A Fourier-Mukai Transform for Stable Bundles on K3 Surfaces
更新时间:2023-05-20 22:13:01 阅读量: 实用文档 文档下载
- 阿根廷推荐度:
- 相关推荐
We define a Fourier-Mukai transform for sheaves on K3 surfaces over $\C$, and show that it maps polystable bundles to polystable ones. The role of ``dual'' variety to the given K3 surface $X$ is here played by a suitable component $\hat X$ of the moduli sp
6
9
9
1
g
u
A
5
2
v
6
05
4
9
/
m
eog
-
g
l
a
:v
i
X
r
aAFOURIER-MUKAITRANSFORMFORSTABLEBUNDLESONK3SURFACESC.Bartocci, U.Bruzzo, andD.Hern´andezRuip´erez¶ DipartimentodiMatematica,Universit`adiGenova,Italia ScuolaInternazionaleSuperiorediStudiAvanzati(SISSA—ISAS),Trieste,Italia¶DepartamentodeMatem´aticaPurayAplicada,UniversidaddeSalamanca,Espa naRevised—6August1996Abstract.Wede neaFourier-MukaitransformforsheavesonK3surfacesoverC,andshowthatitmapspolystablebundlestopolystableones.Ther oleofvarietytothegivenK3surfaceXishereplayedbyasuitablecomponentmodulispaceofstablesheavesonX.ForawideclassofK3surfacesXtobeisomorphictoX;thentheFourier-Mukaitransformisinvertible, Xcanbeandthe “dual”ofthechosenimageofazero-degreestablebundleFisstableandhasthesameEulercharacteristicasF.1.IntroductionandpreliminariesMukai’sfunctormaybede nedwithinafairlygeneralsetting;giventwoschemes
X,Y(of nitetypeoveranalgebraicallyclosed eldk),andanelementQinthederivedcategoryD(X×Y)ofOX×Y-modules,Mukai[18]de nedafunctorSX→YfromthederivedcategoryD (X)toD (Y),
SL
X→Y(E)=Rπ (Q π E)
(hereπ:X×Y→Xandπ :X×Y→Yarethenaturalprojections).Mukaihasprovedthat,whenXisanabelianvariety,
ebundleonX×X
ofcategories.IfoneisinterestedintransformingX→sheavesX givesrise itsdualvariety,andQthePoincar´ Y=X
,thefunctorStoanequivalence
ratherthancomplexes
onecanintroduce(followingMukai)thenotionofWITisheaves:anOX-moduleE
We define a Fourier-Mukai transform for sheaves on K3 surfaces over $\C$, and show that it maps polystable bundles to polystable ones. The role of ``dual'' variety to the given K3 surface $X$ is here played by a suitable component $\hat X$ of the moduli sp
2´´C.BARTOCCI,U.BRUZZOANDD.HERNANDEZRUIPEREZ
issaidtobeWITiifitsFourier-Mukaitransformisconcentratedindegreei,i.e.HRπ (Q π E)=0forallk=i.
isitsdual.IfFisaµ-stablevectorLetXisbeapolarizedabeliansurfaceandX bundleofrank≥2andzerodegree,thenitisWIT1,anditsMukaitransformF )ofdegreeisagainaµ-stablebundle(withrespecttoasuitablepolarizationonX
zero.ThisresultwasprovedbyFahlaouiandLaszlo[10]andMaciocia[14],albeitSchenk[21]andBraamandvanBaal[7]hadpreviouslyobtainedacompletelyequivalentresultinthedi erential-geometricsetting:theNahm-Fouriertransformofaninstantonona atfour-torus(withno atfactors)isaninstantonoverthedualtorus(cf.also[9],and,foradetailedproofoftheequivalenceofthetwoapproaches,
[3]).Thekeyremarkwhichmakesitpossibletorelatethealgebraic-geometrictreatmenttothedi erential-geometriconeisthattheFourier-Mukaitransformisinterpretableastheindexofasuitablefamilyofellipticoperatorsparametrizedby ,verymuchinthespiritofGrothendieck-Illusie’sapproachtothetargetspaceX
thede nitionofindexofarelativeellipticcomplex.
