Inspect a General Framework for On-Line Detection and Diagnosis of Sensor Faults
更新时间:2023-07-25 15:12:02 阅读量: 实用文档 文档下载
- inspect推荐度:
- 相关推荐
Abstract—We propose an on-line fault detection and diagnosis framework in sensor networks, called Inspect, which is based on a hybrid tiered approach to integrity checking. Inspect tiered design combines the benefits of distributed and centralized approac
Inspect:aGeneralFrameworkforOn-LineDetectionandDiagnosisofSensorFaults
DanielaTulone
UniversityofCalifornia,LosAngeles
tulone@ee.ucla.edu
Abstract—Weproposeanon-linefaultdetectionanddiagnosisframeworkinsensornetworks,calledInspect,whichisbasedonahybridtieredapproachtointegritychecking.Inspecttiereddesigncombinesthebene tsofdistributedandcentralizedapproaches,thusimprovingtheresponsivenessandef ciencyofthefaultdetection.Moreprecisely,Inspectconsistsofalocaltierbuiltateachsensornodeandcapableofdetectinganomalies,andacentralizedtierbuiltatthesinkandcapableofdistinguishingbetweensensorfaultsandunexpectedtemporal-spatialvariationsinthephenomenon,anddetectingmorecomplextypesoffaults.Inspectsoffersseveraldesirablefeatures:on-linedetection,ap-plicationindependence,andincreasedrobustnesstotemporal-spatialvariations.Moreover,Inspectprovidescon denceboundsthatcanbedynamicallytunedaccordingtotheuserrequirementsforabetterresourcemanagement,andaddressestheproblemofdetectingmorecomplextypesoffaults.
I.INTRODUCTION
Embeddednetworkedsensorsarepowerfulnewtypeofinstrumentwiththepotentialofadvancingknowledgebymonitoringthephysicalworldatunprecedentedscalesandresolutions.However,foraninstrumenttobeuseful,theinformationitprovidesmustbeofhighintegrity.Inthecaseofsensornetworks,theintegrityofreturnedinformationmaybecompromisedduetofaults,failures,andimperfectionsinthesensors,asshowninsomesensordeployments[21],[17],[16].Whilepriorresearchhasledtotremendousprogressinthetasksofef cientlyacquiring,querying,processing,andcommunicatingsensordata(e.g.,DirectedDiffusion[8],TinyDb[13]),farlessattentionhasbeenpaidtotheintegrityissues.Theoverallintegrityproblemhasseveralaspects:(i)techniquesfordetectinganddiagnosingsensorfaults,failures,andimperfectionssoastotakeremedialactionssuchareplac-ingorrepairingasensor,(ii)proceduresforrepairingsensormeasurementsbyreversingtheeffectofsensorimperfectionssuchasmis-calibration,and(iii)algorithmsforfusingandaggregatingsensormeasurementsthatareinherentlyrobusttocorruptedandmissingsensormeasurements.
Thefocusofthispaperisonon-linesensorfaultdetectionanddiagnosisproblemwithoutusingextrinsicreferencesen-sorsandknownstimulitovalidatesensorfunctionality.On-linefaultdetectionanddiagnosisareusuallybasedondataqualityanalysisofsensormeasurementsmadebythenetworkusingstatisticalmodelsofsensordataandphysicalphenomenon,andonredundanciesinsensormeasurementsinspace,time,andsensingmodality.Previouson-linedetectionmechanisms,suchas[9],useacentralizedapproach:thesinkdetectsfaultsbased
ManiSrivastava
UniversityofCalifornia,LosAngeles
mbs@ee.ucla.edu
onstatisticalmodelbuiltatthesinkbasedonthecollectedsensordata.Theintegritycheckingatthebackendiscertainlyareasonableapproachforapplicationscenarioswhereallthesensordataneedstobeextractedanyways.Suchisthecaseformanyscienceapplicationswherethegoalistodevelopamodel,aswellasindeploymentstagesofotherapplicationswhenthesystemis ne-tunedtoitsoperationalenvironment.However,inmanyotherapplicationscenariosthismaynotbethecase.Forexample,thesystemmayonlyneedtoreporttheoccurrenceofsomeeventorthepresenceofsomefeaturetotheenduser.Insuchsystemsundernormalconditionstherewouldbenoneedtoextractallthesensorinformationtotheback-end.Havingtoextractallthesensorsamplestotheback-endwillimposeneedlessenergyoverheadsandalsocausecommunicationscalabilityproblems.Insomesystemswhiledataisindeedextractedtothebackend,itisonlyforlong-termarchivalandauditingpurposes.Real-timecommunicationstotheback-endinthesesystemsarelimitedtosummariesandeventreports,andthebulksensordataisstoredlocallyatthesensornodeinpersistentstorageandisextractedlaterinadelaytolerantfashionuponavailabilityofhigherbandwidthormoreenergyef cientcommunicationlinksorperhapsbyahumanvisitor.Moreover,thedetectionlatencyassociatedwithacentralizedon-linemechanismmightnotbesuitableforapplicationsrequiringafastresponseduetodataloss.Clearly,inboththeseclassesofsystems(wherethebulksensordataiseithernotneededatthebackend,ornotneededimmediately),theintegritychecksstillneedtobeperformedinreal-timeasotherwisefaultysensorswillleadtofalsepositivesorfalsenegativesineventreportingorresultinfaultyresponsestouserqueries.Thisarguesforintegritycheckmechanismsthatareeitherlight-weightenoughtobeperformedlocallyatthenode,orwhichcanbeperformedatthebackendbutusesensordatasummariesandevenreportsasinputsasopposedtorawsensordata.Boththeseapproachesaresub-optimal:localin-nodemechanismslacktheinfor-mationfromothernodesthatcanhelpdisambiguatefaultsfromunexpectedphenomena,whilemechanismsoperatingonsummariesandeventreportsatthebackendoperatewithoutthebene toffullinformationonthecurrentmeasurementsatthesensors.Therefore,ahybridtieredapproachtointegritycheckingwouldbeneeded,andwillneedtobecloselyintegratedwiththemechanismneededforextractingandqueryingthesensors.ThispaperpresentsInspect,anon-linefaultdetectionanddiagnosissystembasedonsuchatiered
Abstract—We propose an on-line fault detection and diagnosis framework in sensor networks, called Inspect, which is based on a hybrid tiered approach to integrity checking. Inspect tiered design combines the benefits of distributed and centralized approac
approach.
