Automorphisms and strongly invariant relations
更新时间:2023-08-05 20:49:01 阅读量: 实用文档 文档下载
Automorphisms and strongly invariant relations
3
2
ep
S
9
]
O
L
.
th
a
m
[
1
v
5
6
1
9
3
/
tha
m
:v
i
Xr
aAutomorphismsandstronglyinvariantrelationsFerdinandB¨orner,MartinGoldstern,andSaharonShelahAbstract.WeinvestigatecharacterizationsoftheGaloisconnectionsInv–Autbetweensetsof nitaryre-lationsonabasesetAandtheirautomorphisms.Inparticular,forA=ω1,weconstructacountablesetRofrelationsthatisclosedunderallinvariantoperationsonrelationsandunderarbitraryintersections,butisnotclosedundersInvAut.Ourstructure(A,R)hasanω-categorical rstordertheory.Ahigherorderde nablewell-ordermakesitrigid,butanyreducttoa nitelanguageishomogeneous.1.IntroductionOurmainquestioniseasytoformulate.LetRbeasetof nitaryrelationsonanonemptybasesetA,andletAutRdenotethesetofallautomorphismsofthestructure(A;( ) ∈R).Conversely,ifGisasetofpermutationsonA,thensInvGdenotesthethesetofallrelationsσonAsuchthatallpermutationsinGareautomorphismsofσ.(FormalDe nitionsfollowinthenextsection.)Thequestionis:HowcanwecharacterizetherelationsetsoftheformsInvAutR?Ofcourse,theoperatorsInvAutisaclosureoperator,andtheoperatorpairsInv–AutformsaGaloisconnectionbetweensetsofrelationsonAandsetsofpermutationsonA.Wecanreformulateourproblemas“WhichsetsRofrelationsareGalois-closed,i.e.,satisfyR=sInvAutR?”or:“DescribetheclosureoperatorsInvAutinternally”,i.e.,withoutexplicitreferencetopermutations.Probablythe rstonewhoinvestigatedthisquestioninasystematicwaywasMarcKrasner.In uencedbytheGaloisconnectionbetweenpermutationgroupsand eldextensionshetriedto‘generalizethenotionofa eld’[7].Insteadoftheactionofpermutationson eldelements,heconsideredthemorecomplexactiononrelations.For nitebasesetsAhedescribedtheclosedsetsofrelationswiththehelpofsomeoperationsonrelations.Alogicaloperationonrelationsisanoperation,de nablebyaformulaofthe rstorderlogic.(Fordetailsseethenextsection.)WecallasetofrelationsaKrasneralgebraifitisclosedunderalllogicaloperations.For niteA,theGaloisclosedsetsofrelationsareexactlytheKrasneralgebras.(Atthispointweremarkthatournotationdi ersfromKrasner’soriginalnotation.)ItiseasytoextendthischaracterizationtocountablebasesetsA:InthiscasetheGaloisclosedrelation setsareexactlythoseKrasneralgebrasthatareadditionallyclosedunderarbitrary
intersections(–closedKrasneralgebras).
ButthisisnolongertrueforthegeneralcaseofuncountablesetsA.ForthiscasethereexistsacharacterizationbyR.P¨oschel[12,13]withthehelpofadditionaloperationsofuncountablearity.Buttheuseofsuchoperationsisnotverysatisfying.Thereforewecontinuetolookforbetterresults.
Onereasonfortheexistenceof –closedKrasneralgebrasthatarenotGaloisclosedisthefactthat rstorderlogicissimply“tooweak”todistinguishbetweensetsofdi erentin nitecardinalities.Consequently,itisanaturalideatoreplacethelogicaloperationsbyastrongerclassofoperations.Ann–aryoperationFonrelationsiscalledinvariant,ifthefollowingidentityholdsforallpermutationsgandallrelations 1, n(withappropriatearities)onA:
F(g[ 1],...,g[ n])=g[F( 1,..., n)]
Automorphisms and strongly invariant relations
2¨FERDINANDBORNER,MARTINGOLDSTERN,ANDSAHARONSHELAH
Clearly,everyGaloisclosedsetofrelationsis–closedandclosedunderallinvariantoperations.
Butitwasunknown whethertheconverseisalsotrue.Theproblemis:Doesthereexistasetofrelationsthatis–closedandclosedunderallinvariantoperations,butnotGaloisclosedforsInv–Aut?([3,Problem2.5.2].)
Surprisingly,theanswertothisquestionisyes!Inthemainpartofourarticle,section3,wegiveamodeltheoreticalconstructionofsuchasetofrelationsonabasesetAofcardinalityω1.
Finally,insection4,wegiveacharacterizationoftheGaloisclosedrelationsetswiththehelpofadditionalinvariantin nitaryoperations.IncontrasttoP¨oschelscharacterization,werestrictthesein nitearitiestobecountable.Section3showsthatwecannotrestrictthearitiestobe nite,sothisseemstobethebestpossibleresult.
2.Preliminaries.
Notation.Throughout,letAdenoteanonemptybaseset.Writeωforthesetofallnaturalnumbers(andatthesametimethe rstin niteordinal).Anm–aryrelationonAisasubsetof Am,thesetofallm–aryrelationsisdenotedbyRel(m)(A),andRel(A):=1 m∈ωRel(m)(A)isthesetofall nitaryrelations.IfR Rel(A),thenR(m):=R∩Rel(m)(A).Wedonotdistinguish
)havethesamemeaning.Thesetofallbetweenrelationsandpredicates,thereforea
permutationsonAisdenotedbySym(A).Forg∈Sym(A)anda
):=(g(a1),...,g(am)),
andfor Amwewrite
∈ }.g[ ]:={g(a
Letg∈Sym(A)and ∈Rel(A).Wesaythatgisanautomorphismof ,orthatgstronglypreserves ,orthat isastronglyinvariantrelationforg,if
g[ ]= .
