Quantum Anti-de Sitter space and sphere at roots of unity
更新时间:2023-04-22 19:49:01 阅读量: 实用文档 文档下载
- quantum推荐度:
- 相关推荐
An algebra of functions on q-deformed Anti-de Sitter space AdS_q^D is defined which is covariant under U_q(so(2,D-1)), for q a root of unity. The star-structure is studied in detail. The scalar fields have an intrinsic high-energy cutoff, and arise most na
9
9
9
1
t
c
O
1
2
v
7
3
1
9
/9h
t
-
p
e
:hv
i
X
r
aQuantumAnti–deSitterspaceandsphereatrootsofunityH.Steinacker1SektionPhysikderLudwig–Maximilians–Universit¨atTheresienstr.37,D-80333M¨unchenAbstractAnalgebraoffunctionsonq–deformedAnti–deSitterspaceAdSDisde nedwhichiscovariantunderU(so(2,D 1)),forqarootofunity.Thestar–structureqqisstudiedindetail.Thescalar eldshaveanintrinsichigh–energycuto ,andarisemostnaturallyas eldsonorbifoldsAdSDa niteabeliangroup,×SD/ΓifDisodd,andAdSDandSχisacertain“chiral×sector”S2D 1/ΓifDiseven.HereΓisqqχoftheclassicalsphere.Hilbertspacesofsquareintegrablefunctionsarediscussed.Analogousresultsarefoundfortheq–deformedsphereSDq.
LMU-TPW99-15
An algebra of functions on q-deformed Anti-de Sitter space AdS_q^D is defined which is covariant under U_q(so(2,D-1)), for q a root of unity. The star-structure is studied in detail. The scalar fields have an intrinsic high-energy cutoff, and arise most na
1Introduction
TheD–dimensionalAnti–deSitterspaceAdSDisahomogeneousspacewithconstantneg-ativecurvatureandcosmologicalconstant.ItssymmetrygroupSO(2,D 1)playstheroleoftheD–dimensionalPoincar´egroup,whichisrecoveredinthe atlimitbyacontraction.Itisofconsiderableinterestintheoreticalphysicsforseveralreasons.Forexample,itcanbeusedasasimplemodelfor eldtheoryoncurvedspaces[11],anditarisesnaturallyinthecontextofsupergravity[40].Recently,aninterestingconjecturerelatingstringorMtheoryonAdSD×Wwith(super)conformal eldtheoriesontheboundaryhasbeenproposed[26],whereWisacertainsphereoraproductspacecontainingasphere.Moreover,thereissomeevidencethatafullquantumtreatmentwouldleadtosomenon–classicalversionofthemanifolds.Thisincludestheappearanceofa“stringyexclusionprinciple”[27]inthespectrumof eldsonAdSspace.
Inthispaper,westudyanon–commutativeversionoftheAdSspace,whichiscovariantunderthestandardDrinfeld–JimboquantumgroupSOq(2,D 1).ItcanbeunderstoodasaquantizationofacertainPoissonstructureontheclassicalAdSspace,whereq 1isadeformationparameterwhichplaystheroleofthePlanckconstant.Inprinciple,thisiscanbedoneforrealqandqaphase.Forrealq,thequalitativefeaturesofquantumgroupsandspacesaretypicallysimilartotheclassicalcase;inparticular,nocuto isexpected.
Hereweconsiderthecasewhereqisarootofunity.Itiswell–knownthatthenquantumgroupsshowcompletelynew,“non–perturbative”features;roughlyspeaking,phenomenawhicharetypicalforin nite–dimensionalrepresentationsofclassicalnon–compactgroupsoccuralreadywith nite–dimensionalrepresentations.Inparticular,ithasbeenshownthatthereexist nite–dimensionalunitaryrepresentationsofthequantumAdSgroupsatrootsofunity[37,6],whereallthefeaturesoftheclassicalcaseareconsistentlycombinedwithacuto .
Thecorrectde nitionofquantum–AdSspaceforqaphaseisnotobvious;di erentver-sionshavebeenproposedintheliterature[4,13],whicharenotverysatisfactoryorincom-plete.The rstgoalofthispaperistoclarifythissituation,andtogiveaprecisede nitionintermsofoperatorsonHilbertspaces.To ndtheproperde nition,wemake2basicassump-tions:1)covarianceundertheq–deformeduniversalenvelopingalgebraUq(so(2,D 1)),and2)allowingonly nite–dimensionalrepresentations,henceinsistingonafullregular-izationandavoiding“q–analysis”.Itisveryremarkablethatthisisindeedpossible,whilemaintainingthecorrectlow–energylimit.
Aswewillshow,theseassumptionsleadtoanalgebraoffunctionsonthecomplexi edquantumsphere,whichdecomposesintodi erentsectorscorrespondingtodi erentreal
Dforms.TheydescribethecompactsphereSqandcertainnoncompactforms,inparticular
DthequantumAnti–deSitterspaceAdSq.Thiswillprovideuswithscalar eldswhichare
1
An algebra of functions on q-deformed Anti-de Sitter space AdS_q^D is defined which is covariant under U_q(so(2,D-1)), for q a root of unity. The star-structure is studied in detail. The scalar fields have an intrinsic high-energy cutoff, and arise most na
unitaryrepresentationsofUq(so(2,D 1)),andcorrespondtotheclassicalsquare–integrablescalar eldsonAdSspace,describingspin0elementaryparticles.Theremarkabledi erencetotheclassicalcaseisthatallthishappenswithintheframeworkofpolynomialfunctions,whosepropertiesarecompletelydi erentfromtheclassicalcase.Nevertheless,theclassical eldsarerecoveredinthelimitofqapproaching1.Inparticular,thisallowstostudyquestionsoffunctionalanalysisintheclassicalcasewithpurelyalgebraicmethods.