TheFourier-Mukaitransformcanbestudiedalsointhecaseofnonabelianvari-eties.ThegeneralideaistoconsideravarietyX,somemodulispaceYof‘geometricobjects’overX,and(ifpossible)a‘universalsheaf’QovertheproductX×Y.InthepresentpaperweconsiderthecaseofasmoothalgebraicK3surfaceXoverCwitha xedamplelinebundleHonit;ther oleofdualvarietyishereplayedbythemodulispaceY=MH(v)ofGieseker-stablesheaves(withrespecttoH)EonXhavinga xedv,where
v(E)=ch(E) kL
=MH(v)isaForawidefamilyofK3surfacesX,wecanchoosevsothatX
K3surfaceisomorphictoX.ThenonemptinessofMH(v)inthiscasehasbeenprovedin[4]bydirectmethods.ThenweprovethattheFourier-Mukaitransformisinvertible,justasinthecaseofabeliansurfaces:
Theorem2.LetFbeanWITisheafonX.ThenitsFourier-Mukaitransform =Riπ ,whoseFourier-MukaitransformF (π F Q)isaWIT2 isheafonX Q )isisomorphictoF.R2 iπ ( π F
We define a Fourier-Mukai transform for sheaves on K3 surfaces over $\C$, and show that it maps polystable bundles to polystable ones. The role of ``dual'' variety to the given K3 surface $X$ is here played by a suitable component $\hat X$ of the moduli sp
AFOURIER-MUKAITRANSFORMFORSTABLEBUNDLESONK3SURFACES3Weendthissectionby xingsometerminology.LetXandYbecompactcomplexmanifolds,andletQbea xedcoherentsheafonX×Y, atoverOY.Letπ,π betheprojectionsontothetwofactorsofX×Y.
De nition1.AsheafEonXsatis estheithWeakIndexTheoremcondition(i.e.itisWITi)ifRjπ (π E Q)=0forj=i;similarly,thesheafEissaidtosatisfytheithIndexTheoremcondition(i.e.itisITi)ifHj( π 1(y),E Q|p 1(y))=0forj=iandally∈Y.
ThebasechangetheoremimpliesthatthesheafEisITiifandonlyifitisbothWITiandRiπ (π E Q)islocallyfree.
IfeitherQis atoverOX×Y,orFis atoverOX,thesheavesRkπ (π F Q)arethecohomologysheavesoftheFourier-MukaitransformRπ (π F Q)inthe =Riπderivedcategory.Then,ifFisWITiwecallthesheafF (π F Q)onYitsFourier-Mukaitransform.
2.Fourier-MukaitransformonK3surfaces
2.1.Hyperk¨ahlermanifoldsandquaternionicinstantons.Ahyperk¨ahlermanifoldisa4n-dimensionalRiemannianmanifoldXwhichadmitsthreecom-plexstructuresI,JandK,compatiblewiththeRiemannianstructure,suchthatIJ=K.Onahyperk¨ahlermanifoldonecanintroduceageneralizednotionofinstanton[15].ThethreeendomorphismsI,J,KofTX Callowonetode neanendomorphismφofΛ2T X C,
φ=I I+J J+K K.
Thissatis esφ2=2φ+3,sothatateveryx∈Xonehasaneigenspacedecompo-sition
(1) Λ2(TxX C)=V1⊕V2L
correspondingtotheeigenvalues3and 1ofφ,respectively.IfEisaC∞complexvectorbundleonX,withconnection andcurvatureR ,wesaythatthepair(E, )isaquaternionicinstantonifR ,regardedasasectionofEnd(E) Λ2T X,hasnocomponentinV2.IfXhasdimension4thisagreeswiththeusualde nitionofinstanton,sinceinthatcasethesplitting(1)isnomorethanthedecompositionofthespaceoftwo-formsintoselfdualandanti-selfdualforms.Itisquiteevidentthat(E, )isaquaternionicinstantonifandonlyifthecurvatureR isoftype(1,1)withrespecttoallthecomplexstructuresofXcompatiblewithitshyperk¨ahlerstructure.Moreover,(E, )isanEinstein-HermitebundlewithrespecttoalltheinducedK¨ahlerstructures;thus,foranycompatiblecomplexstructureonX,thebundleEadmitsaholomorphicstructure,andthesheafofitsholomorphicsectionisthenµ-polystablewithrespecttoapolarizationgivenbytheK¨ahlerformdeterminedbythegivencomplexstructure(werecallthatacoherentsheafissaidtobeµ-polystableifitisadirectsumofstablesheaveshavingthesameslope).
