2020年中山市中考数学试题带答案

更新时间:2023-05-06 02:43:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

2020年中山市中考数学试题带答案

一、选择题

1.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x 表示时间,y 表示林茂离家的距离.依据图中的信息,下列说法错误的是( )

A .体育场离林茂家2.5km

B .体育场离文具店1km

C .林茂从体育场出发到文具店的平均速度是50min m

D .林茂从文具店回家的平均速度是60min m

2.下表是某学习小组一次数学测验的成绩统计表:

分数/分

70 80 90 100 人数/人 1 3 x

1 已知该小组本次数学测验的平均分是85分,则测验成绩的众数是( )

A .80分

B .85分

C .90分

D .80分和90分 3.已知11(1)11A x x ÷+

=-+,则A =( ) A .21x x x -+ B .21

x x - C .211x - D .x 2﹣1 4.下列运算正确的是( ) A .23a a a += B .()2236a a = C .623a a a ÷= D .34a a a ?=

5.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )

A .

B .

C .

D .

6.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )

A .40°

B .50°

C .60°

D .70° 7.观察下列图形中点的个数,若按其规律再画下去,可以得到第9个图形中所有点的个数

为( )

A .61

B .72

C .73

D .86

8.如图,直线//AB CD ,AG 平分BAE ∠,40EFC ∠=o ,则GAF ∠的度数为( )

A .110o

B .115o

C .125o

D .130o

9.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A .606030(125%)x x -=+ B .606030(125%)x x -=+ C .60(125%)6030x x

?+-= D .6060(125%)30x x ?+-= 10.若关于x 的一元二次方程kx 2﹣4x +3=0有实数根,则k 的非负整数值是( ) A .1 B .0,1 C .1,2

D .1,2,3 11.如图,斜面AC 的坡度(CD 与AD 的比)为1:2,AC=35米,坡顶有旗杆BC ,旗杆顶端B 点与A 点有一条彩带相连.若AB=10米,则旗杆BC 的高度为( )

A .5米

B .6米

C .8米

D .(5)米

12.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是 ( )

A.B.C.D.

二、填空题

13.如图,∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形.若OA1=1,则△A n B n A n+1的边长为______.

14.如图,矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为____________.

15.在一个不透明的袋子中有若千个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:

摸球实验次数100100050001000050000100000

“摸出黑球”的次数36387201940091997040008

“摸出黑球”的频率

(结果保留小数点后三

位)

0.3600.3870.4040.4010.3990.400

根据试验所得数据,估计“摸出黑球”的概率是_______(结果保留小数点后一位).16.如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点

A在反比例函数y=2

x

的图像上,则菱形的面积为_______.

17.如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为.

18.计算:82

-=_______________.

19.如图,正方形ABCD的边长为2,点E为边BC的中点,点P在对角线BD上移动,则PE+PC的最小值是.

20.在一次班级数学测试中,65分为及格分数线,全班的总平均分为66分,而所有成绩及格的学生的平均分为72分,所有成绩不及格的学生的平均分为58分,为了减少不及格的学生人数,老师给每位学生的成绩加上了5分,加分之后,所有成绩及格的学生的平均分变为75分,所有成绩不及格的学生的平均分变为59分,已知该班学生人数大于15人少于30人,该班共有_____位学生.

三、解答题

21.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.

(1)求DE的长;

(2)求△ADB的面积.

22.数学活动课上,张老师引导同学进行如下探究:如图1,将长为的铅笔斜靠在垂直于水平桌面的直尺的边沿上,一端固定在桌面上,图2是示意图.

活动一

如图3,将铅笔绕端点顺时针旋转,与交于点,当旋转至水平位置时,铅笔的中点与点重合.

数学思考

(1)设,点到的距离.

①用含的代数式表示:的长是_________,的长是________;

②与的函数关系式是_____________,自变量的取值范围是____________.

活动二

(2)①列表:根据(1)中所求函数关系式计算并补全表格.

654 3.53 2.5210.50

00.55 1.2 1.58 1.0 2.473 4.29 5.08

②描点:根据表中数值,描出①中剩余的两个点.

③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象.

数学思考

(3)请你结合函数的图象,写出该函数的两条性质或结论.

23.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).

请根据以上信息回答:

(1)本次参加抽样调查的居民有多少人?

(2)将两幅不完整的图补充完整;

(3)若居民区有8000人,请估计爱吃D 粽的人数;

(4)若有外型完全相同的A 、B 、C 、D 粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率.

24.

小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)

(参考数据:o o o o 3

3711sin 37tan37s 48tan48541010

in ,,,≈≈≈≈) 25.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.

(1)这次被调查的同学共有 人;

(2)补全条形统计图,并在图上标明相应的数据;

(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.

【参考答案】***试卷处理标记,请不要删除

一、选择题

1.C

解析:C

【解析】

【分析】

从图中可得信息:体育场离文具店1000m ,所用时间是(45﹣30)分钟,可算出速度.

【详解】

解:从图中可知:体育场离文具店的距离是:2.5 1.511000km m -==,

所用时间是()453015-=分钟, ∴体育场出发到文具店的平均速度1000200min 153

m =

=/ 故选:C .

【点睛】

本题运用函数图象解决问题,看懂图象是解决问题的关键. 2.D

解析:D

【解析】

【分析】

先通过加权平均数求出x 的值,再根据众数的定义就可以求解.