Asdetailedlaterinthepaper,Inspect’stieredapproachisaprobabilisticonethatreliesonlocalforecastingmodelstopredictdatasensedateachnode,andonestimatingspatialcorrelationstocomputeexpectedmaximumdeviationsamongnearbynodes.Torealizethis,wemakeuseofaclassoflightweightandadaptabletimeseriesmodelsandacentral-izedmodel-basedsimilaritymechanismthatwereproposedbyTuloneandMadden[19],[20]foref cientlyansweringapproximatesensorqueriesintheSAFframework.TheInspectdetectionanddiagnosisframeworkcompriseslocaltimeseriesmodelsembeddedateachnode,andasuiteofnoveldetectionanddiagnosisalgorithmsthatrunatthesensornodesandatthebackendsinkinatieredhierarchy.Thelocalcomponentrunningateachnodeusesfault-speci cdetectorsbasedonthelocalmodelstoidentifysuspectedfaultsandgeneratealerts,whilethecentralizedcomponentrunningatthesinkdoesthede nitivedetectionanddiagnosisbasedonthesensorforecastingmodels,onthealerts,onthegeographicalcorrelationsamongnodes.ThecentralizedcomponentisatthecoreofInspectasitneedstodistinguishbetweenfaultsandunexpectedbehaviorinthephenomenon,whichcanbepar-ticularlychallengingasrealphenomenaevolveovertimeandarenotnecessaryuniformlydistributedoverthegeographicalsystemregion.Theseelementsalongwiththesensibilityofthesensornodetotheenvironment,makethedetectionofsensorfaultsmuchharderastheyrepresentanadditionalsourceofuncertainty.
Toaccomplishthis,InspectusestheconceptofaVirtualReferenceSensor(VRS)thatexploitstemporal-geographicalcorrelationstoestimatethegroundtruthforsensormeasure-mentstoagivenaccuracyusinglow-coststatisticaltechniques.Ineffect,theVRSplaystheroleofatrustedsensorinsidethenetwork.ThecomputationofVRSdoesnotrelyonnodeagreementbutcombinesmultipletechniquestoenhance exibilityandaccuracy(e.g.,timeseriesmodels,run-timemonitoringoferrorestimate,accountingfornodereliability,andclusteringbasedmodelsimilarity).ThesetechniquesallowInspecttoadaptthecomputationforVRSasafunctionoftheelapsedtimesinceinitializationanduserrequirements,whichenhancesrobustnessandleadstotunableaccuracy.Theresultingalgorithmdoesnotsufferfromproblemssufferedbyapproachesbasedonagreementamongamajorityofnodes,suchaseitheralossofprobabilityofdetectionorincreasedfalsepositives/negativesdependingonnodereliability.
Inspect’sgeneralitycomesfromitsindependencefromanyspeci cspatio-temporaldistributionoftheunderlyingphysicalphenomenon,andfromanyspeci capplication.Itsrobustnesscomesitsrelianceonaweakersetofassumptionsabouttheoperationalenvironment,anditsabilitytomonitorthequalityofthelocalsensormodels.Finally,Inspect’stunabilitycomesfromalgorithmsthatprovidecontrolknobsforspecifyingdesiredcon denceboundsonthefaultdetectionanddiagnosisperformance(falsepositiveandfalsenegative).
Thispaperisstructuredasfollows:inSectionIIweprovideanoverviewoftheInspectsystemanditsmaincomponents.In
SectionIIIwede neoursystemmodel,ourfaultclassi cationandproblemstatement,andinSectionIVweoverviewsomeofthetechniquesproposedinSAFandusedinInspect.InSectionVweillustratethetieredInspectapproach,andthenconcludethepaper.
II.FRAMEWORKOVERVIEW
TheInspectsystemconsistsoftwotiers:alocaltierbuiltateachsensornode,andacentralizedtierbuiltatthesink,whichrepresentsthecoreoftheInspectframework.Thelocaltierincludesatimeseriesmodelcomputedlocallyandthealgorithmsformonitoringthequalityofthemodel,foradaptingitwhenneeded,andfordetectingsuspectedfaults.Thecentralizedtiercomprisesalgorithmsforestimatingthegroundtruthandfordetectinganddiagnosingsensorfaults.Eachsensornodecommunicateswiththesinkonlywhenthelocalmodelchangesandwhenthesensornodedetectsanomaliesthatmightindicateasensorfault.Figure1.(a)illustratesthelocaltier(thelowerblock),thecentralizedone(theupperblock),andtheirinteractions(e.g.,thesinkcandynamicallytunetheusercon denceandthestreamdatarate).AsshowninFigure1.(a),afaultrepairingcomponentcanbebuiltontopoftheInspectsystem.
(a)Inspectcomponentsandtheir
interactions.
(b)Inspectoverview.Fig.1.
Frameworkoverview.