DMoreover,itwillturnoutthatthede nitionofAdSqimpliesanumberofadditional,
unexpectedfeatures.TheyincludetheappearanceofanadditionalundeformedsymmetrygroupSO(D+1)ifDisoddandSp(D)ifDiseven,whichareinsomesensespontaneouslybroken[37].Moreover,itturnsoutthatthequantumspacesareobtainedmostnaturallyasproductofthequantumAdSspace(orsphere)withaclassicalsphere.Moreprecisely,one
2r+12r4r 14r 1obtainstheproductsAdSq×S2r+1/ΓandAdSq×Sχ/Γ,whereΓ=(Z2)r,andSχisacertain“chiral”sectorofS4r 1.Thequotientsoftheclassicalspacesareactuallytwisted
sectorsoforbifolds.Itshouldbeemphasizedthatnospeci cassumptionshavebeenmadehere,itissimplyaconsequenceoftheremarkablestructuresthatappearatrootsofunity.Ofcourse,thisisquiteintriguinginthecontextoftheAdS–CFTcorrespondencementioned
3547above,sinceweobtainAdSq×S3,AdSq×S5andAdSq×Sχ,whicharepreciselycasesof
interestthere(apartfromthe“chiralsector”ofS7,whosemeaningisnotentirelyclear).TheseandotherphysicalaspectswillbediscussedfurtherinSection7.
Thispaperisorganizedasfollows.InSection2,somebasicfactsaboutquantumgroupsandspacesarereviewed,includingaspectsoftherepresentationtheoryatrootsofunitywhichwillbeneeded.InSection3,wediscussindetailthemeaningofrealitystructures,anddeterminetherealformofthequantumAdSgroupUq(so(2,D 2)).Section4isdevotedtoacloseranalysisofthestructureofpolynomialfunctionsonthecomplexquantumspacesatrootsofunity.InSection5,weidentifydi erentnoncompactsectors,whichleadstothede nitionofHilbertspacesofscalar elds.TheirproductstructurewithclassicalspheresisanalyzedinSection5.2.Sections5.3and5.4aremathematicalinterludes,andwillallowustowritedownexplicitlythestarstructureoftherealquantumspacesinTheorems5.3and
5.4,whicharesomeofthemainresultsofthiswork.InSection6,wecommentonfurtherdevelopmentstowardsformulatingphysicalmodels,andproposeanon–shellconditionwhichissomewhatreminiscentofstringtheory.SomephysicalaspectsarediscussedinSection7.TheAppendicesincludeseveralproofsthatwereomittedinthetext,aswellanexpositionofthevectorrepresentationsofso(D)forconvenience.
Someadvicetothereader:InSections5.3and5.4,thestarstructureisde nedinseveralsteps,andconsiderablee ortismadetogivetheprecisemathematicalde nitionsandtoexplainwhyitisthecorrectone.Howeverthe nalresult,Theorems5.3and5.4canbestatedverybrie y.Thusthereaderwhoisnotinterestedinthemathematicaldetailsmayskipmuchofthesesectionsandsimplyaccepttheresults.
2
An algebra of functions on q-deformed Anti-de Sitter space AdS_q^D is defined which is covariant under U_q(so(2,D-1)), for q a root of unity. The star-structure is studied in detail. The scalar fields have an intrinsic high-energy cutoff, and arise most na
2Thebasicalgebras
We rstrecalltheclassicalAnti–deSitterspaceAdSD 1,whichisa(D 1)–dimensionalmanifoldwithconstantnegativecurvatureandsignature(+, ,..., ).ItcanbeembeddedinaD–dimensional atspacewithsignature(+,+, ,..., )by
22222 z2 ... zDz1+zD 1=R,(2.1)
whereRwillbecalledthe”radius”oftheAdSspace.ThegroupofisometriesofthisspaceisSO(2,D 2),whichplaystheroleofthe(D 1)–dimensionalPoincar´egroup.
Thisspacehassomeratherpeculiarfeatures.Itstime–likegeodesicsare niteandclosed,andthetime”translations”istheU(1)subgroupofrotationsinthe(z1,zD)–plane.Thespace–likegeodesicsareunbounded.Thereexistniceunitarypositive–energyrepresentationsofSO(2,D 2)whichcorrespondtoelementaryparticleswitharbitraryspin.ItisalsoworthrecallingthatSO(2,D 2)istheconformalgroupinD 2dimensionsactingon(D 2)–dimensionalMinkowskispace,whichcanbeinterpretedastheboundaryofAdSD 1.Tode nethenoncommutativeversion,we rstreviewsomebasicfactsabouttheq–deformedorthogonalgroupandEuclideanspace[8];foramoredetaileddiscussionseee.g.
[9,35].ThealgebraoffunctionsFunq(SO(D,C))ontheorthogonalquantumgroupisgeneratedbymatrixelementsAijwithrelations
iknik nm mnRAmjAl=AnAmRjl,(2.2)
ikisexplainedbelow.Funq(SO(D,C))istheHopfalgebradualtothewherethematrixRmnquantizeduniversalenvelopingalgebraUq(so(D,C)),whichiseasiertoworkwithinpractice.
GivenarootsystemofasimpleLiegroupgwithKillingmetric(,)andCartanmatrixAij,Uq:=Uq(g)istheHopfalgebrawithgenerators{Xi±,Hi;i=1,...,r}andrelations[16,7,8]
[Hi,Hj]=0, ±±Hi,Xj=±AjiXj,
+ qdiHi q diHiXi,Xj=δi,j
1qi qi(2.3)(2.4)approachesnasq→1.Thecomultiplicationis
(Hi)=Hi 1+1 Hi
(Xi±)=Xi± q diHi/2+qdiHi/2 Xi±,
3(2.6)
An algebra of functions on q-deformed Anti-de Sitter space AdS_q^D is defined which is covariant under U_q(so(2,D-1)), for q a root of unity. The star-structure is studied in detail. The scalar fields have an intrinsic high-energy cutoff, and arise most na
antipodeandcounitare
S(Hi)= Hi,
S(Xi+)= qdiXi+,S(Xi )= q diXi ,
ε(Hi)=ε(Xi±)=0.(2.7)
Theclassicalcaseisobtainedbytakingq=1.Theconsistencyofthisde nitioncanbecheckedexplicitly.