2.2.Assumptionsonthemodulispace.LetXbeaprojectiveK3surfaceoverC.Thecupproductde nesaZ-valuedpairingonthegradedringH (X,Z):
′′′′′′
We define a Fourier-Mukai transform for sheaves on K3 surfaces over $\C$, and show that it maps polystable bundles to polystable ones. The role of ``dual'' variety to the given K3 surface $X$ is here played by a suitable component $\hat X$ of the moduli sp
4´´C.BARTOCCI,U.BRUZZOANDD.HERNANDEZRUIPEREZ
Forevery sheafFonXwede netheMukaivectorv(F)∈H(X,Z)astheelement
ch(F)
Nowwe xaMukaivectorv=(r, ,s)satisfyingtheassumptionA1andthefollowingadditionalassumptions:
A2.Thedivisor hasdegreezeroandr>1;
A3.ThemodulispaceMH(v)isnotempty,andparametrizesµ-stablesheaves.
InthissituationtheuniversalsheafQonX×MH(v)islocallyfreebyvirtueof
[20],Corollary3.10,thatwerecallinthefollowingform:
Proposition2.Ifv=(r, ,s)isisotropicandr>1,everyµ-stablesheafFonXwithv(F)=vislocallyfree.
1Weadopttheusualde nitionof(semi)stability,sothataGieseker-(orµ-)semistablesheafis
We define a Fourier-Mukai transform for sheaves on K3 surfaces over $\C$, and show that it maps polystable bundles to polystable ones. The role of ``dual'' variety to the given K3 surface $X$ is here played by a suitable component $\hat X$ of the moduli sp
AFOURIER-MUKAITRANSFORMFORSTABLEBUNDLESONK3SURFACES5Proof.ForanycomplexstructureonXcompatiblewithitshyperk¨ahlerstructurethecurvatureoftheuniversalconnectionisoftype(1,1)[12].
We define a Fourier-Mukai transform for sheaves on K3 surfaces over $\C$, and show that it maps polystable bundles to polystable ones. The role of ``dual'' variety to the given K3 surface $X$ is here played by a suitable component $\hat X$ of the moduli sp
6´´C.BARTOCCI,U.BRUZZOANDD.HERNANDEZRUIPEREZ
thetwocomplexstructures,sothatonehasacommutativediagram
0 →
(2)
0 →∞FIDI ∞ S ) ∞ S+) →0 →π (F →π (FII g′ g′; II II ∞FI′ →π (F
hereDIisactuallytheadjointoftheDiracoperatorassociatedwiththecomplexstructureIcoupledwiththeconnectionofπ F Q;moreover,∞meansthatweareconsideringthesheafofsmoothsectionsofaholomorphicbundle.Theoperators ∞isthesheafofD aresurjectiveduetotheIT1condition,andeverysheafFI I(cf.[3,6]).smoothsectionsoftheFourier-MukaitransformsF
I→F I′ofC∞vectorbundles;Thediagram(2)inducesanisomorphismg II′:F
moreover,sincethebundleπ F Qhasanaturalhermitianmetric,thehorizontal Ioneveryarrowsinthisdiagramallowonetointroduceanhermitianmetrich I,andgbundleF II′isthenanisometry.Bycouplingtherelativeconnectioninducedbytheconnectiononπ F QwiththerelativeDolbeaultoperatorassociatedwith IacomplexstructureIandbytakingdirectimagesonede nesaconnection .SincethisconnectionisalsoinducedbythedirectimagesofthecoupledonF ∞ S±),diagram(2)provesthatg Iinto I′.connectionsonπ (F II′transforms II , Soactuallyonehasasinglehermitianbundle(Fh)withasingleconnection whosecurvatureisoftype(1,1)withrespecttoallcompatiblecomplexstructures. , )isaninstanton.Asaconsequence,theFourier-MukaiThen,thepair(F IofFIisµ-polystablewithrespecttotheK¨ deter-transformFahlerformoverXminedbyI. ∞ SI′) ∞ S+) →0 →π (FI DI′
We define a Fourier-Mukai transform for sheaves on K3 surfaces over $\C$, and show that it maps polystable bundles to polystable ones. The role of ``dual'' variety to the given K3 surface $X$ is here played by a suitable component $\hat X$ of the moduli sp
AFOURIER-MUKAITRANSFORMFORSTABLEBUNDLESONK3SURFACES7Lemma1.IfXisare exiveK3surfaceandD·H>2foreverynodalcurveD,thedivisorE= +2Hisnote ective.Then,Hi(X,OX( +2H))=0fori≥0.Proof.SinceE2= 4,ifEise ective,itisnotirreducibleandE=D+FforsomenodalcurveD.ThenD·H=3sothatF·H=1andFisalsoirreducible.ItfollowsthatF2≥ 2.IfF2≥0,thenD·F≤ 1,sothatD=Fwhichisabsurd.Thus,F2= 2andFisanodalcurveofdegree1,asituationweareexcluding.