Localtier.SimilarlytoSAF,eachsensornodemaintainsatimeseriesmodel,whichislightweightandisabletoaccuratelypredictthephenomenonwithboundeduncertaintyanderrorprobability.Eachnodeperiodicallysamplesits
Abstract—We propose an on-line fault detection and diagnosis framework in sensor networks, called Inspect, which is based on a hybrid tiered approach to integrity checking. Inspect tiered design combines the benefits of distributed and centralized approac
sensorvaluesandusesthesevaluestocontinuouslymonitorthequalityofitsmodelandtodetectanomaliesthatmightindicateafault.Upondetectinganomaliesthenodeinformsthesink.Werefertotheselocalanomaliesassuspectedfaultsbecausetheyarenotnecessaryfaultsastheymightshowanunexpectedvariationintheunderlyingphenomenon(e.g.,out-of-rangetemperaturevaluesmightindicatea re).Asaresult,thedetectionoffaultsrequiresadeeperanalysisonthegeographicalcorrelationofnodes,anditiscarriedoutbythesinktoreducetheamountoftransmissionsandtoimprovetheaccuracyoftheframeworksincethesinkhasacompleteviewofthesystem.
Centralizedtier.Thelocalmodelsandthenoti cationsofsuspectedfaultstransmittedbyeachnodetothesinkprovidethesinkwithasnapshotofthesensordataproducedfromthenetworkduringatimewindow(sincelocalmodelscanvaryovertime).Suchasnapshotallowsthesinktodetectanddiagnosisfaultswithgivencon dencebydetectingtemporal-spatialcorrelationsofsensordata,andmorespeci callybycomputingtheVRS.ThecomputationoftheVRSisacrucialbuildingblockfordetectinganddiagnosingfaults.Itiscom-putedbasedonthelocaltimeseries,ontheestimationoftheexpectedmaximumdeviationbetweennodeswithinagivendistance(computedatrun-time),andonthecomputationofsimilarnodes.Itcanbetunedaccordingtotheusercon denceandvariesovertimeasthereliabilityofthesensordevicedecay.TheVRSiscrucialtodistinguishbetweenasensorfaultandanunexpectedvariationinthedatadistribution,andtodetectcalibrationfaults.Aswediscusslaterinthepaper,Inspectisabletodetectmorecomplextypesoffaultsbymeansofascorefunctionthatkeepstrackpreviousanomalies,theirfrequency,duration,anddetectioncon dence.Figure1.(b)summarizesthebasicactionsperformedatthesinkandateachsensornode.
III.SYSTEMMODEL
OurnetworkconsistsofadynamicsetSofsensornodesplacedinageographicsystemregionG,andacentralizedbasestationcalledthesink.Weassumethateachnodeislocation-aware,andthatisequippedwithsomesensingca-pability,performingperiodicreadingsonmphysicalphenom-ena,F1,F2,...,Fm,eachofwhichevolvesovertime(e.g.,F1=temperature,andF2=light).TosimplifyourdiscussionwewillfocusonasinglephenomenonF.Similarlytopreviousworkweassumenoderedundancy,thatis,foreachnodethereexistafewnodesthatarein uencedbythesamesetofsources.Notethatthisassumptionisweakerthanassumingthatthephenomenonisdistributedhomogenously,orthateachnodehasaminimumnumberofneighbors.Weassumethatmostsensornodesareinitiallycorrect,whichisarealisticassumption.Inspectcanworkalsoinmulti-hopnetworkswithseveralradiohopsbetweenanypairofnodesinthenetwork.A.Faultclassi cation
Wefocushereonhardwaresensorfaultsandanalyzefaultsaccordingtothefollowingthreeattributes:(1)causesoffaults,(2)geographicscopeoffaults,(3)temporalscopeoffaults.Sensorfaultsarestrictlyrelatedtoaspeci capplication,environmentwheretheyoperate,andhardware.Asaresult,itishardtoembraceandclassifyalltypesofsensorfaults.However,groupingsensorfaultsintoclassesiscrucialinunderstandingthemandindesigningaccuratefaultdetectionmethods.Itisimportanttonotethatthecauseandmanifesta-tionofsensorfaultsisoftencomplexastheymightrelatedtoseveralfactorswhoserelationishardtoexpressinananalyticalformasdiscussedin[7].Inthispaperwemakea rststeptowardsunderstandingandanalyzingthesecomplextypesoffaults.Ourpreliminaryclassi cationoffaultsconsistsofthefollowingthreecategoriesandincludesbothtransientandpersistentfaults:-F1:Stuck-atfaults.-F2:Calibrationfaults.
-F3:Morecomplextypesoffaults.
NotethatclassF3embracesallfaultsthatcannotbeclassi edasastuck-atorcalibrationfaults,andwillbeprobablyre nedaswegainabetterunderstandingofthecausesofsensorfaults.Wede nehereourclassesoffaults.LetusdenotethemeasurementsofthephenomenonFsensedatanodeiattimetbyfi(t),andthegroundtruth(error-free)valueatlocationibySi(t).
De nition1:Anodeishowsastuck-atfaultifthevariationoffi(t)duringatimeinterval[t1,t2]witht2 t1≥Φisnegligible,andiffi(t)deviatesfromthesourceSi(t)during[t1,t2]bymorethan units,where andΦareparameterstunedaccordingtothesensorhardware.
De nition2:Anodeishowsacalibrationfaultiffi(t)=α(t)·Si(t)+β(t)duringatimeinterval[t1,t2],wheret2 t1≥Φanddriftα(t)andoffsetβ(t)mayvaryovertime.
De nition3:Anodeishowsacomplextypeoffaultiffi(t)=Fi(t,S(t),E)+A(t,E)whereFiisafunctionofthetime,ofthedatasourceandoftheenvironmentE,andAisanagingfactorthatincreasesovertimeasthenodereliabilitydecays.
Thedetectionofthesecomplextypesoffaultsisachalleng-ingproblembecauseoftheirarbitrarytemporalpatternsandoftencomplexdependenciesontheenvironment,datasensedandaging.Inabsenceofananalyticalformrepresentingsuchdependencies,thebestwecandoistoaccuratelymonitorfunctionfi(t)andanalyzeanomaliesthatmightindicatethepresenceofacomplextypeoffault.InInspecteachnodeanalyzesitssensorreadingsanddetectanomalousonesthatmightindicateasensormalfunctioning,andreportsthemtothesink.Weprovideherealistofanomaliesdetectedatthesensornode.Notethatthislistisnotexhaustiveanditvariesaccordingtothespeci capplicationandphenomenonunderanalysis.