TheCartan–Weylinvolutionisde nedas
θ(Xi±)=Xi ,θ(Hi)=Hi,(2.8)
extendedasalinearanti–algebramap;inparticular,θ(q)=qforanyq∈C.Itisobviouslyconsistentwiththealgebra,andonecancheckthat
(θ θ) (x)= (θ(x)),
S(θ(x))=θ(S 1(x)).(2.9)(2.10)
±,0BorelsubalgebrasUqcanbede nedintheobviousway.Thisde nesaquasitriangular
Hopfalgebra,whichmeansthatthereexistsaspecialelementR∈Uq Uqwhichsatis es
′(x)=R (x)R 1(2.11)
foranyx∈Uq,andotherpropertieswhichwillnotbeusedexplicitly.Here ′(x)=τ (x)isthe ippedcoproduct.ThereareexplicitformulasforR,oftheform[20,19]
1αijdiHi djHj+res resR=q1 1+Uq Uq(2.12)
whereαij=(αi,αj).Inthispaper,weconsiderg=so(2r+1)=Brandg=so(2r)=Dr.Aswasshownin[7],thefollowingremarkableelement
ρv=(SR2)R1q 2 (2.13)
isinthecenterofUq,andwillbecalledDrinfeld–Casimir.Hereρ isdualtotheWeylvectorρ=1
An algebra of functions on q-deformed Anti-de Sitter space AdS_q^D is defined which is covariant under U_q(so(2,D-1)), for q a root of unity. The star-structure is studied in detail. The scalar fields have an intrinsic high-energy cutoff, and arise most na
ConsiderthematrixRij
kl=πik
S=qfor πjl(R)whereπikistheD–dimensional(“vector”)
sentationofUq,andletqso(2r),and2qS=q2forso(2r+1).ThenR repre-
ij=Rji
decomposesasR ij=(qSP+ q 1P +q1 DP0)ij
kl,whereP+,P andP0klkl
aretheinvariant
projectorsonthekltracelesssymmetric,StheSantisymmetric,andthesingletcomponentinthetensorproductof2vectorrepresentations,respectively.Theinvarianttensorgijisgiven(P0)ijq2by 1
kl=S
1+qDqρi′x2,i<i′(2.20)
S 2
Bothalgebrasarecovariantundertherightcoactionxi→xj AjiofFunq(SO(D,C)),whichisequivalenttoaleftaction
xi→u·xi=xjπji(u)(2.21)
foru∈Uq(so(D,C)).Wewillusuallyworkwiththelatter,whichismorefamiliarfromtheclassicalLiealgebras;thenπij(uu′)=πik(u)πkj(u′).Wecanusethisforaquickcheckofthe rstrelationin(2.20):
X+1/2
1·(x1x2 qSx2x1)=qSx1x1 qSq 1/2
Sx1x1=0(2.22)
An algebra of functions on q-deformed Anti-de Sitter space AdS_q^D is defined which is covariant under U_q(so(2,D-1)), for q a root of unity. The star-structure is studied in detail. The scalar fields have an intrinsic high-energy cutoff, and arise most na
using(2.6)andAppendixA,asitmustbe.Theotherrelationscanbecheckedsimilarly.ThealgebraoffunctionsAdSqD 1de ningthequantumAnti–deSitterspacewillbede nedasarealformofthiscomplexquantumsphere,witha(co)actionofthequantumAnti-deSittergroup.Thereforeasanalgebra,itisagainde nedby(P )ij2Onecouldintroduceaphysicalscalebysettingkltitj=0,t=1.
yi:=tiR(2.23)
foraconstantR>0,sothaty2=R2.Wewillsimplyusetheunitsde nedbyR=1;physicallyspeaking,thescalewillbesetbythe“radius”ofAdSspace.
Sofar,allthesespacesarecomplex.Thecrucialissueisto ndthecorrectde nitionofthecorrespondingrealquantumspaces.Thisisnotobviousespeciallyifqisaphase,andinfactdi erentpossibilitieshavebeenproposedintheliterature[4,13].Thiswillbediscussedindetailinlatersections.
2.1RootsofUnityandRepresentations
Sinceweareprimarilyinterestedinthecasewhereqisarootofunity,wewillconsideramorepowerfulversionoftheabove,theso–called“restrictedspecialization”Uqres:=Uqres(so(D,C))
[22]withgeneratorsX±(k)(X±
i)k
i=
An algebra of functions on q-deformed Anti-de Sitter space AdS_q^D is defined which is covariant under U_q(so(2,D-1)), for q a root of unity. The star-structure is studied in detail. The scalar fields have an intrinsic high-energy cutoff, and arise most na
Wewillonlyconsider nite–dimensionalrepresentationsinthispaper.TheCartangen-eratorscanthenbediagonalized,witheigenvalues
<Hi,λ>=
∨satisfy(Λi,αj)=δi,j,therefore(α,α)(αi,λ)isthecorootofα.ThefundamentalweightsΛi
(2.27)<Hi,Λj>=δij,
andspanthelatticeofintegralweights.Theirreduciblehighest–weightrepresentationswithhighestweightλwillbedenotedbyLres(λ).
ThevectorrepresentationVDofUq(so(D,C))istherepresentationLres(λ1)withbasisxi(orti)fori=1,...,D.TheirweightsλiaregivenexplicitlyinAppendixA.IfD>4,thenthehighestweightλ1isequaltoΛ1.Wealsode ne
dS=(λ1,λ1),MS=M/dS,(2.28)
sothatqS=qdSwhichwasusedabove.
Itiswell–known[31]thatforgenericq,therepresentationtheoryisessentiallythesameasintheclassicalcase.Inparticular,all nite–dimensionalrepresentations(=modules)ofresUqaredirectsumsofsomeLres(λ).Theircharacter
resλχ(L(λ))=edimLres(λ)ηe η=:χ(λ)(2.29)
η>0
isgivenbyWeylsformula.HereLres(λ)ηistheweightspaceofLres(λ)withweightλ η.
finTheirreduciblehighestweightrepresentationsofUqwillbedenotedbyLfin(λ).
ThevalueoftheDrinfeld–Casimirv(2.13)onLres(λ)(andonanyhighest–weightmodulewithhighestweightλ)was rstdeterminedin[30]:
v·w=q cλwforw∈Lres(λ),(2.30)
wherecλ=(λ,λ+2ρ)isthevalueoftheclassicalquadraticCasimironL(λ).Inparticularforhighestweightsoftheformλ=kλ1,theclassicalCasimirforso(2r+1)is
ckλ1=2k2+2k(D 2),
andforso(2r)itis
ckλ1=k2+k(D 2).(2.31)(2.32)
Finally,wequoteafewimportantfactsaboutirreduciblerepresentationsatrootsofunity.The rstone[2,5]statesthatthestructureofLreswith“small”highestweightλisthesameasclassically:
7
An algebra of functions on q-deformed Anti-de Sitter space AdS_q^D is defined which is covariant under U_q(so(2,D-1)), for q a root of unity. The star-structure is studied in detail. The scalar fields have an intrinsic high-energy cutoff, and arise most na
Theorem2.1Assumethatλisadominantintegralweightwith(λ+ρ,α)≤Mforallpositiverootsα.ThenthehighestweightrepresentationLres(λ)hasthesamecharacterχasintheclassicalcase,givenbyWeyl’scharacterformula.