donotsatisfythelowerboundsontheOneshouldnoticethattheelementsinX
discriminantestablishedbySorger3andHirschowitzandLaszlo[11].
~X.Weconsidernoware exiveK3surfaceX →3.2.TheisomorphismX
satisfyingtheassumptiononnodalcurvesdescribedintheprevioussection,and =MH(v).showthatthereisanaturalisomorphismbetweenXandX
ThefollowingresultisadirectconsequenceofLemma1.
Lemma2.dimExt1(Ip( +2H),OX)=dimH1(X,Ip( +2H))=1foreverypointp∈X,whereIpistheidealsheafofp.
→X,givenTheseresultsimplythatthereexistsaone-to-onemapofsetsΨ:X
byΨ([E])=p,wherepisthepointdeterminedbyLemma3.Ournextaimistoprovethatthismapisactuallyanisomorphismofschemes;tothisendweneedaresultthatfollowsfromGrauert’sbasechangetheoremandLemma2.
We define a Fourier-Mukai transform for sheaves on K3 surfaces over $\C$, and show that it maps polystable bundles to polystable ones. The role of ``dual'' variety to the given K3 surface $X$ is here played by a suitable component $\hat X$ of the moduli sp
8´´C.BARTOCCI,U.BRUZZOANDD.HERNANDEZRUIPEREZ
Corollary1.ThesheafOX(H)isIT0,anditsFourier-MukaitransformN= .π (Q π OX(H))isalinebundleonXCorollary2.LetEbeasheafwhich tsintoanexactsequence
0 →OX →E(H) →Ip( +2H) →0,
whereIpistheidealsheafofapointp∈X.ThenEisµ-stableandlocallyfreewithv(E)=v=(2, , 3)andΨ([E])=p.
We define a Fourier-Mukai transform for sheaves on K3 surfaces over $\C$, and show that it maps polystable bundles to polystable ones. The role of ``dual'' variety to the given K3 surface $X$ is here played by a suitable component $\hat X$ of the moduli sp
AFOURIER-MUKAITRANSFORMFORSTABLEBUNDLESONK3SURFACES9
= πwhereH (γ2,2H). isanaturalpolarizationonX .Indeed,theWewillshowthatthedivisorH ,regardedasamodulispaceofinstantonsonX,carriestheWeil-PeterssonspaceX
metricΦX ,alreadyconsideredinTheorem1,andwecanprove,inthespiritof
.[13],thattheclassofthismetricmaybeidenti edwiththeclassH =1Proposition6.H
2 i
X =0ΦX∧(c1(Q))2=2(4π)2( ·H)
ΦX∧trR2,0∧R0,2=0.
