk-algebra.
(6)Hypothesis3.1issatis ed.
Proof.(1)WehaveTn={x∈Sn|Ix I}.Ifφn(I)=I,thensinceIisprimeinU,φn(I) x Iforcesx∈I.Sinceweassumethatchasin niteorderunder ,φn(I)=Iforalln=0andsoTn=Inforn≥1.
(2)IfT(n)weregeneratedindegreeoneforsomen≥1,thenwouldwehaveTnTn=T2n,whichinthecommutativeringUtranslatestoφn(I)n In=I2n.SinceIandφn(I)aredi erenthomogeneousprimeidealsofUwhicharegeneratedindegree1,itiseasytoseethatsuch anequationisimpossible. ∞∞(3)SetJ=IS.WehavethatJ=i=0ISi=i=0φi(I) Ui.Sincethepoints{ci}arealldistinct,itisclearthatthevanishingsetoftheidealJinPdisempty.ThusdimkU/J<∞bythegradedNullstellensatz;equivalently,dimk(S/IS)<∞.
(4)BythegradedNakayamalemma,ak-basisofS/T≥1S=S/ISisaminimalgeneratingsetforTS,so(4)followsimmediatelyfrom(3).
(5)Tisgeneratedasak-algebrabysomeelementsti∈T≥1ifandonlyifT≥1isgeneratedasleftT-idealbytheti;sotoprove(5)wejustneedtoshowthatTIis nitelygenerated.Sincebypart(4)weknowthatTSis nitelygenerated,wehaveTS≤n=Sforsomen≥0.ThenTS≤nT1=ST1=Iisa nitelygeneratedleftT-module.
(6)SincedimkIn=dimkSn 1foralln≥1,itisclearthatdimkS/I=∞.Theothernecessarypropertiesfollowfrom(1)and(4).
Thenoetherianpropertyontheleftisalsostraightforwardtoanalyze.
Proposition5.3.AssumeHypothesis5.1,andthatthepoints{cn}n∈Zarealldistinct.ThenTisleftnoetherian.
We study some properties of graded idealizer rings with an emphasis on applications to the theory of noncommutative projective geometry. In particular we give examples of rings for which the $\chi$-conditions of Artin and Zhang and the strong noetherian pr
IDEALIZERRINGSANDNONCOMMUTATIVEPROJECTIVEGEOMETRY11
Proof.WehavethatT=k+IandthatTSis nitelygenerated,byLemma5.2.ThusthehypothesesofTheorem2.1aresatis edandtoshowthatTisleftnoe-therianweneedtoshowthatHom
S(S/I,S/J)is nitedimensional,sowealsomayassumethatJ=U≥1.
Nowwemaymaketheidenti cationofvectorspaces
Hom
S(S/I,S/J)n=0forn 0.ThusHom
iS(S/I,S/J)n~=Ext
dS(S/I,S)~
dn=
(U/I,U)~Ext
=(U/I)[d]easilyfrom
aKoszulresolutionofU/I.SoSfailsχdontheleft.Ontheotherhand,
[14,Proposition8.6(1)]provesthatsince{cn}n∈Ziscriticallydense,wehavedimkExt
We study some properties of graded idealizer rings with an emphasis on applications to the theory of noncommutative projective geometry. In particular we give examples of rings for which the $\chi$-conditions of Artin and Zhang and the strong noetherian pr
12DANIELROGALSKI
Similarly,againassumingm≥n,wehave(fS∩T)m=(φm n(f) Um n)∩Im.Ifφm n(f)∈I,thenasIisprime,(φm n(f) Um n)∩Im=φm n(f) Im n=(fT)m.Conversely,ifφm n(f)∈I,then(fS∩T)m=(fS)m=(fT)m.
Nowsince{cn}n∈Zisacriticallydensesetofpoints,everyhomogeneousf∈Ssatis esf∈φn(I)forn 0,whichisequivalenttoφn(f)∈Iforn 0.Weconcludethatforanyhomogeneous0=f∈Tthemodules(fS∩T)/fTandS/(fS+T)are nitedimensional,asrequired.
6.Thestrongnoetherianproperty
WecontinuetostudyidealizerringsTsatisfyingHypothesis5.1,andwemaintainthenotationintroducedintheprevioussection.In[14],theauthorshowedtheexistenceofringswhicharenotstronglynoetherianoneitherside.HerewewillshowthattheidealizerringsTaretypicallystronglynoetherianononesidebutnottheother.
LetAbeanarbitraryk-algebra.WecallaleftA-moduleMstronglynoetherianifM kBisanoetherianleftA kB-moduleforeverycommutativenoetheriank-algebraB.Moregenerally,MisuniversallynoetherianifM kBisnoetherianoverA kBforeverynoetheriank-algebraB.