Thisfollowsfromthestronglinkageprinciple,whichwas rstshownin[2];foramoreelementaryapproach,see[38].Moreover,Lfin(λ)=Lres(λ)fortheseweightsλ,sincethe±(M)Xiiacttrivially.
Forgeneralλ,thestructureofLres(λ)isdi culttoanalyze.Howeverforthe“specialweights” λz=MiziΛiforzi∈Z(2.33)itcanbeunderstoodeasily,andthiswillbethekeyformuchofthefollowing.Therelation
res(2.5)togetherwith(2.25)impliesthatforanyhighestweightmoduleUq·wλzwithhighest
weightλz,
(2.34) i:=Xi ·wλz
isahighestweightvector(possiblyzero)foranyi,i.e.Xi+· j=0foralli,j.BecauseLres(λz)isirreduciblebyde nition,itfollowsthat
Xi ·wλz=0foralli(2.35)
fin(so(D))areone–inLres(λz).Inparticular,theirreduciblerepresentationsLfin(λz)ofUq±(M)resdimensional.Howeverthe“large”generatorsXii∈UqdoactnontriviallyonLres(λz),
aswewillseenext.
resUsingthecommutationrelations,anyelementofUq(so(D))canbewrittenasasum
fin1.ItfollowsthatallweightsofLres(λz)haveoftermsoftheformX...XikkUqi1 theformλz′=λz iniMiαiwithni∈N.Inotherwords,Lres(λz)isadirectsumof
fin,sinceallλz′arespecialpoints.Infact,one–dimensionalrepresentationsLfin(λz′)ofUqtheweightsλzhavethestructureofaweightlatticewith“fundamentalweights”MiΛi.This ij=Aji ,withCartanmatrixAturnsouttobetherescaledlatticeofadualLiealgebrag
=so(D)ifDiseven,andg =sp(D 1)ifprovided(2.24)holds[37].Inthepresentcase,g
res“contains”acorrespondingclassicalLiealgebraasaquotient.ThisisDisodd.Infact,UqtheessenceofaremarkableresultofLusztig[23],andcanbemadeexplicitasfollows([37],
Theorem4.2):
Letai∈{0,1}suchthatai+aj=1ifAij=0andi=j;thisisalwayspossible.De ne i=qdiMiHi,andK (Mi) (Mi)
+=X+(Mi)K ai,Xiii
2 =X (Mi)K 1 aiqMi,Xiiii i=[X +,X ]Hii
8(2.36)
An algebra of functions on q-deformed Anti-de Sitter space AdS_q^D is defined which is covariant under U_q(so(2,D-1)), for q a root of unity. The star-structure is studied in detail. The scalar fields have an intrinsic high-energy cutoff, and arise most na
Thenonecanshowthefollowing:
Theorem2.2Forallspecialweightsλz,Lres(λz)isanirreduciblehighest–weightrepresen- ±andH i.If tationoftheclassicaluniversalenvelopingalgebraU(g),withgeneratorsXi ′ i·vz′=z′vz′.vz′∈Lres(λz)hasweightjzjMjΛj,thenHi
Inparticularifλzisadominantweight,thenthecharacterofLres(λz)isinvariantundertheWeylgroup,andcanbeobtainedfromWeyl’ingthis,thestructureofLres(λ)with“large”dominantintegralλcanbedescribedasfollows[5]:∨Theorem2.3Letλzasin(2.33)andλ0beanintegralweightswith0≤(λ0,αi)<Mifor
alli.Then
Lres(λ0+λz)=Lres(λ0) Lres(λz).(2.37)
Thisisnothardtoprove,see[5]or[37].Moreover,thegenerators(2.36)essentiallyacton
finthesecondfactorin(2.37)andUqonthe rst,butwithacertain“twisting”[37].
3Realitystructuresandsymmetryalgebra
Sincetheproperchoiceoftherealitystructureiscrucialinthefollowing,we rstdiscusstherelationoftherealstructuresonthespaceswiththeirsymmetryalgebras.
ThealgebraoffunctionsonbothclassicalandquantumD–dimensionalcomplexEu-clideanspaceisgeneratedbycoordinatefunctionsxi,whichtransforminthevectorrepre-sentationVDofUq(so(D,C)).Thetensorproductof2suchrepresentationscontainsauniquetrivialrepresentation;inotherwords,thereisaninvariantbilinearform<,>:VD×VD→C.InHopf–algebralanguage,invariancemeans<f,g>=<u(1)·f,u(2)·g>forf,g∈VD,where (u)=u 1+1 u=u(1) u(2)denotesthecoproductofu∈U(so(D,C))orUq.Thisextendsimmediatelytopolynomialfunctions.
Intheclassicalcase,thealgebraofcomplexfunctionsonrealEuclideanspace(oranyrealmanifold)isequippedwitha –structure,i.e.anantilinearmapwhosesquareistheidentity,de nedbythecomplexconjugation.Theaboveinvariantbilinearformtheninducesahermitianinnerproductby
(f,g)=<f ,g>,(3.1)
whichsatis es(f,g) =(g,f).Thesignature(p,D p)ofthisinnerproductisthesignatureofthe(pseudo)Euclideanrealspace,anditispositivede niteonlyintheEuclideancase.