X
wemayByrepresentingtheCherncharacterγintermsofthecurvatureformR
compute
=1H
8π2 ΦX∧tr(2R2,0∧R0,2+R1,1∧R1,1)=1
X
Lemma4.Thedirectimageπ [Ext1(IΨ π OX( +2H),OX×X )]isalinebundle
.LonX
Proof.WriteE= +2HandOΨ=(ΓΨ) OX .Then,
Ext1(IΨ π OX(E),OX×X ) OΨ πOX( E). .Inthissectionweprovethatwe4.2.XasamodulispaceofbundlesonX 3) asamodulispaceofbundleswithtopologicalinvariants(2, ,canregardX ;itturnsoutthatthethatareµ-stablewithrespecttothenaturalpolarizationHrelevantuniversalbundleinthiscaseissimplyQ .Lemma3suggeststhattheuniversalsheafQcanbeobtainedasanextensionof .LetIΨbetheidealsheafofthesuitabletorsion-freerank-onesheavesonX×X →X×X ofΨ.graphΓΨ:X ·H isample,andcanbetakenasapolarizationonX ;moreover, =0,ThusH 2= 12,sothatv 3)isanisotropicMukaivectorandX isare exiveand =(2, , ). K3surfacewithrespectto(H,
ByLemma1,Riπ π OX( E)=0fori≥0,hence,fromtheexactsequence
0 →IΨ π OX( E) →π OX( E) →OΨ π OX( E) →0,
~R1π weobtainπ (OΨ π OX( E))→ (IΨ π OX( E)).Butforeveryξ∈X
onehasH1(X,IΨ π OX( E) κ(ξ))=H1(X,Ip( E)),wherep=Ψ(ξ),and
We define a Fourier-Mukai transform for sheaves on K3 surfaces over $\C$, and show that it maps polystable bundles to polystable ones. The role of ``dual'' variety to the given K3 surface $X$ is here played by a suitable component $\hat X$ of the moduli sp
10´´C.BARTOCCI,U.BRUZZOANDD.HERNANDEZRUIPEREZ
ItfollowsthatthesheafExt1(IΨ π OX( +2H),π (L 1))hasasection,sothatthereisanextension
(4)0 →π (L 1) →P →IΨ π OX( +2H) →0.
;Moreover,Lemma3impliesthatP π OX( H)isauniversalsheafonX×X~Q π .ThesheavesLandNthusP→ N π OX(H)foralinebundleNonX
arereadilydetermined;byapplyingπ tothesequenceaboveoneobtains
~ ( H ) N,L 1=OX(H) N→OX
wherethesecondequalityisduetoequation(3).Now,byrestrictingtheexact H c1(Q|π 1(p))= H .sequence(4)toa breπ 1(p),weobtainc1(N)=
Thenwehave
Proposition7.ThesequenceofcoherentsheavesonX×X
(5)
→Q π 0 →π OX OX→IΨ π OX( +2H) →0 ( 2H) ( H) πOX(H)
isexact.
We define a Fourier-Mukai transform for sheaves on K3 surfaces over $\C$, and show that it maps polystable bundles to polystable ones. The role of ``dual'' variety to the given K3 surface $X$ is here played by a suitable component $\hat X$ of the moduli sp
AFOURIER-MUKAITRANSFORMFORSTABLEBUNDLESONK3SURFACES11
)impliesthatthemodulispaceM ( H, (X,Hv)ofstablesheavesonX(withrespect )withMukaivectorv ),toH isanon-emptyconnectedcomponentofSpl( v,Xconsistingoflocallyfreeµ-stablesheaves.
v)thesheafF tsintoanexactAccordingtotheproofofLemma3,if[F]∈MH (
unlessFisgivenbyanextensionsequencelike(7)forawell-de nedpointξ∈X
=1andZisazero-dimensionalclosedwhereDisanodalcurvewithD·H +2H .Inthelattercase,Hi(X, IZ( D))=0fori≥0sosubschemeofX +2H = 3andD·Ψ H= D)2.Then,D· thatlenght(Z)=0and 4=( )= 1,whichisabsurdsinceΨ Hisample.Then,onehas +2 D·(5H
~Q withp=Ψ(ξ),sincedimExt1(Iξ( +2H ,andF→ ),O )=forapointξ∈XpXv)iscontainedinα(X)andthetwospacesmustcoincide.This1.Thus,MH (
meansthatthebundlesQ pareµ-stablewithrespecttoH;thereforethesequence
withinvariants(5)exhibitsexplicitlytheparametrizationofvectorbundlesonX 3)thatareµ-stablewithrespecttoH bythepointsofX.Asaconsequence:(2, , +2H ) ) 0 →OX→F(H→Iξ( →0, +2H ) D) 0 →OX→F(H→IZ( →0 (D)
(polarizedbyProposition8.Xisa nemodulispaceofµ-stablebundlesonX 3),andtherelevantuniversalsheafisQ . )withinvariants(2, ,H
We define a Fourier-Mukai transform for sheaves on K3 surfaces over $\C$, and show that it maps polystable bundles to polystable ones. The role of ``dual'' variety to the given K3 surface $X$ is here played by a suitable component $\hat X$ of the moduli sp
12´´C.BARTOCCI,U.BRUZZOANDD.HERNANDEZRUIPEREZ
)thereisafunctorialisomorphismProposition10.ForeveryG∈D(X
).Moreover,ifXisre exiveandD·H>2foreveryinthederivedcategoryD(X
nodalcurveDinX,thenforeveryF∈D(X)thereisalsoafunctorialisomorphism
~SX (SX(F))→F[ 2]~SX(SX (G))→G[ 2]
inthederivedcategoryD(X).