Thisisequivalenttog[ ] andg 1[ ] .
ForR Rel(A)andG Sym(A)wede neoperatorsAut:PRel(A)→PSym(A)andsInv:PSym(A)→PRel(A):
AutR:={g∈Sym(A)|g[ ]= forall ∈R}
{ ∈Rel(A)|g[ ]= forallg∈G}sInvG:=
(ForasetX,PXdenotesthesetofallsubsetsofX.)
TheoperatorpairsInv–AutformsaGaloisconnectionbetweensetsofpermutationsandsetsofrelationsonA,i.e.thefollowingconditionsaresatis ed:
R1 R2 AutR2 AutR1andG1 G2 sInvG2 sInvG1
R sInvAutRandG AutsInvG.
Consequently,theoperators
sInvAut:PRel(A)→PRel(A)andAutsInv:PSym(A)→PSym(A)
areclosureoperators.ThesetsofrelationsandthesetsofpermutationswhichareclosedundertheseclosureoperatorsarecalledGaloisclosed(withrespecttotheGaloisconnectionsInv–Aut).CharacterizingaGaloisconnectionmeanstodescribetheGaloisclosedsetswithoutreferringtotheconnectionitself.
Inourarticlewewantto ndanddiscusscharacterizationsofourGaloisconnectionsInv–Aut.ThereexistmanysimilarGaloisconnectionsbetweensetsofrelationsandsetsofdi erentkindsoffunctions,andtheyturnedouttobeusefulespeciallyfortheinvestigationof nitemathematicalstructures.Asageneralsource,wereferto[11]andthelistofreferencesgiventhere.Hereweareinterestedincharacterizationsforin nitebasesetsA.
Themaintoolforthedescriptionoftheclosedsetsofrelationsareoperationsonrelations.Theseoperationsareoftheform
F:Rel(m1)(A)×...×Rel(mn)(A)→Rel(m)(A),
Automorphisms and strongly invariant relations
AUTOMORPHISMSANDSTRONGLYINVARIANTRELATIONS3
with0 n∈ω.AsetR Rel(A)isclosedunderFifF( 1,..., n)∈Rforall i∈R(mi),1 i n.
Specialoperationsonrelationsarethelogicaloperationswhichcanbede nedwiththehelpof rstorderformulas.Moreexactly:Let (P1,...,Pn;x1,...,xm)beaformulawithpredicatesymbolsPi(ofaritymi),whereallfreevariablesarein{xj|1 j m}.Wede ne
L ( 1,..., n):={(a1,...,am)∈Am| A( 1,..., n,a1,...,am)},
where A( 1,..., n,a1,...,am)meansthat holdsinthestructure A; 1,..., n fortheeval-uationxj:=aj,(1 j m).
ExamplesoflogicaloperationsaretheBooleanoperationsintersection∩andcomplementationC,de nedbytheformulasP1(x1,...,xm)∧P2(x1,...,xm)and¬P(x1,...,xm).
PropertiesofGaloisclosedrelationsets.
De nition2.1.AsetR Rel(A)iscalledaKrasneralgebra(KA)onA,ifRisclosedunderalllogicaloperations.1
IfQ Rel(A),then Q KAdenotestheKrasneralgebrageneratedbyQ,i.e.theleastsetofrelationsonAthatcontainsQand isclosedunderalllogicaloperations.
AsetRofrelationsiscalled–closed,if
(1)Am∈Rforallm∈ω\{0}
(2)Risclosedunderarbitraryintersections )i.e.forallmandallQ R(m)wehaveQ∈R(m.(Hereweput =Am.) IfQ Rel(A),then Q KA, denotestheleast–closedKrasneralgebracontainingQ.
Clearly, KA). ,areclosureoperatorswith Q KA Q KA,forallQ Rel(A
IfasetRofrelationsis–closedandclosedundercomplementationC(e.g.ifR= R KA,),
thenitisalsoclosedunderarbitraryunions.
ThenextLemmagivestheobviousconnectionbetweenthesenotionsandtheGaloisclosedrelationsets.Foraproofwerefere.g.to[3]. Lemma2.2.IfR Rel(A)isGaloisclosed(R=sInvAutR),thenRisa–closedKrasneralgebra,R= R KA, .Consequently,forallQ Rel(A)wehave Q KA, sInvAutQ.
(GaloisclosedsetsofrelationsaresometimescalledKrasnerclones.SoeveryKrasnercloneisaKrasneralgebra,butnotviceversa.)
De nition2.3.LetR Rel(A)anda
):= { ∈R(m)|a
∈Am.Thenthefollowinghold.
(1)R1 R2 ΓR2(a)
)andΓR(a(2)a
∈R. (3)IfRis–closed,thenΓR(a
~Rb
~Rb
)=ΓR2(a∈Am.∈ΓR(bfromb∈ .Moreover, = a)forall)|a
Automorphisms and strongly invariant relations
4FERDINANDBORNER,¨MARTINGOLDSTERN,ANDSAHARONSHELAH
(6)ΓsInvG(a)|g∈ G group},where G groupisthesubgroupofSym(A),generated
byG.