9
An algebra of functions on q-deformed Anti-de Sitter space AdS_q^D is defined which is covariant under U_q(so(2,D-1)), for q a root of unity. The star-structure is studied in detail. The scalar fields have an intrinsic high-energy cutoff, and arise most na
forallu∈U(so(D,C)).Thisde nestherealformU(so(p,D p)),andonecanthenstudyitsunitaryrepresentations,whicharein nite–dimensionalexceptintheeuclideancase.Intheq–deformedcase,weusethisconnectionbetweentherealformofafunctionspaceanditssymmetryalgebraintheotherdirection:therewillbeaclearchoiceoftherealformofUq,whichthendeterminestherealformofthefunctionalgebras.Arealformor –structureofUqisanantilinearanti–algebramap onUqwhosesquareistheidentity.AninvariantinnerproductonarepresentationofUqisahermitianinnerproductwhichsatis es(3.2)forallu∈Uq;inotherwords,thestaronUqisimplementedbytheadjoint,whichiswell–de nedfornondegenerateinnerproducts.ThisisparticularlyintuitiveforelementsofUqoftheformg=exp(itu)withu =u,sincetheng =g 1.
ArepresentationofUqisunitarywithrespecttoarealformofUqifithasapositivede niteinvariantinnerproduct.Then
i (π(u)ji)=πj(u)Butinanycase,itde nesa –structureonthealgebraU(so(D,C)),i.e.anantilinearanti–algebramap,by(f,u·g)=(u ·f,g)(3.2)(3.3)
foranyu∈Uq,inanorthonormalbasis.
Ourguidingprincipleto ndtheappropriateq–deformedrealspacesisthatthestarstructureonUqshouldadmitasu cientlylargeclassofunitaryrepresentationsofthequan-tumAdSgroupinordertodescribeelementaryparticles,inthespiritofWigner.TheAdSgroupisparticularlywellsuitedforsuchanapproach,becauseithasunitaryrepresenta-tionsforanyhalf–integerspincorrespondingtomassiveaswellasmasslessparticleswithpositiveenergy,inanydimension.Infact,onecanchoosetheCartansubalgebrasuchthattheenergyisoneofitsgenerators,andtheunitaryrepresentationsarethenlowest–weightrepresentationswithpositiveenergyanddiscretespectrum.TheunitaryrepresentationsofthePoincar´egrouparerecoveredinthe atlimit.Wewanttomaintainthesefeaturesintheq–deformedcase.Thiswilluniquelyselecttherealstructure.
3.1StarstructuresonUq
Xi±=siXi , Thereareessentially2typesofstarstructures3onUq[37],the rstoftheformHi =Hi,(3.4)
An algebra of functions on q-deformed Anti-de Sitter space AdS_q^D is defined which is covariant under U_q(so(2,D-1)), for q a root of unity. The star-structure is studied in detail. The scalar fields have an intrinsic high-energy cutoff, and arise most na
andthesecondoftheform
Xi±=siXi±, Hi = Hi,(3.5)
withsi=±1.Theyde neconsistentstaralgebrasforbothrealqandqarootofunity.Thecompatibilityconditionswiththecoproductaredi erentforrealqandqaphase,whichwillshowupindi erentrealitystructuresoftheassociatedquantumspaces.
Itisknownthatthereexist nite–dimensionalunitaryrepresentationsofthe rsttype(3.4)ifqisarootofunity[38,37],whichhavethedesiredpropertiesincludingahigh–energycuto intheAdScase.Forq∈R,unitaryrepresentationsofnoncompactformsalsoexist,buttheyhavenocuto .Therearealsocertainunitaryrepresentationsofthesecondtypeforqaphase,e.g.forUq(so(2,1))[32],buttheyarenothighest–weightrepresentations;inparticular,theCartansubalgebracannotbediagonalized,andtheenergyintheAdScaseisnotpositivede nite(noticethattheCartansubalgebraisdistinguishedforq=1,unlikeintheclassicalcase).Finite–dimensionalunitaryrepresentationsofthesecondtypecannotexist,sincethenHicouldbediagonalizedwithpurelyimaginaryspectrum,whichisincontradictionwiththecommutationrelation(2.4);ThereforeweonlyconsiderstarstructuresonUqofthe rsttype(3.4)fromnowon,withqarootofunity.
ConsiderthevectorrepresentationVDofUq,withbasisxiandweightsλifori=1,...,D.VDisunitarywithrespecttothecompactform
Xi±=Xi , Hi =Hi,(3.6)
whichde nesUq(so(D))forbothrealqandqaphase.Ingeneral,thereisauniqueinvariantinnerproductonhighestweightmodulessatisfying(3.2)forstarstructuresofthetype(3.4).Theweightvectorsxiarethenorthogonalfordi erentweights,andtheycande nedtobeorthonormal,i.e.
(xi,xj)=δij.(3.7)
Thisisthestandardconventionintheliterature.
Nowitiseasyto ndthede nitionofUq(so(2,D 2)).LetEbetheelementoftheCartansubalgebrawhichisdualtoλ1/dS,sothat<E,λ>=(λ1,λ)/dS.ThentheeigenvaluesofEonVDareEi:=(λ1,λi)/dS=(1,0,...,0, 1);Ewillturnouttobetheenergy.Weclaimthatthestarstructurede ningUq(so(2,D 2))is
Xi±=( 1)Eθ(Xi±)( 1)E=siXi , Hi =Hiwithsi=( 1)<E,αi>,(3.8)wheresi=( 1,1...,1)forD=4,andsi=( 1, 1)forD=4.Thisisastaralgebraofthe rsttype(3.4)whichcanbeconsideredforbothq∈Randqarootofunity,andthereexistunitaryrepresentationsinbothcases.ThemaximalcompactsubalgebraisUq(so(D 2))×±±Uq(so(2))whereUq(so(D 2))generatedbyX2,...,Xr,H2,...,Hr(forD=4),andUq(so(2))
11
An algebra of functions on q-deformed Anti-de Sitter space AdS_q^D is defined which is covariant under U_q(so(2,D-1)), for q a root of unity. The star-structure is studied in detail. The scalar fields have an intrinsic high-energy cutoff, and arise most na
byE;thesesubalgebrascommute.Theunique(uptonormalization)correspondinginvariantinnerproductonVDwhichsatis es(3.2)is
(xi,xj)=( 1)Eiδij(3.9)
intheabovebasis,andhasthecorrectsignaturefortheAdScase.Wewillalso ndthedesiredunitaryrepresentationsofU
de nethe“physical”quantumAnti–deqfin(so(2,D 2)),provided(2.24)holds.Thereforewe
Sittergroupatrootsofunitytobetherealform
(3.8)ofUqfin(so(2,D 2)).