Proposition6.1.AssumeHypothesis5.1,andassumefurtherthatthesetofpoints{cn}n∈Ziscriticallydense.ThenTisanoetherianringsuchthat
(1)Tisuniversallyleftnoetherian.
(2)Tisnotstronglyrightnoetherian.
Proof.ThatTisnoetherianfollowsfromPropositions5.3and5.4.
(1)WenotethattheringSisuniversallyleftnoetherian,asfollows.Foranynoetheriank-algebraB,theringU kB~=B[x0,...,xd]isnoetherianbytheHilbertbasistheorem.ThensinceS kBisaleftZhangtwistofU kB,itisalsoleftnoetherian[19,Theorem1.3].NowweprovethatTisuniversallynoetherianontheleft.WeknowthatM=T(S/T)is nitelygeneratedbyLemma5.2,andsincedimkMn=1foralln≥1weseethatMmusthaveKrulldimension1.By[1,Theorem4.23],MisauniversallynoetherianleftT-module.SoifBisanynoetheriank-algebra,thenM kB=(S kB)/(T kB)isanoetherianleftT kB-module.Thenby[1,Lemma4.2],sinceS kBisleftnoetherian,T kBisalsoleftnoetherian.
(2)TheproofwhichwenowpresentthatTisnotstronglynoetherianontherightisquiteanalogoustotheproofin[14,§7]thattheringRstudiedinthatpaperisnotstronglynoetherian.Letus rstmakeafewcommentsaboutnotation.Weusesubscriptstoindicateextensionofscalars,forexampleUB=U kB.TheautomorphismφofUnaturallyextendstoanautomorphismofUBsuchthatSBisagaintheleftZhangtwistofUBbyφ.Weextendalsoournotationalconvention,sothatjuxtapositionmeansmultiplicationinSBand meansthecommutativemultiplicationinUB.Fixonceandforallsomeparticularchoiceofhomogeneouscoordinatesforeachofthepointsin{cn}n∈Z Pdk.Thenforf∈UB,theexpressionf(cn)denotespolynomialevaluationatthe xedcoordinatesforcn,givingawell-de nedvalueintheringB.
Becausebyassumptionthepointset{cn}n∈Ziscriticallydense,thesameproofasin[14,Theorem7.4]showsthatthereexistsanoetheriancommutativek-algebra
We study some properties of graded idealizer rings with an emphasis on applications to the theory of noncommutative projective geometry. In particular we give examples of rings for which the $\chi$-conditions of Artin and Zhang and the strong noetherian pr
IDEALIZERRINGSANDNONCOMMUTATIVEPROJECTIVEGEOMETRY13
Bwhichisauniquefactorizationdomain,constructedasanin nitea neblowupofa nespace,andcontainingelementsf,g∈(UB)1withthefollowingproperties:
(1)g(ci)= if(ci)forsome i∈B,foralli≤0.
(2)Foralli 0,f(ci)isnotaunitinB.
(3)gcd(f,g)=1inUB.
Notethatahomogeneouselementf∈UBisin(TB)≥1=I kBifandonlyiff(c0)=0.Nowforeachn≥1wemaychoosesomeelementθn∈(SB)n\(TB)nwithcoe cientsink.Puttingtn=( nf g)θn,wehaveintermsofthecommutativemultiplicationinUBthattn=φn( nf g) θn,andsinceφn( nf g)(c0)= ( nf g)(c n)=0weseethattn∈(TB)n+1.Supposeforsomenthattn+1=n
i=1tiriwithri∈(TB)n i+1.Then
φn+1( n 1f g) θn+1=n
i=1φn+1( if g) φn i+1(θi) ri.
Rewritingthisequationintheformh1 φn+1(f)=h2 φn+1(g),andusingthatgcd(f,g)=1,wemayconcludethatφn+1(g)dividesh1,where
h1= n 1θn+1 n
i=1 iφn i+1(θi) ri.
Then(φn+1(g))(c0)=g(c n 1)dividesh1(c0).Eachri∈(TB)≥1andsori(c0)=0,andbyassumptionθn+1∈TBandsoθn+1(c0)∈k×.Thusg(c n 1)divides n 1,whichimpliesthatf(c n 1)isaunitinB.This ncontradictsproperty(2)above forn 0.Thusforn 0wemusthavetn+1∈i=1tiTB.WeconcludethattiTBisanin nitelygeneratedrightidealofTB,soT kBisnotrightnoetherianandTisnotstronglyrightnoetherian.