Proof.(1)–(5)aredirectconsequencesoftheDe nitions.For(6),we rstnotethat{g(a
andisstronglyinvariant forallg∈G.ThereforeΓsInvG(a)|
g∈ G group}.Ontheotherhand,sInvGis–closed,thereforea)∈sInvG,andeveryrelationwiththesepropertiesmustcontainallg(a
) {g(a
,b~Rb
=g(a
)=ΓsInvAutR(a.Becauseof2.4(6),thisis
equivalenttoΓR(a)|g∈AutR}. Partialautomorphisms.ThelastLemmacanbeusedto ndcharacterizationsinsomespecialcases.
De nition2.6.ApartialautomorphismfofarelationsetQ Rel(A)(orofthestructureA
=(A;(σ)σ∈Q))issaidtobehomogeneous,ifevery nite
partialautomorphismcanbeextendedtoanautomorphismofQ.
Lemma2.7.IfQ Rel(A)isahomogeneoussetofrelations,then Q KA, =sInvAutQ.Proof.FirstnotethatsInvAutQishomogeneousand Q KA, sInvAutQ,soalso Q KA, ishomogeneous.SowlogQ= Q KA,
b1 .Leta=(,...,bm).Wewilluse2.5.So,assuminga,wehaveto
ndanautomorphismgwithg(a.Notethatainparticularimpliesthatai=aji bi=bj,foranyi,j.Sothemapf:={(ai,bi)|i=1,...,m}isa nite1-1map.AsnorelationinQseparatesa,fisevenapartialautomorphismforQ.
BecauseofthehomogeneityofQ,fcanbeextendedtoanautomorphismg∈AutQ.Thereforeb)forsomeg∈AutQ.
RelationsetsoftheformsInvAutQarehomogeneous.Hence,a –closedKrasneralgebraisGaloisclosedifandonlyifitishomogeneous.
TheGaloisclosedpermutationsets.WewanttohaveashortlookattheothersideofourGaloisconnection.ThecharacterizationoftheGaloisclosedpermutationsetsiswellknown([5])andprovidesnodi culties.WeneedanadditionalclosureoperatorLoco:PSym(A)→PSym(A):
LocoG:={f∈Sym(A)|( m∈ω\{0})( a)=g(a
Automorphisms and strongly invariant relations
AUTOMORPHISMSANDSTRONGLYINVARIANTRELATIONS5
A rstcharacterizationoftheGaloisclosedrelationsets.In[12]and[13],R.P¨oschelcharacterizedtheclosedsetsofrelationswiththehelpofin nitaryoperations.LetIbeanarbitraryindexset,letm,mi∈ω\{0}(i∈I).ForanI-tuple( i)i∈Iofrelationswith i∈
miisde nedasfollows:Rel(mi)(A)thestrongsuperpositionwithparametersai∈A
sSupai)i∈I( i)i∈I:={g(ai)∈ iforalli∈I}
AsetR Rel(A)isclosedunderstrongsuperposition,ifsSupai)i∈I( i)i∈I∈Rwhenever i∈Rfori∈I. Theorem2.9.LetR Rel(A)be–closedandclosedunderC.ThenR=sInvAutRifandonlyifRisclosedunderstrongsuperposition.
Proof.Iff∈Sym(A),thenthede nitionofsSupa
sSupai)i∈I(f[ i])i∈I =fsSupai)i∈Iimpliesi)i∈I( i)i∈I.
Thereforeeveryautomorphismof{ i|i∈I}isanautomorphismofsSupai)i∈I( i)i∈I.Conse-quently,everyGaloisclosedsetofrelationsisclosedunderstrongsuperposition.
IfRisclosedunderstrongsuperposition,thenwecanchooseIand(b
i.(Thisispossiblewith|I|=|A|.)ThenR
) sSupai)i∈I(ΓR(bcontainstherelationsSupai)i∈I(ΓR(b
∈ΓR(a=g(an)∈ΓR(c∈A.ThisgisanautomorphismofR,therefore2.5implies
thatRisGaloisclosed.
Asseenintheproof,wecanrestrictthearitiesofthestrongsuperpositionsto|I|=|A|.Nevertheless,tobeclosedunderstrongsuperpositionisaverystrongcondition.Itimmediatelyimpliestheexistenceofthenecessaryautomorphismsinthesenseof2.5.Therefore,wecontinueto ndbettercharacterizations.
ACharacterizationforcountablebasesetA.For nitebasesetA,theGaloisclosedrelationsetsareexactlytheKrasneralgebras([7,8,9,11]).Thisresultcanbeextendedtothecountablecase:
Theorem2.10.R Rel(A).ThenR=sInvAutRifand LetAbeacountableor nitesetand
onlyifRisa–closedKrasneralgebra,R= R KA, .Therefore Q KA, =sInvAutQforallQ Rel(A).
Proof.Fortheproofwereferto[2,3.3.6.(v)]orto[3,2.4.4.(i)].OnedirectionisprovidedbyLemma2.2.Fortheotherdirectionwecanuseaback&forthconstructiontoobtaintheauto-morphismsthatarenecessarytoapplyLemma2.5.
Thenextexampleshowsthatthischaracterizationcannotbeextendedtouncountablesets.Example2.11.Considerthefollowingthreecountablestructures:
(1)(Q;<)(therationalnumberswiththelinearorder).
(2)Thefullcountablebipartitegraph:(A∪B; ),whereAandBaredisjointcountablesets,
and =(A×B)∪(B×A).
(3)Thecountablerandomgraph.(Seee.g.[4,6.4.4].)
EachofthesestructuresM
),the rstordertheoryofM
))tox=xortox=x,i.e.,
theonlysubsetsofM
κofcardinalityκsuchthattheset
:={x:Theset{y: (x,y)}iscountable}
isneitheremptynorthefullmodel.