3.2QuantumEuclideanandAnti–deSitterspaceforrealqForrealq,thereisastandardstarstructureonthealgebraCDq.ThealgebraRDqontherealquantumEuclideanspaceisde nedby[8]
x i=xjgji.(3.10)
Thisisaconsistentstaralgebra,whichindeedleadstotheinvariantinnerproduct(xi,xj)=δij,andby(3.1)correspondstotherealform(3.6)onUq.Itisalsoconsistentwiththeconstraintxixjgij=1,therebyde ningthequantumEuclideansphereSD 1forrealq.ThealgebraAdSqD 1onquantumAnti–deSitterspaceforrealqissimilarlyqde nedby
t i= ( 1)Eitjgji,(3.11)
togetherwith
t2=titjgij=1.(3.12)
Thisisconsistentwith(2.17)becauseEisintheCartansubalgebra,andhasthecorrectclassicallimit.By(3.1),thisleadstotheinvariantinnerproduct(ti,tj)=( 1)Eiδij.Ifqisaphase,(3.10)doesnotextendasastaronthealgebraCD
q.Inthiscase,star
structuresdi erentfrom(3.10)havebeenproposed,ofthetypexD
becomesastaralgebra,theyleadtostarstructuresonUi=±xi[8,4].WhileCthenthesecondtype(3.5),q
qof
whichwehavediscardedabove.However,wewillseebelowthatthereisastaronthesemidirectproductalgebraUq
An algebra of functions on q-deformed Anti-de Sitter space AdS_q^D is defined which is covariant under U_q(so(2,D-1)), for q a root of unity. The star-structure is studied in detail. The scalar fields have an intrinsic high-energy cutoff, and arise most na
situationforq∈Riscompletelyanalogous.Atrootsofunityhowever,thestructureofpolynomialschangescompletely,andwewillseethattheanaloguesoftheclassicalscalar eldscaninfactbewrittenaspolynomialsintheti.
Toseethis,wehavetostudyCDqinmoredetail.ConsiderthesetofhomogeneouspolynomialsMqk CDqwithdegreekinthexi,whichformsasubmoduleofthek–foldtensorproductrepresentationV k
xDofUqres.Mqkisnotirreducible,becausethemetricprojectormay
benontrivial.Clearly1...x1=(x1)k∈Mqkisahighestweightvectorwithweightkλ1.Itgeneratesthehighestweightmodule
F(k):=Uqres·(x1)k Mqk.(4.1)
Ifqisgeneric,thenF(k)isairreduciblerepresentationwithhighestweightkλ1correspondingtoatotally(q–)symmetrictracelesstensor,andMqk=F(k)⊕x2
Ifqisarootofunity,thenMqkisnotcompletelyreducibleanyF(more,k 2)which⊕...asisclassically.atypicalphenomenonatrootsofunity.ThefullstructureofMk
discussedelsewhere.Hereweonlyconsiderthosemodesqisquitecomplicated,andwillbe
whichwillbeneededfortheHilbert
spaceofscalar eldsonAdSq.
First,weidentifythepolynomialsF(k)inCDqwhichhaveessentiallythesamestructureasclassically,whichmeansthecharacterofLres(kλ1)ing(2.24),Theorem2.1impliesthatχ(Lres(kλ1))=χ(kλ1)fork≤
indeed,anypositiverootαcanthenbewrittenasα=
3)d1 MSniα i(withD n3)i,whichis≤M≤(assuming=ai,whereDai≥are4;
theCoxeterlabels.Hence(kλ1+ρ,α)≤(k+Dd1M1providedk≤M1
However, (Dthis 3).boundForDcan=3,betheimprovedboundisusingk≤MS
the strong1/2).linkageprinciple,seee.g.[38].
Wecanassumethatk<MS;thenitimpliesthatthecharacterofLres(kλ1)=Lfin(kλ1)isthesameasclassically,unlessitcontainsadominantintegralweightµwhichisintheorbitofkλ1undertheWeylgroupactingwithcenterMSλ1 ρ(sinceMsλ1isaspecialweight).Since(λ1
An algebra of functions on q-deformed Anti-de Sitter space AdS_q^D is defined which is covariant under U_q(so(2,D-1)), for q a root of unity. The star-structure is studied in detail. The scalar fields have an intrinsic high-energy cutoff, and arise most na
(ForoddD,thereisasimilarphenomenon).Thisisrelatedtothescalarsingleton eldontheAdSspace,aswewillseeinthenextsection.Onecancheckthate.g.theCasimirv(2.13)indeedbecomesdegeneratefortheseweights.kTosummarize,thestructureofMqisthesameasclassicallyforsmallk:
Theorem4.1Forn0≤kSandrootsofunityoftheform(2.24),
F(n0)~=Lres(n0λ1)=Lfin(n0λ1)
n0hasthesamecharacterχ(n0λ1)asclassically.Moreover,Mqisthedirectsum
n0Mq(4.5)=
0≤k≤n0/2 (x2)kF(n0 2k).(4.6)
TheproofiscompletedinAppendixC.2
NextconsiderF(kMS),whichisofcentralimportancetous.ItshighestweightkMSλ1isaspecialweight(2.33).Using(2.6)andthecommutationrelations(2.20),onehas
X1·(x1)n=qS (n 1)/2
(n 1)/2
(n 1)/2x2(x1)n 1+qS (n 3)/2x1x2(x1)n 2+...+qS)x2(x1)n 1(n 1)/2(x1)n 1x2(4.7)=qS2(1+qS+...+qS2(n 1)
=qS[n]qSx2(x1)n 1.