7.TensorProductsofalgebras
InProposition6.1weshowedexplicitlythatTisnotstronglyrightnoetherianbyexhibitingacommutativenoetheriank-algebraBsuchthatT kBisnotrightnoetherian.Necessarily,suchaBisnota nitelygeneratedcommutativealgebra.Bycontrast,ifweallowourselvestotensorbynoncommutativeringsthenwemay nda nitelygeneratednoetheriank-algebraB′suchthatT kB′isnotrightnoetherian.Infact,wewillseeinthenexttheoremthatonemaytakeB′tobeTitself.
InordertostaywithintheclassofN-gradedalgebras,inadditiontotensorproductsitwillbeusefulalsotoconsiderSegreproducts,de nedasfollows.IfAands ∞BaretwoN-gradedalgebrasweletA kBbetheN-gradedalgebran=0An kBn.Thefollowinglemmaisthenelementary.
Lemma7.1.LetAandBbeN-gradedalgebras.IfA kBisleft(right)noetherian,thenA kBisleft(right)noetherian.
Proof.SinceanyhomogeneousleftidealIofA Bsatis es(A B)I∩(A B)=I,aproperascendingchainofhomogeneousleftidealsofA BinducesaproperascendingchainofleftidealsofA B.
WethankJamesZhangforpointingouttousthefollowingusefulfact.ssss
We study some properties of graded idealizer rings with an emphasis on applications to the theory of noncommutative projective geometry. In particular we give examples of rings for which the $\chi$-conditions of Artin and Zhang and the strong noetherian pr
14DANIELROGALSKI
Lemma7.2.LetAbeconnectedN-gradedandnoetherian.ThenAis nitelypresented.
Proof.Let
···→r1
i=1r0 i=1A[ d1i]→A[ d0i]→A→k→0
beagradedfreeresolutionofAkbyfreemodulesof niterank.ThenonemaycheckthatAhasapresentationwithr0generatorsandr1relations.
Thefollowingtheoremshowsthatitispossibleto ndtwoconnectedgradednoetherianringswhosetensorproductisnoetherianononesideonly,aswellapairofconnectedgradednoetherianringswhosetensorproductisnoetherianonneitherside.
Theorem7.3.AssumeHypothesis5.1,andinadditionthat{cn}n∈Ziscriticallydense.LetT′=T kTop.Then
(1)TandT′arenoetherian nitelypresentedconnectedgradedk-algebras.
(2)T kTisleftnoetherian,butnotrightnoetherian.
(3)T′ kT′~=T′ k(T′)opisneitherleftnorrightnoetherian.
Proof.(1)TheringTisnoetherianbyPropositions5.3and5.4.Infact,byPropo-sition6.1Tisuniversallyleftnoetherian.ItfollowsimmediatelythatTopisuni-versallyrightnoetherian.ThusT kTopisbothleftandrightnoetherian.ByLemma7.1,T′isnoetherian.ThenbyLemma7.2,bothTandT′are nitelypresented.
(2)Aswesawinpart(1),Tisuniversallyleftnoetherian,sothatT kTisleftnoetherian.NowwewillprovethatT Tisnotrightnoetherian.ByLemma7.1,sitisenoughtoprovethatT Tisnotrightnoetherian.sForagradedringAwewillusetheabbreviationAs=A A.NowletX=projUs~=Pd×Pd.ThegradedringUshastheautomorphismφ φwithcorrespondingautomorphism × ofX.ThegradedringSsmaybethoughtofastheleftZhangtwistofUsbyφ φ,andweidentifytheunderlyingvectorspaces.Inparticular,anyhomogeneouselementofSsde nesavanishinglocusinX.Nowlet Xbethediagonalsubscheme,andletJbetheleftidealofSsconsistingofthoseelementswhichvanishalong .Since( × )( )= ,itfollowseasilythatJisatwo-sidedidealofSs.WritingK=I kI,aleftidealofSs,wehaveTs=k⊕K.ThentoprovethatTsisnotrightnoetherian,byLemma2.2itwillbeenoughtoshowthat(J∩K)/JKisnot nite-dimensionaloverk.