Automorphisms and strongly invariant relations
6¨FERDINANDBORNER,MARTINGOLDSTERN,ANDSAHARONSHELAH
IneachofthesemodelsM
theset isa(higherorder)de nablesubsetofMκ,hence ∈
sInvAut(R)\R.
ThisshowsthatRisnotGaloisclosed.
Invariantoperations.Inthelastexample,thelogicaloperations,togetherwitharbitraryinter-sections,aretooweaktoprovidetheclosureundersInvAut.Inparticular,withlogicaloperationsitisnotpossibletodistinguishbetweensetsofdi erentin nitecardinality.Sothenextideatoobtainacharacterizationistoreplacethelogicaloperationsbyafamilyofstrongeroperationsonrelations.
De nition2.12.AnoperationF:Rel(m1)(A)×...×Rel(mn)(A)→Rel(m)(A)iscalledinvariant,ifforallg∈Sym(A)andall i∈Relmi(A)thefollowingidentityholds:
F(g[ 1],...,g[ n])=g[F( 1,..., n)]
IfQ Rel(A),then Q invdenotestheclosureofQunderallinvariantoperations,and Q inv, denotestheleastsetofrelationsthatisclosedunderallinvariantoperations,–closedandcontainsthesetQ.
(Thenotations“logicaloperations”and“invariantoperations”areadoptedfrom[6].)TheoperatorsQ→ Q invandQ→ Q inv, areclosureoperators,andwehave Q inv Q inv, forallQ Rel(A).
Wecollectsomeeasypropertiesoftheinvariantoperations.
Lemma2.13.(1)Everylogicaloperationisinvariant.IfAis nite,theneveryinvariant
operationislogical.
(2)Theinvariantoperationsformaclone,i.e.thesuperpositionofinvariantoperationsis
againaninvariantoperation.
(3)IfFisinvariantand i∈Rel(A)(1 i n),then
Aut{ 1,..., n} Aut{F( 1,..., n)}.
(4)R R inv R inv, sInvAutRforallR.So,ifR=sInvAutR,thenRis
andclosedunderallinvariantoperations,R= R inv, . –closedκ
Proof.For(1)and(2)wereferto[6].(3)isadirectconsequenceof2.12and(4)isadirectconsequenceof(3).
ThenextLemmashowsthatinvariantoperationsaresu cient,ifwehaveonly nitelymanyrelations.
Lemma2.14.LetQ Rel(A)bea niteset.ThensInvAutQ= Q inv.
Proof.LetQ={ 1,..., n}andletσ∈sInvAutR.Wede neaninvariantoperationFwithF( 1,..., n)=σ: F(σ1,...,σn):={g[σ]|g∈Sym(A)and( i=1...n)g[ i]=σi}
ItiseasytoverifythatFhasthedesiredproperties.
LetH:PZ→PZbeaclosureoperatoronasetZ.ThealgebraicpartofHistheclosureoperator Halg:PZ→PZ,X→{HX0|X0 X,X0 nite}.
HisalgebraicifH=Halg.
Lemma2.14showsthattheclosureoperatorQ→ Q invisthealgebraicpartofsInvAut.Moreexactly,forallQ Rel(A)wehave Q inv={sInvAutQ0|Q0 QandQ0is nite}=(sInvAut)algQ
Automorphisms and strongly invariant relations
AUTOMORPHISMSANDSTRONGLYINVARIANTRELATIONS7
Sofar,wehavetheclosureoperators inv, inv, andsInvAut.Theoperators invarealgebraic,theotheroperatorsarenotalgebraicifAisin nite.ForallQ Rel(A)wehave
Q KA Q inv
Q KA, Q inv, sInvAutQ.
For nitebasesetAalltheseclosureoperatorscoincide.
For
countable
A,theoperators
invand KA, =
KA, =
=(M;( m)1 m∈ω),where m∈
Rel(A)forallm.SoourlanguageLhasexactlyonerelationsymbolforeveryaritym.(Weusethepredicatesymbolsalsotodenotethecorrespondingrelations.)
[m]IfM:=(M; 1,..., m)denotesthereductof
M(m)
=(A;( m)1 m∈ω)beanin nitemodel.LetA
)isω-categorical(i.e.,hasuptoisomorphismexactlyonecountable
model).
(2)Forallm,thereductA
isrigid,i.e.AutA
,wehave:
1,..., m KA=sInvAut{ 1,..., m}
m 1,..., m KA,but
R= R inv, sInvAutRandR=
Proof.FirstnotethatR(aswellas 1, 2,... m KA)isclosedunderarbitraryintersections,since(byRyll-Nardzewski’stheorem)thereareonly nitelymanyk-aryrelationsinR,foranyk.
WenowshowthatRisalsoclosedunderallinvariantoperations.Wehave
Trivially, 1, 2,..., m KA= 1, 2,..., m KA,
1, 2,..., m KA 1, 2,..., m inv sInvAut{ 1, 2,..., m},
butby(2)and2.7wehave
so 1, 2,..., m KA, =sInvAut{ 1, 2,..., m},
1, 2,..., m KA= 1, 2,..., m inv.
Automorphisms and strongly invariant relations
8¨FERDINANDBORNER,MARTINGOLDSTERN,ANDSAHARONSHELAH
Asbothoperators invarealgebraic,thisyields
R= 1, 2,... KA= 1, 2,... inv
henceR= R inv, .
ClearlyRiscountable.ButAutR={idA}andsosInvAutR=Rel(A),whichisanuncountableset.Consequently
R inv, =sInvAutR.
