数学思想

更新时间:2024-05-05 11:27:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

数学思想方法是数学学科的精髓,是数学素养的重要内容之一,只有充分掌握领会,才能有效地应用知识,形成能力。那么,什么是数学思想呢?所谓数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想是对数学事实与理论经过概括后产生的本质认识;基本数学思想则是体现或应该体现于基础数学中的具有奠基性、总结性和最广泛的数学思想,它们含有传统数学思想的精华和现代数学思想的基本特征,并且是历史地发展着的。通过数学思想的培养,数学的能力才会有一个大幅度的提高。掌握数学思想,就是掌握数学的精髓。数学思想与数学方法是数学知识中奠基性成分,是学生获得数学能力必不可少的。数学思想方法的训练,是把知识型教学转化为能力型教学的关键,是实现素质教育的重要组成部分。 一、初中数学思想方法教学的重要性

长期以来,传统的数学教学中,只注重知识的传授,却忽视知识形成过程和数学思想方法的现象非常普遍,它严重影响了学生的思维发展和能力培养。随着教育改革的不断深入,越来越多的教育工作者、特别是一线的教师们充分认识到:中学数学教学,一方面要传授数学知识,使学生掌握必备数学基础知识;另一方面,更要通过数学知识这个载体,挖掘其中蕴含的数学思想方法,更好地理解数学,掌握数学,形成正确的数学观和一定的数学意识。事实上,单纯的知识教学,只显见于学生知识的积累,是会遗忘甚至于消失的,而方法的掌握,思想的形成,才能使学生受益终生,正所谓“授之以鱼,不如授之以渔”。不管他们将来从事什么职业和工作,数学思想方法,作为一种解决问题的思维策略,都将随时随地有意无意地发挥作用。

二、初中数学思想方法的主要内容

初中数学中蕴含的数学思想方法很多,最基本最主要的有:转化的思想方法,数形结合的思想方法,分类讨论的思想方法,函数与方程的思想方法等。 1.对应的思想和方法:

在初一代数入门教学中,有代数式求值的计算值,通过计算发现:代数式的值是由代数式里字母的取值所决定的,字母的不同取值可得不同的计算结果。这里字母的取值与代数式的值之间就建立了一种对应关系,再如实数与数轴上的点,有序实数对与坐标平面内的点都存在对应关系……在进行此类教学设计时,应注意渗透对应的思想,这样既有助于培养学生用变化的观点看问题,有助于培养学生的函数观念。

“对应”的思想由来已久,比如我们将一支铅笔、一本书、一栋房子对应一个抽象的数“1”,将两只眼睛、一对耳环、双胞胎对应一个抽象的数“2”;随着学习的深入,我们还将“对应”扩展到对应一种形式,对应一种关系,等等。比如我们在化简求值计算中,将式子中有关字母或某个整体的值,对应代入,直接算出原式的结果。又比如我们到初三综合学习了与圆有关的角,圆心角、圆周角、弦切角的数量关系必须“对应”同一段弧才能成立。这就是运用“对应”的思想和方法来解题。初二、初三我们还看到数轴上的点与实数之间的一一对应,直角坐标平面上的点与一对有序实数之间的一一对应,函数与其图象之间的对应。总之,“对应”的思想在今后的学习中将会发挥越来越大的作用。 2.数形结合的思想和方法

数形结合思想是指将数(量)与(图)形结合起来进行分析、研究、解决问题的一种思维策略。著名数学家华罗庚先生说:“数与形本是相倚依,怎能分作两边飞,数缺形时少直觉,形少数时难入微,数形结合百般好,隔离分家万事休。”这充分说明了数形结合思想在数学研究和数学应用中的重要性。

①由数思形,数形结合,用形解决数的问题。

例如在《有理数及其运算》这一章教学中利用“数轴”这一图形,巩固“具有相反意义的量”的概念,了解相反数,绝对值的概念,掌握有理数大小的道理,理解有理数加法、乘法的意义,掌握运算法则等。实际上,对学生来说,也只有通过数形结合,才能较好地完成本章的学习任务。另外,第五章《一元一次方程》中列方程解应用题中画示意图,常常会给解决问题带来思路。第九章《生活中的数据》“统计图的选择”及“复习形统计图”,利用图形来展示数据,很直观明了。

②由形思数,数形结合,用形解决数的问题。例如第四章的《平面图形及其位置关系》中,用数量表示线段的长度,用数量表示角的度数,利用数量的比较来进行线段的比较、角的比较等。

“数形结合”是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。实中数学教材中下列内容体现了这种思想。 a、数轴上的点与实数的一一对应的关系。 b、平面上的点与有序实数对的一一对应的关系。 c、函数式与图像之间的关系。

d、线段(角)的和、差、倍、分等问题,充分利用数来反映形。

e、解三角形,求角度和边长,引入了三角函数,这是用代数方法解决何问题。

f、“圆”这一章中,贺的定义,点与圆、直线与圆、圆与圆的位置关系等都是化为数量关系来处理的。

g、统计初步中统计的第二种方法是绘制统计图表,用这些图表的反映数据的分情况,发展趋势等。实际上就是通过“形”来反映数据扮布情况,发展趋势等。实际上就是通过“形”来反映数的特征,这是数形结合思想在实际中的直接应用。 3.整体的思想和方法

整体思想就是考虑数学问题时,不是着眼于它的局部特征,而是把注意和和着眼点放在问题的整体结构上,通过对其全面深刻的观察,从宏观整体上认识问题的实质,把一些彼此独立但实质上又相互紧密联系着的量作为整体来处理的思想方法。整体思想在处理数学问题时,有广泛的应用。

整体变换思想是指将复杂的代数式或几何图形中的一部分看作一个整体进行变换,使问题简单化。

例:已知:y=ax7+bx5+cx3+dx-1,当x=2时,y=4,则当x=-2时,y= 。

简析:由已知条件求出:27a+25b+23c+2d的值,整体代入求出x=-2时,y的值。 例:有一个六位数,它的个位数学是6,如果把6移至第一位前面时所得到的六位数是原数的4倍,求这个六位数。

简析:设这个六位数的前五位数为x,那么这个六位数为:10x+8,整体处理,问题就简单化了。 例:解方程组

分析:如果选用代入法解答,比如由①得,x= ,再代入②,得

2003×()+2002y=2004

解答起来十分麻烦.