-A1:Frequentoutliervalues.Thesearevaluesthatsub-stantiallydeviatefromthesensordatamodel(expectedvalues)andwhosedurationislimitedintime.
-A2:Abruptvariationsinthedatadistributionconsistingofrapidvariationsinthedatatrend,discontinuitiesinthe
Abstract—We propose an on-line fault detection and diagnosis framework in sensor networks, called Inspect, which is based on a hybrid tiered approach to integrity checking. Inspect tiered design combines the benefits of distributed and centralized approac
sensordatacapturedbymonitoringthedatagradient,andothertypesofmodel-basedanomalies.
-A3:Noisydata:sensordatathatcannotbemodeledasatime-varyingfunctionandastationarymodelwithgivenaccuracy.ThatincludesGaussianandnon-Gaussiannoise.
-A4:Out-of-range.Thisanomalyoccurswhenthesensordatafallconsistentlyoutsidetheexpectedrangeforthephenomenon,whichisestimatedusingtemporal-spatialcorrelations.Notethatthisrangeisdifferentthantheoperationalrangeofasensornodeasitreferstothesensorreadings(outputs)andnottotheinputs.Anout-of-rangeanomalymightindicateasensorfaultorotherproblems,suchasanunexpectedinputsignal.B.Problemstatement
ThefocusofInspectistodetectanddiagnosissensorfaultsandprovidecon denceboundstotheend-user,thusofferingqualitymetricsonthedatasensedatsinglenodes.Wede neheretherequirementsfortheInspectsystem.
TheInspectsystemoutputsatanytimetalistoffaultysensornodes,denotedbyfaulty(t)={d1,...,dr},suchthateachdjisarecordcontainingtheidenti cationofthefaultynodedj.idandthetypeoffaultsdj.fdetectedattimet.Therefore,itmustsatisfythefollowingrequirementsinordertodetectanddiagnosisfaultsandprovidecon dencebounds:1)Theprobabilityoferroneouslydetectinganodeasfaulty(falsepositive)issmallerthanΦp;
2)Theprobabilityoferroneouslydetectingnodedj.idasfaultyoftypeFkinsteadoftypeFj,withk=j,issmallerthanΦd;
3)Theprobabilityoferroneouslydetectingafaultynodeasacorrectone(falsenegative)issmallerthanΦn.whereΦp,Φd,Φnarecon denceboundsde nedbytheuser.The rstconditionboundstheprobabilityoffalsepositive,thatistheerrorprobabilitythatacorrectsensorisdetectedasfaulty.Thesecondconditionboundstheprobabilitythatthediagnosisalgorithmismistaken.Thisoccurswhenasensornodeisfaultybutthediagnosisalgorithmoutputsoneormoreincorrecttypeoffault.Thethirdconditionboundstheprobabilityoffalsenegative,thatistheprobabilitythatanodeisfaultybutismistakenlydetectedascorrect.Thesethreecasesexhausttheerrorscenariosrelativetothedetectionanddiagnosisalgorithm.Therefore,theprobabilitythatInspectoutputssomewronginformationrelativelytoasensornodeissmallerthanΦp+Φd+Φn.
IV.PRELIMINARIES
Inthissectionwebrie ydescribesometechniquesproposedinSAF[19]thatareadaptedandemployedinInspect.Moreprecisely,weprovideanoverviewofSAFlightweighttimeseriesmodelsanditslocalmonitoringandadaptingalgorithms,andofSAFsimilarityapproach.
A.Localtimeseriesmodelandalgorithms
TheclassoflightweighttimeseriesmodelsproposedinSAFprovidesatrade-offbetweenaccuracyoftheforecastingmodelforthephysicalphenomenonsensedateachnode,andef ciency(computationalcostandmemorystorage).Moreprecisely,themodelbuiltateachnodedoesnotmodelthephysicalphenomenaduringtheentiresystemlifetimebutduringatimewindowusinganautoregressivemodelAR(q),whichisasubclassofARMAmodelswhosepredictionisgivenbyalinearcombinationofthepreviousqvalues.Moreprecisely,eachnodeusesasub-historyofthetimeseriesgeneratedfromitsperiodicreadingstomodelaphenomenonFasF(t)=mt+X(t),whereF(t)denotesthevalueofFattimet,mtisthevalueofapolynomialtime-varyingfunctionattimetwhosedegreevariesin[0,3],andX(t)isaweaklystationaryAR(q)timeseries(meaningthatitsmeanandcovariancearetime-invariant[1])withazero-meanGaussiannoiseandq∈[1,7].Thisdesignensurescheaplearning/re-learningandlowmemoryrequirements.ThestationarycomponentX(t)isde nedasfollows:X(t)=α1X(t 1)+...+αqX(t q)+b(ω)N(0,1)
(1)
whereα1,...,αqarerealconstantsandX(t i)indicatestheithpreviousreadingwithi∈[1,q],andb(ω)isthestandarddeviationofthewhitenoisesinceitspreviousreading.ThepredictorP(t)ofvalueF(t)attimetisgivenbythevalueofthecurrenttrendmtplusthepredictorofX(t),whichisalinearcombinationoftheincrementsordecrementsofthelastqreadingswithrespecttotheirtrendcomponent.SAFprovidesboundsonthepredictionerror(thedeviationofthepredictionvaluefromthesensorreading)thatarecrucialtomonitorthequalityofthemodelanddistinguishbetweenisolatedanomaliesandpersistentvariationinthedatadistribution[19].Thelocalmodeliscomputedattheendofthelearningphase,afterperformingNperiodicreadings,whereNisthesizeofthelearningset.Thisisdonebycomputing rstthecoef cientsofthetime-varyingfunctionmt,andthenthecoef cientsα1,...,αqofthestationarycomponentandthemaximumstandarddeviationofthenoise.Thesecoef cientsuniquelyidentifythemodel.Afterlearningthemodel,thenodetransmitsthesecoef cientstothesink.