Itremainstoprovethatamodelwithproperties(1)–(3)exists.Becauseof2.10,suchamodelcannotbecountable.Westartbyde ningthelogicaltheoryTthatwewantourmodeltosatisfy.Firstwede neanappropriatenotionofaclause.
De nition3.2.Aliteralinthevariablesx0,...,xn(n∈ω)isaformulaoftheform
m(xi1,...,xim)(unnegated)or¬ m(xi1,...,xim)(negated)
suchthat1 m n+1,{i1,...,im} {0,...,n},thei1,...,imarepairwisedistinctand0∈{i1,...,im}.
Aclauseinx0,...,xnisaconjunctionKofliteralsinx0,...,xn,suchthatnoliteralwillappeartwice,andnoliteralappearsinnegatedandunnegatedform.
Pleasenotethatthereareonly nitelymanyclausesinx0,...,xn.Thevariablex0playsaspecialrole—ithastoappearineveryliteral.
NowweformulateourtheoryT:
De nition3.3.Tconsistsof(theuniversalclosuresof)thefollowingformulas:Firstly,forall1 m∈ωwehave: (T1) m(x1,...,xm)→1 i<j mxi=xj
Secondly,foralln∈ωandallclausesK=K(x0,...,xn)inx0,...,xnwetaketheformula: (T2)1 i<j nxi=xj→( x0)K(x0,...,xn)
InformalDiscussion3.4.WewillseebelowthatthetheoryTiscompleteandω-categorical.OuraimistoconstructanuncountablemodelM
,weallowourmodeltodisobeythisrecommendation,ifthereisagood
reasonforit.Agoodreasoncanbethedesiretosatisfyanaxiomofourtheory,ortoextendapartialautomorphism.
Tokeeptrackofthecaseswheretherecommendationisnotfollowed,weconstructanauxiliaryfunctionh:M→ω,andwewilldemandthefollowing“law”,whichisarelaxedversionofthe“recommendation”:
Forallsu cientlylongtuples(x1,...,xn):
(x1,x2,...,xn)mustholdifx1<x2<···<xn,andmustnotholdotherwise
Here,“su cientlylong”isde nedas:n>max(h(x1),...,h(xn)).
Thus,wheneverweviolateourrecommendationatatuple(x1,...,xn),wewillde neasu -cientlylargevalueofhatoneofthepointsx1,...,xn.
BeforeweinvestigatethetheoryT,wewanttoexaminesometechnicalde nitionsandlemmas.ω1denotesthe rstuncountableordinal,ω1={α|α<ω1}.ω1iswell-orderedby<.Theuniversesofallourmodelswillbesubsetsofω1.[m]
Automorphisms and strongly invariant relations
AUTOMORPHISMSANDSTRONGLYINVARIANTRELATIONS9
De nition3.5.LetM
=(a1,...,an)∈Mn.Wesaythata
):=max{h(ai)|ai∈domh}<n.
Allothern-tuplesarecalledstrongforh.
=(M;( m)1 m∈ω)bemodelswithN M ω1.LetNowletN
h:M →ωbeapartialfunctionwithdomh=M\N.WewriteNif
(1)N(N),and
(2)foralln-tuples(a1,a2,...,an)∈Mnthatareweakforhthefollowingconditionholds:
n(a1,...,an) a1<a2<...<an
(Here<isthewell-orderingonω1.)
ifNforsomepartialfunctionhwithdomh=M\N.WewriteN
Lemma3.6.
(2)IfM0(1)Therelation<istransitive.<···isachainoflengthω,andMω
<MωnisalsoasubmodelofMω
)i≤α(whereαisalimitordinal)isacontinuouschainofmodels(i.e., Mi≤Mjforalli≤j≤α,andforeachlimitδ≤αwehaveMδ=i<δMi),and
i<α:Mi,
forallj<α.thenMj
Proof.
andM2forsomeh1:M2\M1→ωandh2:M3\M2→ω,(1)AssumingM1
wehavetoshowM1.nnPuth:=h1∪h2:M3\M1→ω.Ifa∈(M2\M1)
oroneoftheaibelongstoM3\M2.Inthe rstcase,maxh2(a)<n,anda
isasubmodelofM3
) 2n(a
) maxh(aisweakforh3and 3n(a
0=(M0;( m)1 m∈ω)beacountablemodelofourlanguageL,suchthat →M0M0 ω1and m(x1,...,xm)→1 i<j mxi=xjholdsforallm.Moreover,letπ0:M0
beapartial( niteorin nite)automorphismofthereductM0
=(Mω;( ωm)1 m∈ω)withM0 Mω ω1,α∈Mω
andatotalautomorphismπω:Mω →Mωofthes–reductMω
<Mω
isamodelofthetheoryT.
(3)πωextendsπ0
Proof.WeconstructMω
Mjwithj∈ω.Wewillhaveforallj∈ω,andforeveryjwewillhaveapartialautomorphismπjofMj
,K)|n∈ω,a
Automorphisms and strongly invariant relations
10¨FERDINANDBORNER,MARTINGOLDSTERN,ANDSAHARONSHELAH
a
beanenumerationofthisset.
LetB ω1\Mjbeacountablesetofordinals,andletB={bk|k∈ω}beanenumerationofB.(Again,thisenumerationneednotnecessarilyfollowthewell-order<onω1.)Weput+1Mj+1:=Mj∪B,andwehavetode netherelations jmandthepartialfunctionπj+1.Moreover,wemustde neafunctionh:B→ω,inordertoestablishtherelationMj.