Since[kMS]qS=0,itfollowsthatXi ·(x1)kMS=0foralli,hence(x1)kMSisaone–
findimensionalrepresentationofUq.Asdiscussed inSection2.1below(2.35),thisimplies
thatallweightsofF(kMS)havetheformλz=ziMiΛi,andF(kMS)isarepresentation ±andH i.Moreover,itis )withgeneratorsXoftheclassicaluniversalenvelopingalgebraU(giahighestweightmodulewithhighestweightvector(x1)kMS.Bytheclassicalrepresentationtheory,itfollowsthatitisirreducible,hence
F(kMS)~=Lres(kMSλ1),(4.8)
(exceptforD=3,whereitisL(kΛ1)).whichisessentiallyL(kλ1)ofg
Nowconsidermoregenerallyn=n0+kMSwith0≤n0<kSandk∈N.ThenbothF(n)andF(n0) F(kMS)arehighestweightmoduleswithhighestweightnλ1.ClearlyF(n) F(n0)F(kMS),by(4.1)and(2.6).Ontheotherhand,F(n0)F(kMS) F(n0) F(kMS),whichisisomorphictoLres(nλ1)byTheorem2.3.Hencewehaveshownthat
14
An algebra of functions on q-deformed Anti-de Sitter space AdS_q^D is defined which is covariant under U_q(so(2,D-1)), for q a root of unity. The star-structure is studied in detail. The scalar fields have an intrinsic high-energy cutoff, and arise most na
Theorem4.2Forn=n0+kMSwith0≤n0<kSandk∈N,
F(n)=F(n0)F(kMS)~=Lres(nλ1).=F(n0) F(kMS)~(4.9)
Inparticular,itisessentiallythetensorproductofF(n0)withtheirreduciblerepresentation
.L(kλ1)(orL(kΛ1)forD=3)oftheclassicalalgebrag
5
5.1RealformsandHilbertspacerepresentationsofthequantumspacesD 1D 1HilbertspacesforSqandAdSq
Nowwearereadytodiscusstherealitystructureatrootsofunity.Aswaspointedoutbefore,(3.10)and(3.11)arenotconsistentwiththealgebraforqaphase.To ndthecorrectde nition,we rstconstructtheHilbertspaces,andthensimplycalculatetheadjointoftheoperatorsofinterest.Wewanttoemphasizethattheinnerproductsonirreduciblerepresentationsaredetermineduniquelyby(3.2).Indeedonanyhighestweightmodule,thereexistsaunique(uptonormalization)invariantinnerproductforagivenstarstructureoftheform(3.4).Thisisbecauseoncetheinnerproductisde nedonthehighestweightvector,itcanbecalculatedforalldescendantvectorsusing(3.2);ingeneral,itisnotunitary.Theresultinginvariantinnerproductisnon–degenerateiftherepresentationisirreducible.
resWe rstdiscussthequantumsphere.AsrepresentationofUq,wecanconsider
resD 1F(n)=Uq·(t1)n Sq,C(5.1)
insteadof(4.1).However,notalltheseF(n)shouldbeconsideredas eldsonthe“real”quantumsphere,onlythosewhichareunitaryrepresentationsofthecompactform
Xi±=Xi , Hi =Hi,(5.2)
fin(so(D)),withthenaturalinnerproductdiscussedabove.Itwasprovedin[37]thatofUqthiscertainlyholdsforthoseLres(kλ1)=Lfin(kλ1)withk≤kS(4.2).Heretheassumption(2.24)isimportant.
Hencewecouldde neaHilbertspaceoffunctionsontherealquantumspheretobethedirectsumofallF(k)withk≤kS.Inordertoobtainasimplede nitionofposition
15
An algebra of functions on q-deformed Anti-de Sitter space AdS_q^D is defined which is covariant under U_q(so(2,D-1)), for q a root of unity. The star-structure is studied in detail. The scalar fields have an intrinsic high-energy cutoff, and arise most na
operatorsinSection5.5,weimposetheslightlystrongerboundk<kS,andde netheHilbertspaceoffunctionsontherealquantumspheretobe
finD 1Uq·(t1)n0.(5.3)F(n0)=Sq:=
0≤n0<kS0≤n0<kS
ThepositionoperatorswillbediscussedinSection5.5.ItsgeneratorsareessentiallythetiasinSection2;theywillhavetobeslightlymodi edinordertoaccountforthecuto .TheirstarstructureisdetermineduniquelybytheadjointontheHilbertspace,andwillbe
D 1givenexplicitlyinSection5.5.SqisatruncatedversionoftheclassicalsphereSD 1=
⊕n≥0L(nλ1),whichisrecoveredinthelimitM→∞,orq→1.
Nowconsidermoregenerallyn=n0+kMSwith0≤n0<kS,sothatF(n)=F(n0) F(kMS)accordingto(4.9).SinceF(kMS)~=Lres(kMSλ1)isa nite–dimensional
,ithasastandardpositive–de niteinvariantinnerirreduciblerepresentationoftheclassicalg
product.WejustdiscussedtheinnerproductonF(n0).Thissuggestsanaturalpositivede niteinnerproductonF(n)asthetensorproduct,sothat
(fρ(k),f′ρ′(k)):=(f,f′)(ρ(k),ρ′(k))(5.4)
wheref,f′∈F(n0)andρ(k),ρ′(k)∈F(kMS).Thisleadstoaninterestingphysicalinterpre-tation,aswewillsee.Wewillalwaysuseanorthonormalbasiscorrespondingtothisinnerproductfromnowon.