如果选用加减法,比如,①×2003- ②×2002,可以消去x,得

2003×2003y-2002×2002y=2001×2003- 2004×2002

形式也很复杂,不易求解.

注意到两个方程的系数正好对调这一特征,先将两方程相加,①+②,得

4005x + 4005y = 4005

化简,得 x+y=1 ③

再将两方程相减,① - ②,得 -x + y = - 3 即 x-y=3 ④

由③、④组成方程组,得

解这个方程组得

4.分类的思想和方法

教材中进行分类的实例比较多,如有理数、实数、三角形、四边形等分类的教学不仅可以使学生明确分类的重要性:一是使有关的概念系统化、完整化;二是使被分概念的外延更清楚、更深刻、更具体,并且还能使学生掌握分数的要点方法:(1)分类是按一定的标准进行的,分类的标准不同,分类的结果也不相同;(2)要注意分类的结果既无遗漏,也不能交叉重复;(3)分类要逐级逐次地进行,不能越级化分,如不能把实数分为整数、分数和无理数。 在解答某些数学问题时,有时会有多种情况,对各种情况加以分类,并逐类求解,然后综合求解,这就是分类讨论法。分类讨论是一种逻辑方法,也是一种数学思想。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在试题中占有重要的位置。

分类评论的一般步骤是:明确讨论对象,确定对象的全体→确定分类标准,正确进行分类→逐步进行讨论,获取阶段性结果→归纳小结,综合得出结论。

分类讨论应遵循的原则:分类的对象是确定的,标准是统一的,不遗漏,不重复,分层次,不越级讨论。

当某个问题有多种情况出现或推导结果不唯一确定时,常运用分类讨论,再加以集中归纳。例如:对|a|要去掉绝对值符号,应讨论绝对值内部式子的符号,要分三种情况去掉绝对值符号。几何中也存在着一些数学和位置关系的分类讨论。

例:甲、乙两人骑自行车,同时从相距75km的两地相向而行,甲的速度为15km/n,乙的速度为10km/n,经过多少小时甲、乙两人相距25km?

简析:甲、乙两人相遇前后都会相距25km。分两种情况解答。

例:在同一图形内,画出∠AOB=60°,∠COB=50°,OD是∠AOB的平分线,OE是∠COB的平分线,并求出∠DOE的度数。

简析:分∠COB在∠AOB的内部和外部两种情形总图。 5.类比联想的思想和方法

数学教学设计在考虑某些问题时常根据事物间的相似点提出假设和猜想,从而把已知事物的属性类比推广到类似的新事物中去,促进发现新结论。如分式的各种运算法则就是与小学学

过的分数的运算法则类比联想到的;再如由天平的平衡条件比得出等式的基本性质,这种方法体现了“法故而知新”和“以旧引新”的教学设计原则,这样的设计起点低,学生学起来更容易接受。教学中由于提供了思维发生的背景材料,既活跃了课堂气氛,又有利于在和谐、轻松的氛围中完成新知识的学习。

a.不等式的性质,一元一次不等式的解法等内容时多采取与等式的性质,一无一次方和的解法等做类比。

b.通过有理数的相反数、绝对值、运算律等得到实灵敏的相反数、绝对值、运算律等知识。 c.在二次根式加减的运算中,指出“合并同类二次根式与合并同类项”类似。因此,二次根式的加减可以对比整式的加减进行。

d. “角的度量、角的比较大小、角的和、差及平他线”,可与线段的相关知识进行类比;度、分、秒的运算可与时、分、秒的运算进行类比。 e.相似多边形的性质和相似三角形的性质类比。

也就是说:数学建模思想是指从实际问题中,发现、提出、抽象、简化、解决、处理总是的思维过程。它包括对实际问题进行抽象、简化、建立数学模型,求解数学模型,解释验证等步骤。

例、一辆公共汽车上有(5a – 4 ) 名乘客,到某一车站有(9 - 2a)名乘客下车,车上原来有多少名乘客?

解:根据题意,得5a – 4≥9 - 2a,解得a≥13/7,又9 - 2a≥0,解得9/2≥a,所以9/2≥a≥13/7,因为a为整数,所以a = 2 、3、4,5a – 4 分别为6、11、16,即客车上原有乘客6人或11人或16人。

评析:要求出车上原有的乘客人数,即(5a – 4),那么题中的a就是解题的关键,题中没有更多的条件了,我们只有从人数下手,求出a的值或取值范围,因而只有联想不等式。

在日常生活中,有些事件受到很多条件限制。如题中车上人数不能少于下车人数,这是显而易见的,由此可建立不等式模型。 10.归纳推理思想

由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理称为归纳推理(简称归纳),简言之,归纳推理是由部分到整体,由个别到一般的推理。

本文来源:https://www.bwwdw.com/article/nafg.html

Top