Forallmandallm-tuplesa
): jm(a
Mj+1l,Kl)l∈ω
)
forsometuplesa
betheelementofKwithindexl.Wede neh(bk):=nl+1.Now,forevery
literalwhichoccursinK,wede nethetruthvaluesinsuchaway,thatKl(bk,a
l=(al(1),...,al(nl)),wede netruthvaluesforcertaintuplesfromtheset
{al(1),...,al(nl),bk}<ω\{al(1),...,al(nl)})<ω.
ThelargestindexmofaliteralwhichoccursinKlisnl+1.Thereforeallthesetuplesc
)≥h(bk)≥mandarestrongforh.[Notethatinnopreviousstephavewecommitted
inwhichbkappears.]ourselvestothetruthvalueof j(c
Stepkfork=3l+1:Inthiscasewede neh(bk):=s,andweextendthepartialfunctionpk 1.Ifdompk 1 Mj,thenwesimplyputpk:=pk 1andwearedone.l,Kl)
Automorphisms and strongly invariant relations
AUTOMORPHISMSANDSTRONGLYINVARIANTRELATIONS11
k=3l+1,
de nitionof
(c))aipkbk
...
)
domk 1...cimpk 1
IfMj\dompk 1= ,thenleti:=min{i|ai∈/dompk 1}.Weextendpk 1byde ningpk(ai):=bk.Then,forallm sandallc1,...,cm∈impksuchthatc1,...,cmarepairwisedistinctand+1bk∈{c1,...,cm},wede nethetruthvalueof jm(c1,...,cm).Writec1))isalreadyknown,inparticularifp k(c
1): j+1(p k(c
1))isstillnot xed(inparticular,thenthep k(ci)cannotallbeinMj),thenwe
de nebothvalues,namelyweput
1 1+1)): p jm(ck(c1)<...<pk(cm).
(Here<denotesthewell-orderinω1.)
Becauseofthede nitionofh(bk),the(c1,...,cm)arealwaysstrongforhandhenceare1exemptedfromour“recommendation”3.4.Theothertuples,p k(c
stepk<k.]
Stepkfork=3l+2:Thisstepissimilartothepreviousstep,butthistimewetakecareof1impkratherthandompk,orinotherwords:wereversetherolesofpkandp k.Weleavethedetailstothereader.
+1Byinductionweobtainfromthesestepsamodel,wheretherelations jareonlypartiallymde ned.Inorderto nishthede nition,weput
+1 jm(c′inwhichbkappearshaveneverbeenconsideredinanyprevious
partialautomorphismofMj+1)hasnotbeende nedduringtheinductiveconstruction. .Moreover,πj+1:=k∈ωpkisaFromtheconstruction,itisnowclearthatMj
:= j∈ωMj
[s]<Mω,whichiseverywherede ned
andsurjective,i.e.itisanautomorphismofMω
andallotherextensionsofMj
.ConsequentlyMω
Automorphisms and strongly invariant relations
12¨FERDINANDBORNER,MARTINGOLDSTERN,ANDSAHARONSHELAH
Lemma3.8.(1)Tisconsistentandhasno nitemodels.
(2)Thasthepropertyofeliminationofquanti ers.
(3)Tiscomplete.
(4)Tisω–categorical.
aremodelsofTandN,N,thenN(5)IfM
,i.e.foreveryformula (x1,...,xn)andeverya
.
Proof.)inN(1)Easy.TheconsistencyofTisacorollaryof3.7,andthenonexistenceof nite
modelsisensuredbytheformulas3.3(T2).
(2)Inordertoprovethatforeveryformulaψ(x1,...,xn)thereisaquanti erfreeformula
(x1,...,xn)withT|=( ψ),itissu cienttoprovethisforformulasψoftheform
( x0)K(x0,x1,...,xn),whereKisaclauseinx0,...,xn.
Foranyequivalencerelationθon{1,...,n}weput: xi=xj).xi=xj)∧(µθ:=(
(i,j)∈θ(i,j)∈/θ
LetEndenotethesetofallequivalencerelationson{1,...,n}.Then (K∧µθ).K
θ∈En
Thereforealso
( x0)K(x0,x1,...,xn)
θ∈En ( x0)(K∧µθ).
Itissu cienttoshowthateveryformula( x0)(K∧µθ)isequivalenttoaquanti erfree
formula.Ifθisnottheequalityrelation,thenwecanreplaceanyvariablexj(j≥1)
byxi,whereiisarepresentativeoftheequivalenceclassofj.IfthenavariableappearstwiceinanliteralofK,theneithertheclausebecomesfalsemoduloT(iftheliteralis
unnegated),ortheliteralcanbeomittedmoduloT(ifitisnegated).Intheendweobtain
eitherformulaswhicharetrue(moduloT)orfalse(moduloT)orequivalenttoaformulaoftheform ( x0)(K∧xi=xj).
Tcontainstheformula1 i<j nxi=xj→( x0)K,therefore
T|=(xi=xj ( x0)(K∧xi=xj).
1 i<j n1 i<j n 1 i<j n
(3)By(2),everyclosedformulais(modT)equivalenttotrueorfalse.
(4)ModuloT,thereareonly nitelymanyquanti er-freeformulasinthevariablesx1,...,xn,
namely,Booleancombinationsofatomicformulas m(xi1,...,xim),fori1,...,im∈{1,...,n}andm≤n.(Notethatformulas m(xi1,...,xim)form>nandi1,...,im≤nareauto-maticallyfalsemodT,becauseof3.3(T1).
Thisimpliesω-categoricity,byRyll-Nardzewski’stheorem.[Actually,wedonotneedω-categoricityitselfforourconstruction,weonlyneedthefactthatthereareonly nitely
many rstorderde nablek-aryrelations,foranyk.]
(5)ThisisaconsequencefromthefactthatThaseliminationofquanti ers.