×X ,andπijtheProof.Letq1andq2betheprojectionsontothetwofactorsofX
×X ontotheproductoftheithandjthfactors.Then,theprojectionofX×X
L )(see[18]),withcompositefunctorisgivenbySX(S (G))=Rq2, (q G QX1
whereRHom (,)denotesthetotalderivedfunctorofthecomplexofsheafho-momorphisms.By[20],Proposition4.10,theright-handsideisisomorphicinthe →X ×X isthediagonalembeddingderivedcategorytoδ M[ 2],whereδ:X
L .ItfollowsthatSX(S (G)) G M[ 2].LetandMisaninvertiblesheafonXX ρ:X×X→X×Xbethepermutationmorphism;bybase-changetheorywehave
byrelativedualityforπ23.Fromρ δ=ρone ndsthatM[ 2] M [ 2].Then,thereisanisomorphismofinvertiblesheavesM M ,andM OX .
Thesecondstatementfollowsfromthe rstbyProposition8. Rπ23, (π13 [ 2],ρQQ π12Q) Rπ23, [(π13Q π12Q ) ] Q LLL~Rπ23, RHom (π Q,π Q), =Rπ23, (π Q π Q)→Q12131213
,inacompleteanalogyThus,thereisadualitybetweenthevarietiesXandX
withthecaseoftheFourier-Mukaitransformonabeliansurfaces.
Inparticularwehavethefollowingresult.
Theorem2.LetFbeaWITisheafonX.ThenitsFourier-Mukaitransform =Riπ ,whoseFourier-MukaitransformF (π F Q)isaWIT2 isheafonX Q )isisomorphictoF.R2 iπ ( π F
We define a Fourier-Mukai transform for sheaves on K3 surfaces over $\C$, and show that it maps polystable bundles to polystable ones. The role of ``dual'' variety to the given K3 surface $X$ is here played by a suitable component $\hat X$ of the moduli sp
AFOURIER-MUKAITRANSFORMFORSTABLEBUNDLESONK3SURFACES13
,F )forh=0,1,2.Inparticular,thereisanisomorphismExth(F,F) Exth(F issimpleforeverysimpleWITisheafF.foreveryh,sothatFLemma5.LetF,F′becoherentsheavesonX.IfFisWITiandF′isWITj,wehave ,F ′).Exth(F,F′) Exth+i j(F
isµ-polystablebyTheorem1,andsimplebyLemma5,sothatitisProof.F
µ-stable.Theorem3.LetFbeazero-degreeµ-stablebundleonX,withv(F )=(2, , 3). isµ-stable.ThenitsFourier-MukaitransformF
Corollary8.TheFourier-MukaitransformpreservestheEulercharacteristicand )=χ(F)andc1(F)·H=thedegreeofWIT1-sheaves,thatis,ifFisWIT1thenχ(F )·H .c1(F
We define a Fourier-Mukai transform for sheaves on K3 surfaces over $\C$, and show that it maps polystable bundles to polystable ones. The role of ``dual'' variety to the given K3 surface $X$ is here played by a suitable component $\hat X$ of the moduli sp
14´´C.BARTOCCI,U.BRUZZOANDD.HERNANDEZRUIPEREZ
holomorphicsymplecticstructuresofthesespaces.Moreover,onehasdimMH(u)=µu)(sinceu2=u 2),andso—providedMH(u)isnotempty—thereisadimMH (
birationalcorrespondenceMH(u)→MHu). (
Insomecasesstrongerresultscanbeobtained;forinstanceitcanbeshownthat foranyn≥1themodulispaceMH (1+2n, n ,1 3n)isbiholomorphictothepunctualHilbertschemeHilbn(X)[8].
In[4]wegiveacompletelyalgebraicproofofTheorem3.Alsoin[4]weprove algebraicallythatOX (2H)isthedeterminantlinebundle,whichisanalternative
.proofoftheamplenessofH
ThetranscendentalproofofTheorem1extendsdirectlytohigherdimensions,providingaproofofthethefactthattheFourier-Mukaitransformonhyperk¨ahlermanifoldsmapsquaternionicinstantonstoquaternionicinstantons[6].