Asmentionedabove,thelocalmodelmustbeadaptableinordertoeffectivelypredictnon-linearphenomena.Thetaskofmonitoringthequalityofthepredictionmodelandadaptingthemodelincaseofapersistentvariationinthedatadistributionisleftatthesensor.Eachnodestartsmonitoringthequalityofitsmodeljustafterthelearningphase.Ittakesaperiodicreading,updatesitslocalqueueofmostrecentreadingsandveri esifthatvaluebelongstothemodeldistribution.Themonitoringalgorithmisabletodistinguishbetweenpersistentvariationsinthedatadistributionandisolatedanomalies.Incaseofpersistentvariationsthenodeadaptsthemodelbycomputingthenewmodelcoef cients.However,theremightbecases,inwhichthenodeisunabletocomputeastationarycomponentAR(q)forq∈[1,7]with
Abstract—We propose an on-line fault detection and diagnosis framework in sensor networks, called Inspect, which is based on a hybrid tiered approach to integrity checking. Inspect tiered design combines the benefits of distributed and centralized approac
givenaccuracybecauseofhighdatanoise.Inthatcasethenodenoti esthesinkthatthesensordataisnoisyrelativelytotherequireduseraccuracy,andattemptstore-learnthemodelaftersometime.B.Similarityapproach
ThesimilarityapproachproposedinSAFisbasedonthelo-calmodels.Moreprecisely,twosensornodesareθ-similaratagivenpointintimeiftheirpredictionvaluesdeviatebyatmostθunits,whereθiscalledsimilarityparameter.Thenotionofmodel-basedsimilarityallowsthesinktogroupintoclustersnodesthataresimilar,basedonthelocalmodelsitstoresandatnoadditionalcost.Notethattheclusterformationcanvarydynamicallyaccordingtothedistributionoftheunderlyingsensordata.SAFapproachtransformsthecomplexproblemofclusteringsimilarnodesintoaninterval-basedproblemusingtheboundsderivedforeachlocalmodel.Moreprecisely,itestablishesforeachsensoriacorrespondencebetweenitslocalmodelattimetandarealintervalI=[li,Li],whereliandLiarethelowerandupperboundsofthepredictionvalueofSimodelattimet.Moreprecisely,li=mt νσiandLi=mt+νσi,wheremt=a+btandσiisthestandarddeviationofX(t).TheseboundsarerelevantinInspectwhencomputingtheVRS.
V.THEINSPECTSYSTEM
Thelocalmodelsandthenoti cationsofsuspectedfaultstransmittedbysensorsprovidethesinkwithasnapshotofthesensordataproducedduringatimewindowaslocalmodelscanvaryovertime.Notethatsuchamodel-basedsnapshotismorerobusttonoiseandmoreexpressivethanavalue-basedsnapshotsinceitprovidesadditionalinformationsuchasthetrendofthesensorreadingsandtheirrange,anditiscrucialtocomputetheVRSanddetectfaultswithgivencon dence.AsmentionedintheIntroduction,anomaliesdetectedatsensorsdonotnecessaryindicatesensorfaultsastheymightbecausedbyanunexpectedvariationinthephysicalphenomenon(e.g.,anodesensingout-of-rangetemperaturevaluesmightindicateeitherafaultora re).Theanalysisoftemporal-geographicalcorrelationsisthereforeneededtodetectsensorfaults.Thisisachallengingtaskespeciallyincasethesta-tisticaltemporal-spatialdistributionofthephenomenonisnothomogeneous,whichoftenoccursinrealdeployments.ThistaskiscarriedoutatthesinkbycomputingtheVRS,whichapproximatesthegroundtruth(error-free)valuessensedateachsuspectednode.
A.Localdetectionofsuspiciousfaults
EachsensornoderunsarevisedversionofthemonitoringandadaptingalgorithmssummarizedinSectionIV.Itisabletodetectsuspectedstuck-atfaultsoftypeF1,andanomaliesoftypesA1–A4thatcanindicateatypeF3fault.Sincethenodeisnotabletodetectfaults(i.e.,astuck-atfaultmightre ectavariationinthephenomenonasinthecaseoflightsensors),wedenotetheseanomaliesassuspectedfaults.Upondetectingasuspectedfault,thenodemonitorsitsdurationandnoti es
thesinkwhenitrecoversfromsuchanomaly.Figure2showsgraphicallythemainstepstakenbyeachsensor.We
brie y
During monitoring and
upon adapting the model detect:
F1 suspected faultA1 …A4 types of anomalies
Notify sink upon detecting
anomalies and upon recovering
<Recover A2>
Fig.2.Overviewoflocalfaultdetection.
summarizeherehoweachnodeisabletodetectsuspectedfaultsoftypeF1andanomaliesoftypesA1 A4.
Stuck-atfault.Weadaptthemonitoringalgorithmtodetectifthesensorreadingsareinvariant(oritsvariationisnegligible)anddeviatesubstantiallybytheexpecteddistribution.Upondetectingastuck-atfault,thenodeinformsthesinkandmonitorsitsduration.Itimmediatelynoti esthesinkwhenthesensorrecovers.