Let indicatemultiplicationinthecommutativeringUs.SinceJisinvariantunderφ φ,wehaveJ K=JK,andsoitwillbeequivalenttoprovethatM=(J∩K)/(J K)isnotatorsionUs-module.Toshowthis,weconsiderthe onX,looklocallyatthepointp=(c,c),andprovethatcorrespondingsheafM p=0.M
Chooselocala necoordinatesu1,...udforaprincipalopensetAd Pdsuchthatthepointccorrespondstotheorigin.Letv1,...vdbethesamecoordinatesfortheequivalentopensetAdinthesecondcopyofPd,sothatu1,...ud,v1,...vdarelocalcoordinatesforana neneighborhoodA2dofpinXsuchthatpistheorigininthesecoordinates.NowletpbethehomogeneousprimeidealofUscorrespondingss
We study some properties of graded idealizer rings with an emphasis on applications to the theory of noncommutative projective geometry. In particular we give examples of rings for which the $\chi$-conditions of Artin and Zhang and the strong noetherian pr
IDEALIZERRINGSANDNONCOMMUTATIVEPROJECTIVEGEOMETRY15
tothepointp=(c,c).SettingU′=(Us)(p)=OX,p,J′=J(p),andK′=K(p),wehave p=M(p)~M=(J′∩K′)/(J′K′)
wherewereverttotheuseofjuxtapositiontoindicatemultiplicationinthecommu-tativelocalringU′.Explicitly,U′isthepolynomialringk[u1,...ud,v1,...vd]lo-calizedatthemaximalidealm=(u1,...,ud,v1,...,vd),J′=(u1 v1,...,ud vd),andK′=(u1,u2,...,ud)(v1,v2,...vd).Nowitisclearthatw=u1v2 u2v1∈ p=0,asweneededtoshow.J′∩K′,butw∈J′K′sincew∈m3 J′K′.ThusMs(3)Notethat(T′)op~=Top T~=T′.ThefactthatT′ T′isneitherleftnorrightnoetherianfollowsimmediatelyfrompart(2). Remark7.4.AssumingthesetupofHypothesis5.1,theringR=k I1 Swhichisgeneratedbythedegree1pieceofTisagradedringofthetypestudiedinthearticle[14].Incasethepoints{cn}n∈Zarecriticallydense,thisringRhassimilarlystrangepropertiesundertensorproducts.Forexample,asimilarbutslightlymorecomplicatedversionoftheargumentinTheorem7.3(2)abovewouldshowthatR kRisneitherleftnorrightnoetherian.
8.proofofthemaintheorem
Inthe nalsection,werecapitulateallofourprecedingresultstoproveTheo-rem1.1,whichwerestateasTheorem8.2below.TheonlythingwehavelefttoshowisthatgiventhesetupofHypothesis5.1,thereexistsaplentifulsupplyofchoicesofapointc∈Pdandanautomorphism ∈AutPdsuchthatC={cn}n∈Ziscriticallydense.Thissituationhasalreadybeenstudiedinthepaper[14];werepeattheresultforthereader’sreferenceasthenextproposition.
WecallasubsetofavarietyXgenericifitscomplementiscontainedinacountableunionofclosedsubvarietiesZ X.Notethataslongasthebase eldkisuncountable,anygenericsubsetisintuitively“almostall”ofX,inparticularitisnonempty.Thusthe rstpartofthefollowingpropositionshowsthatifthebase eldkisuncountable,thenanysuitablygeneralpair( ,c)willleadtoacriticallydensesetC.Thesecondpartshowsthatincasechark=0wemayeasilywritedownmanyexplicitexamplesofpairs( ,c)forwhichCiscriticallydense.
Proposition8.1.[14,Theorem12.4,Example12.8]AssumeHypothesis5.1andsetC={cn}n∈Z.
(1)Letkbeuncountable.Foranygivenc∈Pd,thereisagenericsubset
Y AutPd=PGL(k,d)suchthatif ∈YthenCiscriticallydense.
(2)Ifchark=0,c=(1:1:···:1),and isde nedby
(a0:a1:···:ad)→(a0:p1a1:p2a2:···:pdad),
thenCiscriticallydenseifandonlyifp1,...,pdgenerateamultiplicative
subgroupofk×whichisisomorphictoZd.
Finally,wesummarizeallofthepropertiesthattheringThasincasethesetofpointsCiscriticallydense.
Theorem8.2.AssumeHypothesis5.1.Letkbeuncountableandassumethatthepair( ,c)ischosensothatC={cn}n∈Ziscriticallydense.ThentheidealizerringT=I(I)=T( ,c)isanoetherianconnected nitelypresentedgradedringwiththefollowingproperties:
We study some properties of graded idealizer rings with an emphasis on applications to the theory of noncommutative projective geometry. In particular we give examples of rings for which the $\chi$-conditions of Artin and Zhang and the strong noetherian pr
16DANIELROGALSKI
(1)Tisleftuniversallynoetherian,butnotstronglyrightnoetherian.