Theresultsin3.8makesurethatthecondition3.1(1)issatis edforeverymodelofT.NowweconstructamodelA
asadirectedunionoveranuncountablechainofmodels,A,such
thateveryMi<Mi+1
isagainamodelofT.Becauseofi∈Mi+1foralli∈ω1 andMi ω1,thecarriersetA=i∈ω1MiisA=ω1.
Automorphisms and strongly invariant relations
AUTOMORPHISMSANDSTRONGLYINVARIANTRELATIONS13
Inordertoobtainamodelwithhomogeneouss–reducts,wehavetomakesurethatcertainpartialautomorphismscanbeextendedtoautomorphisms.Forthisreason,weuseatriply-indexedfamily(πn,i,j)n∈ω,i,j∈ω1,i jofpartialautomorphisms.
Firstweexplain,whattheπn,i,iare.IfM
[s].
Thereforethereexistsanenumeration(pn,sn)n∈ωofallthese nitepartialautomorphismswithcorrespondings.Now,fori∈ωandMweputπn,i,i:=pn,andsn,i:=sn.Therefore
( )(πn,i,i)n∈ωisalistofall nitepartialautomorphismsofallpossiblereductsMi
andsequencesofpartialautomorphisms(πn,i,j:
i≤j)bytrans niteinductiononj∈ω1).Thisconstructionwill usetheusual‘bookkeeping–argument’totakecareofω1×ωmanytasksinω1steps.Letω1=n∈ω,i∈ω1Cn,ibeapartitionofω1intopairwisedisjointsetsCn,i,suchthat|Cn,i|=ω1forall(n,i)andminCn,i≥i.
Ifj=0,thenletM0
:= i<jMi
asfollows.Let(n,i)bethepairwithj∈Cn,i.Accordingtothe
<Mj+1Lemma,thereexistsamodelMj+1j+1
[sn,i]withMj domπ¯and
Mj imπ¯.
(2)Weletπn,i,j+1bethepartialautomorphismπ¯from(1).
(3)Theπn,j+1,j+1arede nedasin( ),enumeratingall nitepartialautomorphismsof
reductsofMj+1
,andthatπn,i,jextendsπn,i,kforallkwithi k<j.
Asmentionedabove,weputA.
Lemma3.9.Ifs∈ω,thenevery nitepartialautomorphismπofA
[s].
Proof.πis nite,thereforethereexistsi∈ωwithdomπ∪imπ Mi.Mi
thereforeπisa nitepartialautomorphismofMi
construction,wehaveMj domπforallj∈Cn,i,i.e.domπ
holdsforimπ′,thereforeπ′isatotalautomorphismofA
hastheproperty3.1(3).
Lemma3.10.A={idA}.′[sn,i],[s] .Byourj∈Cn,iMj=ω1.Thesame
Proof.LetSbeacountablesubsetofA,x,y∈Sandh:A\S→ωbeafunction.Thenwede nethatE(x,y,S,h)istruei forallmandforalla
)∧maxh(a
<A
<hA∈A\S,isweakforh,then m(amm
Automorphisms and strongly invariant relations
14¨FERDINANDBORNER,MARTINGOLDSTERN,ANDSAHARONSHELAH
Proofof“ ”:LetSbeacountablesubsetofAandleth:A\S→ωbeafunctionsuchthatE(x,y,S,h).
Sinceω1hasuncountableco nality,andSiscountable,theremustbesomei<ω1withS Mi.SoletibetheleastordinalwithS Mi.Letp∈A\Mi.(Thenalsop∈A\S.)Wehave
forsomehi:A\Mi→ω.Letm:=max{h(p),hi(p)}+3andchoosez1,...,zm 3∈S,Mi
pairwisedistinctanddistinctfromxandy.Leta
)<m,soa
Butwealsohavemaxh(a<M)impliesi<j.Sox<y.).
¯(x,y): ( S)( h)E(x,y,S,h).IfπisanautomorphismofALetE
orderautomorphismof<isidA.hastopreservethewell-ordering<ofω1.Buttheonly
In3.8,3.9and
3.10wehave
veri edallpropertiesofA
=(A;( m)m∈ω)hastheproperties3.1(1)–(3).Consequently,
thesetR={ m|m∈ω}satis es
R KA= R inv, =sInvAutR.
Remark3.12.ThestructureA
inv, istooweaktoprovidethe
closureundersInvAut.Sothequestionremains,whatweshouldaddtoobtainanappropriatecharacterization.Similarasin2.9wewilladdoperationswithin nitearity.Butincontrastto
2.9,weneedonlyoperationswithcountablearities.
Lemma4.1.Letm∈ω\{0}andletQ Rel(m)(A)beclosedundercomplementation.Then
(2m)thereexistsarelation ∈ Q KA, withAutQ=Aut{ }.
Proof.QisclosedunderC,thereforetheset
M:={ΓQ(a∈Am}
isapartitionofAm.Mcanbewell-ordered,solet(γi)i<κbeacorrespondingenumerationoftheelementsofM.Weput :=γi×γj
i j<κ
Then ∈ Q KA, .Thisimplies ∈sInvAutQandthereforeAut{ } AutQ.
))∈ andNowletg∈Aut{ }.Ifa∈γi,then(a)∈ and(b)∈ ,hence(g(a
(g(b))∈ .Theγiarepairwisedisjoint,thereforethereareuniqueordinalsl,k<κwithg(a)∈γk.Now(a)∈ impliesl kand(g(a))∈ impliesk l,i.e.l=k.(2m)
Automorphisms and strongly invariant relations
AUTOMORPHISMSANDSTRONGLYINVARIANTRELATIONS15
Consequentlyalltuplesinγiaretransformedbygtotuplesinγk.Thereforethereexistsafunctiong0:κ→κwithg[γi] γg0(i).