AnomaliesoftypeA1-A4.Similarlytothestuck-atfaultcase,themonitoringalgorithmcanbeadaptedtodetectwhensensorreadingsexceedtheexpectedrange(anomaliesoftypeA4).Thesinkcomputestheexpectedrangebasedonthehistoryofthelocalmodelsstoredlocallyandadaptsitincaseofasubstantialshiftinthedistribution(e.g.,in[16]asubstantialshiftinthechemicaldistributionwasobservedrightafterirrigation).Anexampleofexpectedrangeforatemperature-controlledroomatnightduringsummercanbe[17 C,25 C];valuesoutsidethisrangemightindicateasensorfault,orafaultintheairconditioningsystem,oranunexpectedinputsignal,orasubstantialvariationintheenvironmentalconditions.ItisimportanttonotethatanincorrectrangecomputedbythesinkdoesnottriggerfaultpositivesinInspectsincesimilarnodeswillreportthatanomalybutanupdateoftheexpectedrange,whichwillbetransmittedbythesinktosensornodes.
Asensornodeisalsoabletodetectfrequentoutliers(anomaliesoftypeA1),whicharereadingsthatdeviatefromthepredictedvaluebymorethanνstandarddeviationsofthenoise.Sinceourfocusisondetectinganomaliesthatcanindicatethepresenceofacomplextypeoffault,thenodenoti esthesinkanomaliesthatoccurredwithagivenfrequency,thatismorethanιtimesduringamonitoringwindow,whereιisapercentagethresholddependingonthehardwareandthephenomenonsensed(e.g.,incaseoflightsensingitisprobablydesirabletodiscardoutliersastheymightdependtootherfactorssuchasre ections,thatarenotrelevanttotheapplication).
Inaddition,asensornodeisabletodetectabruptvariationsinthedatadistributionrelativelytoatimeseriesmodel(anomaliesoftypeA2).Thistypeofanomalyincludesabruptshiftsinthedatatrendandvariationsinthedatagradient.
Abstract—We propose an on-line fault detection and diagnosis framework in sensor networks, called Inspect, which is based on a hybrid tiered approach to integrity checking. Inspect tiered design combines the benefits of distributed and centralized approac
Moreover,asensornodeisabletodetectperiodsofnoisydataduringwhichitisnotpossibletocomputeaweaklystationaryAR(q)componentforq∈[1,7].ThatincludesbothGaussianandnotGaussiannoise.Inthatcase,thenodenoti esthisanomalytothesinkandwaitsforthenextfewreadingsbeforeattemptingtore-computethemodel.
ItisimportanttonotethatInspectisabletoprovidecon denceboundsonthelocaldetectionandqualitymetricsforthelocalmodels.Thisisimportantforthesinktoprovidecon denceboundsonthecentralizeddetectionandmostimportantlytomonitorthedegreeoffaultofasensornodeandcomputethescorefunction,putingtheVRS
Thecomputationofareferencesourceforasensornodeplaysacrucialroleindetectinganddiagnosingfaultsintheabsenceofhigh-precisionsensorsthatprovideinformationregardingthegroundtruthvalues.Thereferencesourceisusu-allyestimatedbyexploitingnoderedundancy,whichassumesgeographicalcorrelationsamongnodes.ItallowsInspecttodetectcalibrationfaultsandtodistinguishbetweenasensorfaultandanunexpectedvariationinthephysicalphenomenon.Thetaskofdistinguishingbetweenafaultandanunex-pectedvariationinthephysicalphenomenoniscarriedoutbythesinkusingthemodelcoef cientsstoredatthesinkandthenoti cationsofsuspectedfaultssentbynodes,asdescribedintheprevioussection.LetussupposethatanodeNdetectsananomaly,eventE,andnoti esittothesink.InordertodetectifEindicatesafaultthesinkveri esifthereexistxsensornodesthatareexpectedtobesimilartoNandthathavedetectedthesametypeofanomaly.InspectdetectsnodeNasfaultyifitdoesnot ndaquorumofxsimilarsensorsthatreportedthesametypeofanomaly.ThisquorumofxsensorsrepresentstheVRSsourceandhastosatisfythefollowingproperties:
1)Accuracy:theVRSofanodeNcomputedattimetestimatesthegroundtruthvaluesensedatNattimetwithboundeduncertaintyandboundederrorprobability;
2)Robustness:itisrobusttodatanoiseandtotemporal-spatialvariationsoftheunderlyingphenomenon.
TheVRSaddressesrobustnessbyrelyingonweakerassump-tions.Moreprecisely,itdoesnotassumethatthephenomenonvarieshomogeneouslyandthatitsunderlyingstatisticaldis-tributionisstatic.Notethataphenomenonisde nedashomogeneousifitisintrinsicallystationaryandisotropic,meaningthatthevariancebetweenthephenomenonsensedatequidistantpointsinthesystemregionisinvariantsinceitvariesaccordingtoafunctionf(h)oftheirEuclideandistanceh.Thatis,var{Z(s1) Z(s2)}=f(h)foranypoints1ands2inthesystemregion[18].Clearly,thisassumptiondoesnotalwaysholdinrealdeploymentsbecauseofthepresenceofexternalfactorsorobstaclesthatin uencethespatialdistributionofthephenomenon.
ItisimportanttonotethattheVRSvariesaccordingtothetimeelapsedasthereliabilityofsensornodesdecayovertime,andtothecurrentuserrequirementstoenhanceaccuracyand exibility.Thisdesignenhancesrobustnesssincestaticcriteriacaneasilytriggerfalsepositivesandfalsenegativesoverthesystemlifetime(e.g.,ifxequaltothehalfoftheneighborsofN).AcrucialstepindetectingifasuspectedsensorNattimetisfaultyconsistsofcomputingnodesthataresimilartoNatthattime.Notethatsincethephenomenoncanevolveovertimesensorsmightshowdifferentsimilaritypatternsduringthesystemlifetime.ThesinkdetectsifasensornodeNisfaultybycomputingnodesthatareexpectedtobesimilartoNandbycheckingiftheysensedthesametypeofanomaly.Moreprecisely,sensorsthataresimilararein uencedbythesamesetofsources.Bydoingthatweassumethatnearbynodesusually(butnotalways)sensesimilarvalues,whichisarealisticassumption.However,thissimpleideabringsupthefollowingquestions:
1)HowcanwecomputenodesthatareexpectedtobesimilartoNifthephysicalphenomenonvariesovertimeandspaceandsensorscanbefaulty?