(2)T kTisleftnoetherianbutnotrightnoetherian.TheSegreproductT′=
T kTopisalsoa nitelypresentedconnectedgradednoetherianring,butT′ kT′isnoetherianonneitherside.
Proj-TandT-Projhavethesameunderlyingcategorybutnon-isomorphic
distinguishedobjects;speci cally,Proj-T~=(QchPd,OPd)andT-Proj~=dd(QchP,I),whereIisthesheafofidealscorrespondingtothepointc∈P.Tsatis esleftχd 1butnotleftχd,andTfailsχ1ontheright.
cd(Proj-T)=cd(T-Proj)=d.
AlthoughnoVeroneseringofTisgeneratedindegree1,onehasisomor-phismsT-Proj~=T(n)-ProjandProj-T~=Proj-T(n)foralln≥1.s(3)(4)(5)(6)
Proof.NotethatbyProposition8.1,wemayindeed ndapair( ,c)sothatCiscriticallydense.ThenTisnoetherianbyPropositions5.4(2)and5.3,andTis nitelypresentedbyLemma7.2.
Now(1)followsfromProposition6.1,and(2)fromTheorem7.3.
For(3),notethatsinceSisaleftZhangtwistofU,wehaveS-Gr U-GrandsoiteasilyfollowsthatS-Proj~=U-Proj.NowtheoppositeringSopofSisisomorphictotheleftZhangtwistofUbyφ 1;thismaybecheckeddirectly,orseetheproofof[14,Lemma4.2(1)].ThuswealsohaveanisomorphismProj-S~=Proj-U.BySerre’stheorem,wealsohaveanequivalenceofcategoriesU-Qgr QchPd,whereQchPdisthecategoryofquasi-coherentsheavesonPd.
NowusingProposition3.2,itfollowsthat
T-Proj~=(S-Qgr,πI)~=(QchPd,I)
Proj-T~=(QchPd,OPd).=(Qgr-S,πS)~
Sinced≥2,theidealsheafIwhichde nestheclosedpointcisnotlocallyfree,soinparticularwehaveI~OPdand(3)isproved.=
Next,result(4)isacombinationofPropositions4.2and5.4(1).SinceS-Proj~=U-ProjandProj-S~=Proj-U,itfollowseasilythatcd(S-Proj)=gd(S-Qgr)=cd(Proj-S)=gd(Qgr-S)=d,andso(5)isaconsequenceofProposition3.5.Finally,(6)followsfromProposition3.4andLemma5.2(2).
WeclosewithafewremarksconcerningTheorem8.2.
Remark8.3.Theorem8.2(2)showsthatthetensorproductoftwonoetherian nitelypresentedconnectedgradedalgebras(overanalgebraicallyclosed eld)canfailtobenoetherian.Thisanswers[6,Appendix,OpenQuestion16′].
Remark8.4.SupposethatAisaconnectedgradednoetherianringsatisfyingleftχ1suchthatA-Proj~=(QchX,OX)forsomeproperschemeX.KeelershowedthatinthiscaseAmustbeequalinlargedegreetoatwistedhomogeneouscoordinateringB(X,L,σ)whereLisσ-ample[8,Theorem7.17].Inparticular,Amustbeuniversallynoetherianandmustsatisfyχonbothsides.
NowconsiderinsteadconnectedgradednoetherianringsAwithleftχ1suchthatA-Proj~=(QchX,F)forsomeproperschemeX,butwhereFisnotassumedtobethestructuresheaf.ThenA=T,whereTsatis estheconclusionsofTheorem8.2,isanexampleshowingthatringswithmuchmoreunusualbehaviormayoccurinthiscase.and
We study some properties of graded idealizer rings with an emphasis on applications to the theory of noncommutative projective geometry. In particular we give examples of rings for which the $\chi$-conditions of Artin and Zhang and the strong noetherian pr
IDEALIZERRINGSANDNONCOMMUTATIVEPROJECTIVEGEOMETRY17
Acknowledgments
MuchoftheresearchforthisarticlewascompletedattheUniversityofMichiganandtheUniversityofWashington;theauthorthanksbothinstitutions.TheauthoralsothanksJamesZhangandPaulSmithforhelpfulconversations,andespeciallyTobySta ordforhismanyusefulsuggestionswhichimprovedthisarticle.
References
[1]M.Artin,L.W.Small,andJ.J.Zhang,Generic atnessforstronglyNoetherianalgebras,
J.Algebra221(1999),no.2,579–610.
[2]M.ArtinandJ.J.Zhang,Noncommutativeprojectiveschemes,Adv.Math.109(1994),
no.2,228–287.[3]
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Noncommutative
- Projective
- Idealizer
- Geometry
- Rings