′g 1isalsoanautomorphismof ,anditiseasytoseethatthecorrespondingfunctiong0:κ→κ
hastobetheinverseofg0.Consequently,g0isapermutationonκ.
Thepermutationg0preservesthewell-order<onκ,becauseof
i<j γi×γj γg0(i)×γg0(j) g0(i)<g0(j).
But κ,< hasonlythetrivialorderautomorphism,thereforeg0=idκ.
Weobtaing[γi] γiand(becauseg 1isalsoanautomorphism)g 1[γi] γi,i.e.g[γi]=γi.Butthen,gisanautomorphismforallrelationsinM,andthereforealsoforallrelationsinQ.ThisyieldsAut{ } AutQ,andthis nishestheproof.
AsaconsequenceofthisLemma,everypossibleautomorphismgroupappearsalreadyastheautomorphismgroupofanatmostcountablesetofrelations.
Lemma4.2.ForeverysetR Rel(A)thereexistsanatmostcountablesetR0 Rel(A)with AutR=AutR0.Moreover,ifRisa–closedKrasneralgebra,thenwecanchooseR0 R.
Proof.IfRisnotclosedunderC,thenweputR′:=R∪{Cσ|σ∈R}.ThenAutR=AutR′,thereforewecanassumew.l.o.g.thatRisclosedundercomplementation.By4.1therearerelations m∈Rel(2m)(A)withAutR(m)=Aut{ m}.Consequently: (m)AutR=AutR=Aut{ m}=Aut{ m|1 m∈ω}
1 m∈ω1 m∈ω
Thesecondpartin4.1impliesthatthe mcanbechosenfromthe
generatedbyR.
Nowwede neouradditionaloperations. –closedKrasneralgebra,
De nition4.3.Aninvariantoperationwithcountablearityisanoperationoftheform F:Rel(mi)(A)→Rel(m)(A)
1 i∈ω
(mi∈ω\{0}),suchthatforall( i)1 i∈ω∈ 1 i∈ωRel(mi)(A)andallg∈Sym(A)wehave
F(g[ i])1 i∈ω=g[F( i)1 i∈ω]
IfQ Rel(A),then Q ω invistheclosureofQunderallinvariantoperationswithcountablearity,and Q ω inv, isthe leastsetofrelationswhichisclosedunderallinvariantoperationswithcountablearityand–closed.
(Ofcourse, ω inv, areclosureoperators.)Similarasin2.13and2.14,wecanverifythefollowingproperties:
Lemma4.4.(1)IfR Rel(A)isGaloisclosed,R=sInvAutR,thenRis–closedand
closedunderallinvariantoperationswithcountablearity,R= R ω inv, .
(2)IfQ Rel(A)iscountableor nite,then Q ω inv=sInvAutQ.
NowwecanformulateourcharacterizationoftheGaloisclosedsetsofrelations.
Theorem4.5.LetRbea–closedKrasneralgebra.ThenRisGaloisclosed,R=sInvAutR,
ifandonlyifsInvAutR0 RforeverycountablesubsetR0ofR. Inparticular,asetR Rel(A)isGaloisclosedifandonlyifitis–closedandclosedunderallinvariantoperationswithcountablearity,R= R ω inv, .ForallQ Rel(A)holds Q ω inv, =sInvAutQ.
Automorphisms and strongly invariant relations
16¨FERDINANDBORNER,MARTINGOLDSTERN,ANDSAHARONSHELAH
Proof.Clearly,R0 RandR=sInvAutRimpliessInvAutR0 sInvAutR=RforeverysubsetR0ofR.Viceversa,ifsInvAutR0 Rforallcountablesubsets,then
wecanchoosethespecialsubsetR0 RwithAutR=AutR0ofLemma4.2.Thenweobtain:
R sInvAutR=sInvAutR0 R,
i.e.,RisGaloisclosed.
ThentheotherstatementsareconsequencesofLemma4.4.
References
[1]H.Andr´eka,D.Monk,I.N´emeti(Eds.).AlgebraicLogic.Pap.Colloq.,Budapest1988.(Colloq.Math.
Soc.J.Bolyai54),North–Holland,1991.
[2]F.B¨orner.OperationenaufRelationen.Dissertation,Universit¨atLeipzig,1989.
[3]F.B¨orner.Krasneralgebren.Habilitationsschrift,Universit¨atPotsdam1999.Logos–Verlag2000.
[4]W.Hodges.Ashortermodeltheory.CambridgeUniversityPress,1997.
[5]B.J´onsson.Algebraicstructureswithprescribedautomorphismgroups.Coll.Math.19(1968),1–4.
e
[6]B.J´onsson.Thetheoryofbinaryrelations.in:[1],245–292.
[7]M.Krasner.Unegeneralizationdelanotiondcorps.J.Math.PuresAppl.,17(1936),367–385.
[8]M.Krasner.Generalisationabstraitedelath´eoriedeGalois.in:
(1984),153–166.
正在阅读:
Automorphisms and strongly invariant relations08-05
2010信息技术会考模拟题104-24
送别诗“意象”类析08-05
2011年11月心理咨询师二级理论及技能试题加答案(全)12-19
中国智慧水务发展基础与推动因素分析(北京先略) - 图文01-08
街道党工委办事处年度工作总结及2022年社区建设工作计划08-02
配网低电压治理技术原则(试行)05-28
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Automorphisms
- invariant
- relations
- strongly