2)Howcanwede nethethresholdxasafunctionofthetimeandoftheusercon dence?
Weanswerthe rstquestionbydetectinggeographicalsimilaritiesamongnodesusingthemodel-basedsimilarityapproachsummarizedinSectionIV.Wechoosethissimilarityapproachbecauseitismorerobusttodatanoiseandallowsthesinktoclustersimilarnodesatthesinkatnoadditionalcommunicationcost.TheideaunderlyingourapproachistodetectneighborsofNthatareδN–similartoN,whereδNistheexpectedmaximumaveragedivergencebetweenthevaluessensedatNandatitsneighbors.ThecomputationofthesimilarityparameterδNisrelevantfortheaccuracyandrobustnessoftheVRS.Itiscomputedinitiallyinadistributedfashionbyeachnodeastheytransmittheirperiodicreadingsduringtheinitiallearningphase.EachnodecomputesatableTNcontaininganentry di, i foreachneighborSi∈RN,wherediistheEuclideandistancebetweenNandSi,and iistheaveragedivergencebetweentheirvaluessensedduringthelearningphase(e.g.,N=30).Attheendoftheinitiallearningphasethenodetransmitstothesinkthemodelcoef cientsandvalues iofTN.These ivaluesallowthesinktocomputetableTNforeachnodeNandwhenneededtoextendsuchatablebyincludingfarthernodes,andmostimportantlytocomputeδNasfollows
δN:=Smax{ j| j<δmax}
j∈RN
whereδmaxisanupperboundsofδNthatdetectsthepresenceofaninitiallyfaultyorun-calibratednode.ThesinkmonitorsvariationsofthesimilarityparameterδNandupdatesitwhenneeded.
ThecomputationoftheVRSreliesonthecomputationoftheδN–clustercenteredatnodeN,whichcontainsneighborsofNthatareδN–similartoN.Thiscomputationisrunatthesinkandusesarevisedversionoftheclusteringalgorithm
Abstract—We propose an on-line fault detection and diagnosis framework in sensor networks, called Inspect, which is based on a hybrid tiered approach to integrity checking. Inspect tiered design combines the benefits of distributed and centralized approac
summarizedinSectionIV.Moreprecisely,thesinkorderstheupperboundsofthepredictionvaluesofthenodesinRN,andstartingfromtheupperboundofNitparsesthesortedlistinbothdirectionsto ndnodesthatareδNsimilarandreturnsasetCofnodesinRNthatareδN–similartoN.Figure3showsanexampleofTNtablewithtemperaturevalues,andδN–cluster,whereδmin=0.3,δmax=0.5andthemaximumwidthofallnodeintervals(differencebetweenupperandlowerboundofthepredictionvalueforanodeinRN)isequalto0.3.InourexamplenodesS1,S2,S4formsaδN
< 0.5-0.3
< 0.5-0.3
Cluster of N = { S2, S4, S1 }
Fig.3.Exampleofcomputingsimilarnodes.
Inspectaddressesnon-homogeneousspatialdistributionofthephysicalphenomenoninRNbyassigningdifferentweightstonodesintheδN-cluster,dependingontheirvalue i.Itgivesmoreweighttonodesthathaveahigherdegreeofsimilarity(smaller i).Asmentionedbefore,thethresholdxfortheVRSisafunctionofthetimetandoftheusercon denceµanditiscomputedbyconsideringthereliabilityofasensornodeatthattimeprovidedafaultdistribution(e.g.,exponentialdistribution)andbylimitingtheprobabilityoffalsepositivesandfalsenegativesbyµ.
ThelocaldetectionandtheVRSsourceenablethesinktodetectcalibrationfaults(faultsoftypeF2)andmorecomplextypesoffault.Thisisobtainedbykeepingtrackofthesensoranomalies,theirfrequencyandtheirdetectioncon dence.Moreprecisely,every timeunits,thesinkcomputesascorefunctionforeachnoderelativelytothattimewindow,andusesthesevaluesasatimeserieswhichindicatesthefaultydegreeofnodesoverthetime.Suchatimeseriesenablethesinktodetecteitheranincreaseinthetransientfaultsofanode,andperiodicfaultpatterns.
VI.CONCLUSION
Wehaveproposedanon-linefaultdetectionanddiagnosisframework,calledInspect,forsensornetworksthatisbasedonahybridtiereddesigntoimprovetheresponsivenessandtheef ciencyofthefaultdetection.Inspectconsistsofalocaltierbuiltateachsensornodeandcapableofdetectinganomalies,andacentralizedtierbuiltatthesinkandcapa-bleofdistinguishingbetweensensorfaultsandunexpected
temporal-spatialvariationsinthephenomenon,anddetectingmorecomplextypesoffaults.
Inspectusesacombinationofstatisticalandclusteringtech-niquestechniquessuchastimeseriesmodel,simplegeograph-icalcorrelations,model-basedsimilarityandthereliabilityofthenode,thatenhanceits exibilityandrobustness.Inspectsoffersseveraldesirablefeatures:itprovideson-linedetection,itisgeneralandmorerobusttotemporal-spatialvariationsofthephenomenon.Moreover,Inspectprovidescon denceboundsthatcanbedynamicallytunedaccordingtotheuserrequirementsforabetterresourcemanagement,andaddressestheproblemofdetectingmorecomplextypesoffaults.
REFERENCES
[1]P.BrockwellandR.Davis.IntroductiontoTimeSeriesandForecasting.
Springer,1994.
[2]J.Chen,S.Kher,andA.Somani.Distributedfaultdetectionofwireless
sensornetworks.InDIWANS,2006.
[3]E.ElnahrawyandB.Nath.Cleaningandqueryingnoisysensors.InIn
Proc2ndWorkshoponSensorNetworksandApplications,September2003.