Acknowledgments.WethankP.Francia,J.M.Mu nozPorras,K.O’GradyandespeciallyA.Maciociaforusefuldiscussionsandsuggestions.The rstauthoralsothanksS.Donaldsonforadviceatapreliminarystageofthiswork.Thisworkwaspartlydonewhilethe rstauthorwasvisitingtheStateUniversityofNewYorkatStonyBrook,andthesecondauthorwasvisitingVictoriaUniversityofWellington,NewZealand.TheythanktherespectiveDepartmentsofMathematicsfortheirwarmhospitalityandforprovidingexcellentworkingconditions.
References
[1]
[2]AtiyahM.F.,SingerI.M.,Diracoperatorscoupledtovectorpotentials,Proc.Natl.Acad.Sci.U.S.A.81(1984),2597–2600.BartocciC.,InstantonsoverK3surfaces,Grouptheoreticalmethodsinphysics,Vol.II,
M.A.delOlmo,M.SantanderandJ.MateosGuilarte(eds.),AnalesdeF´ sica.Monogra as,
1.CIEMAT,Madrid,1993,pp.64–67.
BartocciC.,BruzzoU.,Hern´andezRuip´erezD.,Fourier-Mukaitransformandindexthe-ory,ManuscriptaMath.85(1994),141–163.[3]
[4]
,Moduliofre exiveK3surfaces,in“Complexanalysisandgeometry”,E.Ballico
etal.eds.,M.Dekker(toappear).
[6]
,Poincar´ebundleandChernclasses,Adv.StudiesPureMath.18-1(1990),271–
[14]281.MaciociaA.,GiesekerstabilityandtheFourier-Mukaitransformforabeliansurfaces,
to
We define a Fourier-Mukai transform for sheaves on K3 surfaces over $\C$, and show that it maps polystable bundles to polystable ones. The role of ``dual'' variety to the given K3 surface $X$ is here played by a suitable component $\hat X$ of the moduli sp
AFOURIER-MUKAITRANSFORMFORSTABLEBUNDLESONK3SURFACES
[15]
[16]
[17]15MamoneCapriaM.,SalamonS.M.,Yang-Mills eldsonquaternionicspaces,Nonlinearity1(1988),517–530.MaruyamaM.,ModuliofstablesheavesI,J.Math.KyotoUniv.17(1977),91–126.
,SymplecticstructureofthemodulispaceofsheavesonanabelianorK3surface,Invent.Math.77(1984),101–116.
[20]
正在阅读:
A Fourier-Mukai Transform for Stable Bundles on K3 Surfaces05-20
区信访局2021年信访工作总结08-04
最新2017漂亮的qq个性签名02-09
伤感的QQ签名11-20
qq个性签名2017最新版,qq个性签名2017最新版的3篇02-15
充满正能量的个性签名11-20
qq个性签名绝佳语句11-20
美文欣赏广播稿03-27
北京市朝阳区2013届高三二模考试理科综合试题及答案 - 图文11-16
2017年最新个性签名(3篇)02-15
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Transform
- Surfaces
- Fourier
- Bundles
- Stable
- Mukai
- K3
- 差旅费费用报销规定及管理细则
- 4-导演、美设摄影基础(2)-影视画面构图
- 2015年深圳事业单位考试龙华新区笔试成绩查询入口
- 智能电网欧洲标准
- 高中有机化学知识小结 官能团
- BROCADE 交换机的配置手册2
- 2012级高三时评写作训练(四)
- 学习杨善洲同志先进事迹心得体会
- 小儿内科4个病种临床路径
- 第五章电力系统有有功功率平衡和频率调整
- 以学生心理特点为指导,引导其健康成长(教师中心稿)
- 2014年安徽干部教育在线必修课 《加快财政制度现代化步伐 提高国家治理能力》测试答案
- 宝峰-2012奖励性绩效工资分配方案
- 江苏省东台市安丰中学2014-2015学年高一化学上学期期末考试试题
- 中医师承跟师心得08
- MDK环境下利用STM32库V3.5创建工程并调试的方法
- 小学五年级数学下册周周练及答案全册
- 基于单片机的室内甲醛测试系统
- 《几何画板》在中学计算机辅助数学教学中的应用
- 让学生在美好的班级环境中快乐成长