resWehaveseenintheprevioussectionthatallweightsofL(kMSλ1)havetheformλz= fin(n0λ1+λz)iziMiΛi.ThereforeF(n)isthedirectsumofirreduciblerepresentationsL
finofUqforvariousλz;ifthemultiplicityofacertainLfin(n0λ1+λz)inF(n)islargerthanone,thenthecorrespondingsubspacecanbedecomposedasanorthogonalsumofirreduciblecomponents.HenceF(n)isadirectorthogonalsumofHilbertspacesoftypeLfin(n0λ1+λz),withtheinducedinnerproduct(5.4),andthedi erentcomponentsarerelatedbytheaction ±(2.36).OnecannowcalculatetheadjointofthegeneratorsofoftheclassicalgeneratorsXifinfinUqonL(n0λ1+λz)withrespecttothisinnerproduct.Theresultis(see[37],Theorem
5.1) Hi =Hi,Xi±=siXi ,wheresi=( 1)zi.(5.5)
jfinIfπi(u)istherepresentationofu∈UqonLfin(n0λ1+λz)withrespecttoanorthonormalbasis,thismeansthatji (π(u) )j(5.6)i=πj(u)=πi(u)
asin(3.3);here reallydependsonzasin(5.5),whichwillhoweverbesuppressedinthefollowing.HenceLfin(n0λ1+λz)isaunitaryrepresentationofacertainrealformofthetype
fin(3.4)ofUq(so(D,C)),andthe“sectors”withdi erentλzbutthesamesiareunitarywith
16
An algebra of functions on q-deformed Anti-de Sitter space AdS_q^D is defined which is covariant under U_q(so(2,D-1)), for q a root of unity. The star-structure is studied in detail. The scalar fields have an intrinsic high-energy cutoff, and arise most na
paringwithSection3.1,weconcludethatifallziareeven,thenLfin(n0λ1+λz)isaunitaryrepresentationofthecompactform(3.6)andhence
D 1ascalar eldonSq.Iftheziaresuchthatsi=( 1)ziisasin(3.8),thenitisaunitary
finrepresentationoftheAnti–deSittergroupUq(so(2,D 2)),andshouldinfactbeviewed
D 1asascalar eldonAdSq,correspondingtoasquare–integrablescalar eldintheclassical
case.Tounderstandthis,considertheLfin((2MS k)λ1)aslowest–weightrepresentations
finLfin(kλ1)ofUqwithlowestweightkλ1.Forlowenergies,theyhavethesamestructure
asthescalar eldsontheclassicalAdSspace,whichareirreducibleunitarylowest–weightrepresentationsofSO(2,D 2)realizedintermsofsquare–integrablefunctions.Itisveryremarkablethattheyarerealizedhereintermsofpolynomialsinthecoordinatefunctions.Thereforewede netheHilbertspaceoffunctionsontherealquantumAnti–deSitterspacetobe
D 1finnD 1Lfin(nλ1)=Sq(t1)MS.(5.7)Uq·(t1)=AdSq:=
MS≤n<MS+kSMS≤n<MS+kS
MS nMSfinfinIntermsoflowest–weightrepresentationsLfin(nλ1)=Uq·(tDt1)ofUq,thiscanbe
writtenas D 1Lfin(nλ1).(5.8)AdSq=
(D 2)/2<n≤MS
ForenergieslessthanMS,thestatesintheHilbertspacesarethesameasclassically,and
fintheactionofUqapproachestheclassicaloneforanygivenweightasM→∞.Theenergy
ofallstatesislessthan2MS.Theprecisede nitionofthepositionoperatorswillbegiveninSection5.5.Intheclassicalcase,thelowerbound(D 2)/2canbeseenbyasimpledimensionalargument;howeveritcanbeviolatedslightly.M (D 4)/2MSfinForevenD>4,theirreduciblequotientofUq·(tDSt1)isthescalarsingletonLfin((D 4)/2λ1),withlowestweight(D 4)/2λ1;wewillnotconsideritanymorehere.
5.2Productspaces
Fromtheabovediscussion,itwouldseemmuchmorenaturaltoconsiderallpolynomials
fininthetiinsteadofjustcertainUq·(t1)n.Forsimplicity,wewillrestrictourselvestothe
respolynomialsoftheformF(n)=Uq·(t1)nforallkMS<n<kMS+kSandallk∈N,and
1=λ1forD>3,andλ 1=λ1/2=Λ1forD=3.Thenstudytheir eldcontent.Letλ
F(n)=F(n0)F(kMS)using(4.9),wherethesecondfactorisessentiallytherepresentation 1)oftheclassicalsymmetryalgebrag ,whichconnectsthevariouscomponentswithL(kλ
17
An algebra of functions on q-deformed Anti-de Sitter space AdS_q^D is defined which is covariant under U_q(so(2,D-1)), for q a root of unity. The star-structure is studied in detail. The scalar fields have an intrinsic high-energy cutoff, and arise most na
di erentλz′.Hence
⊕F(n)= F(n0) k∈N0≤n0<kS 1),L(kλ(5.9)
wherecertainmodeswereomittedasinSection5.1forsimplicity.Forthemomentweignoretherealitystructure. 1)areveryparticularrepresentationsoftheclassical ObservethattheL(kλg,whichhaveaniceinterpretation.Consider rstD=2r.Thenthedualalgebraisso (2r)=so(2r)as 1)canbeviewedasafunctionontheclassicalsphereSD 1.Henceshownin[37],andL(kλ 1)~⊕k∈NL(kλ=Fun(SD 1),whichisthespaceofpolynomialfunctionsontheclassicalsphereSD 1. 1=Λ1,andF(kMS)isNext,considerD=2r+1,whichislessobvious.Thenλ
thehighest–weightrepresentationL(kΛ1)ofso (2r+1)=sp(2r)withhighestweightkΛ1.Observethatthe2r–dimensionalrepresentationL(Λ1)isnotreal,inthesensethatthe2rvariablesziarenecessarilycomplex,andcanbeconsideredas4rrealvariablesxi.Thecompactform USp(2r)actsbymultiplyingtheziwithaunitarymatrix.Thereforethe
2radiusx=izi
- 1Sur la cohomologie de certains espaces de modules de fibr&39;es vectoriels
- 2Was Einstein a Space Alien译文
- 3Greek culture, Roman culture and the roots of Europe
- 4quantum-espresso安装
- 5Incompressible Quantum Hall Fluid
- 6exercise de traduction 9
- 7Test de grammaire I
- 8exercise de traduction 9
- 9Nonlinear Hydrodynamics of a Hard Sphere Fluid Near the Glass Transition
- 10Unity面试题
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Quantum
- Sitter
- sphere
- space
- roots
- unity
- Anti
- de
- 20112分子生物学试题 A
- 浦东南路小学第二学期三年级牛津英语M3U2练习(听力内容和答案)
- _普通高中数学课程标准_修订稿_的意见征询_访谈张奠宙先生_洪燕
- 2012年国内外重大时事
- 《预备党员转正式党员考察表》相关填写范文
- 四川省广元市昭化区事业单位考试《计算机专业知识》试题
- 2022聚焦中考语文(辽宁省)复习+考点跟踪突破1 《论语》十二章
- 日语作文---关于人权
- 中国各个省的家电批发市场
- 听卢元锴教授讲座心得体会
- 软件工程复习题(wanghuiqing2011复习题)1
- 高中英语 Unit7 Lesson2 protecting the sea课件 北师大版必修3
- 酒店员工服务意识培训2
- 微机组装及维护实验报告
- 信息技术在汽车保险经营管理中的应用对策研究
- 植物性食品中有机氯农药残留量检测的前处理方法研究
- 《黑客帝国》系列电影特效分析
- 三支一扶考试行测:资料分析习题及答案解析
- 乡村旅游消费行为特征论文
- 本科生毕业论文开题报告