[4]A.S.-V.F.Koushanfar,M.Potkonjak.Errormodelsforlightsensors
bynon-parametricstatisticalanalysisofrawsensormeasurements.InIEEESensors,October2004.
[5]M.P.F.Koushanfar.Markov-chainbasedmodelsformissingandfaulty
datainmica2sensormotes.InIEEESensors,October2005.
[6]J.Feng,Megerian,andM.Potkonjak.Model-basedcalibrationforsensor
networks.InIEEEInternationalConferenceonSensors,October2003.[7]Y.H.HuandB.Benson.Sensornetworkdataqualityassurance.
Technicalreport,UniversityofWisconsin,Madison,2005.
[8]C.Intanagonwiwat,R.Govindan,andD.Estrin.Directeddiffusion:A
scalableandrobustcommunicationparadigmforsensornetworks.InMobiCOM,2000.
[9]F.Koushanfar,M.Potkonjak,andA.Sangiovanni-Vincentelli.On-line
faultdetectionofsensormeasurements.IEEESensors,pages974–980,October2003.
[10]B.KrishnamachariandS.Iyengar.Distributedbayesianalgorithmsfor
fault-toleranteventregiondetectioninwirelesssensornetworks.IEEETrans.onComputers,53(3):241–250,2004.
[11]uraBalzano.Blindcalibrationofsensornetworks.InInProc.
rmationProcessinginSensorNetworks,April2007.[12]X.Luo,M.Dong,andY.Huang.Ondistributedfault-tolerantdetection
inwirelesssensornetworks.IEEETrans.onComputers,55(1):58–60,2006.
[13]S.Madden,W.Hong,J.M.Hellerstein,andM.Franklin.TinyDBweb
page.http://telegraph.cs.berkeley.edu/tinydb.
[14]R.NiuandP.K.Varshney.Distributeddetectionandfusioninalarge
wirelesssensornetworkofransomsize.EurasipJournalonWirelessComm.andNetworking,4:462–472,2005.
[15]N.Ramanathan,L.Balzano,M.Burt,D.Estrin,E.Kohler,T.Harmon,
C.Harvey,J.Jay,S.Rothenberg,andM.Srivastava.Rapiddeploymentwithcon dence:Calibrationandfaultdetectioninenvironmentalsensornetworks.TechnicalReport62,CENS,April2006.
[16]N.Ramanathan,T.Schoellhammer,D.Estrin,M.Hansen,T.Harmon,
E.Kohler,andM.Srivastava.The nalfrontier:Embeddingnetworkedsensorsinthesoil.TechnicalReport68,CENS,UCLA,Nov2006.[17]A.Sharma,L.Golubchik,andR.Givindan.Ontheprevalenceofsensor
faultsinreal-worlddeployments.InInProc.ofSECON,June2007.[18]R.Smith.Environmentalstatistics.June2001.Preprint:http://www.
stat.unc.edu/postscript/rs/envnotes.pdf.
[19]D.TuloneandS.Madden.Anenergy-ef cientqueryingframeworkin
sensornetworksfordetectingnodesimilarities.
[20]D.TuloneandS.Madden.Saf:asimilarity-basedadaptableframework
forapproximatequeryinginsensornetworksbasedontimeseriesforecasting.Technicalreport,August2006.Submittedtojournal.
[21]G.Werner-Allen,K.Lorincz,J.Johnson,J.Lees,andM.Welsh.Fidelity
andyieldinavolcanomonitoringsensornetwork.In7thUSENIXSymposiumonOperatingSystemsDesignandImplementation,2006.
正在阅读:
Inspect a General Framework for On-Line Detection and Diagnosis of Sensor Faults07-25
关于oracle表空间的规划方法03-24
中国十三五期间中国化工市场预测报告05-19
2019四年级下册英语教案Lesson2Whatareyoudoing∣鲁科版(五四学03-28
A combustion control support expert system for a coal-fired boiler05-27
2010网上购物调研报告06-12
小学三年级教案-三下培训提纲001 精品05-07
长方体和正方体的体积教案设计和反思03-10
《学雷锋,树新风》三年级主题班会活动方案06-12
新东方五年考题05-24
- 1General Memory Organization
- 2ADVICE Automated Detection and Validation of Interaction by
- 3General Design and Construction Considerations For Earth and
- 4Grizzly-Core Framework
- 5Investigating Connector Faults in the Time-Triggered Architecture
- 6General Knowledge(专八)
- 7INTEGRATION AND EVALUATION OF SENSOR MODALITIES FOR POLAR RO
- 8Zend framework调试查看sql
- 9windows下zend framework配置
- 10A Framework for Automatic Adaptation of Tunable Distributed
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Framework
- Detection
- Diagnosis
- Inspect
- General
- Sensor
- Faults
- Line
- 2011年建筑工程工作总结
- 海域使用论证与工程可行性研究的比较研究
- 实际问题与一次函数
- 语言之美及其背后的写作追问——《葡萄月令》解读
- 当代伊斯兰政治暴力剖析
- 五年级下册语文园地五
- 激励篇:七步成诗投影片(浙江黄万光)
- 市直学校招聘教师考试数学试卷答案
- 镁加铝咀嚼片联合莫沙必利治疗胆汁反流性胃炎
- 日航公司再裁员 将成日本历史第六大破产案
- 各大银行转账手续费 到账时间 转账限额
- 伤科汇纂-七、卷七-(清)胡廷光 编;仇湘中,蒋益兰 整理
- 2012年澄海区初中毕业生学业模拟考试思想品德科试题
- 病历分析例题-急性有机磷农药中毒
- 可行性研究费计价格1283号
- 偷梁换柱,利用dism为win7 PE集成第三方驱动程序
- 语文_《太阳》选题计划
- 安全生产操作规程
- 慢性肺源性心脏病护理常规
- 恒大反腐心得共3篇