【详解】

解:根据题意得:70+80×

3+90x+100=85(1+3+x+1), x=3

∴该组数据的众数是80分或90分.

故选D.

【点睛】

本题考查了加权平均数的计算和列方程解决问题的能力,解题的关键是利用加权平均数列出方程.通过列方程求出x是解答问题的关键.

3.B

解析:B

【解析】

【分析】

由题意可知A=

11

1)

11

x x

+

+-

(,再将括号中两项通分并利用同分母分式的减法法则计算,

再用分式的乘法法则计算即可得到结果.【详解】

解:A=

11

1

11

x x

+

+-

=

1

11

x

x x

+-

g=

21

x

x-

故选B.

【点睛】

此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.

4.D

解析:D

【解析】

【分析】

【详解】

解:A、a+a2不能再进行计算,故错误;

B、(3a)2=9a2,故错误;

C、a6÷a2=a4,故错误;

D、a·a3=a4,正确;

故选:D.

【点睛】

本题考查整式的加减法;积的乘方;同底数幂的乘法;同底数幂的除法.

5.B

解析:B

【解析】

试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B.考点:简单组合体的三视图.

6.D

解析:D

【解析】

【分析】

根据折叠的知识和直线平行判定即可解答.

【详解】

解:如图可知折叠后的图案∠ABC=∠EBC ,

又因为矩形对边平行,根据直线平行内错角相等可得

∠2=∠DBC ,

又因为∠2+∠ABC=180°,

所以∠EBC+∠2=180°,

即∠DBC+∠2=2∠2=180°-∠1=140°.

可求出∠2=70°.

【点睛】

掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.

7.C

解析:C

【解析】

【分析】

设第n 个图形中有a n 个点(n 为正整数),观察图形,根据各图形中点的个数的变化可得出变化规律“a n =n 2+n+1(n 为正整数)”,再代入n =9即可求出结论.

【详解】

设第n 个图形中有a n 个点(n 为正整数),

观察图形,可知:a 1=5=1×

2+1+2,a 2=10=2×2+1+2+3,a 3=16=3×2+1+2+3+4,…, ∴a n =2n+1+2+3+…+(n+1)=n 2+n+1(n 为正整数),

∴a 9=×

92+×9+1=73. 故选C .

【点睛】

本题考查了规律型:图形的变化类,根据各图形中点的个数的变化找出变化规律“a n =n 2+n+1(n 为正整数)”是解题的关键.

8.A

解析:A

【解析】

【分析】

依据AB//CD ,EFC 40∠=o ,即可得到BAF 40∠=o ,BAE 140∠=o ,再根据AG 平

分BAF ∠,可得BAG 70∠=o ,进而得出GAF 7040110∠=+=o o o .

【详解】

解:AB//CD Q ,EFC 40∠=o ,

BAF 40∠∴=o ,

BAE 140∠∴=o ,

又AG Q 平分BAF ∠,

BAG 70∠∴=o ,

GAF 7040110∠∴=+=o o o ,

故选:A .

【点睛】

本题考查的是平行线的性质和角平分线的定义,理解两直线平行,内错角相等是解题的关键.

9.C

解析:C

【解析】

分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.

详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为

125%

x +万平方米, 依题意得:606030125%

x x -=+,即()60125%6030x x ?+-=. 故选C .

点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.

10.A

解析:A

【解析】

【分析】

【详解】

由题意得,根的判别式为△=(-4)2-4×

3k , 由方程有实数根,得(-4)2-4×3k≥0,

解得k≤43

, 由于一元二次方程的二次项系数不为零,所以k≠0, 所以k 的取值范围为k≤43且k≠0,

即k的非负整数值为1,

故选A.

11.A

解析:A

【解析】

试题分析:根据CD:AD=1:2,AC=35米可得:CD=3米,AD=6米,根据AB=10米,∠D=90°可得:BD=22

=8米,则BC=BD-CD=8-3=5米.

AB AD

考点:直角三角形的勾股定理

12.A

解析:A

【解析】

从左面看应是一长方形,看不到的应用虚线,由俯视图可知,虚线离边较近,

故选A.

二、填空题

13.2n-

1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2…进而得解析:2n-1

【解析】

【分析】

根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.

【详解】

∵△A1B1A2是等边三角形,

∴A1B1=A2B1,∠3=∠4=∠12=60°,

∴∠2=120°,

∵∠MON=30°,

∴∠1=180°-120°-30°=30°,

又∵∠3=60°,

∴∠5=180°-60°-30°=90°,

∵∠MON=∠1=30°,

∴OA1=A1B1=1,

∴A2B1=1,

∵△A2B2A3、△A3B3A4是等边三角形,

∴∠11=∠10=60°,∠13=60°,

∵∠4=∠12=60°,

∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,

∴∠1=∠6=∠7=30°,∠5=∠8=90°,

∴A2B2=2B1A2,B3A3=2B2A3,

∴A3B3=4B1A2=4,

A4B4=8B1A2=8,

A5B5=16B1A2=16,

以此类推:△A n B n A n+1的边长为 2n-1.

故答案是:2n-1.

【点睛】

此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.

14.【解析】试题解析:∵四边形ABCD是矩形∴OB=ODOA=OCAC=BD∴OA=OB∵AE 垂直平分OB∴AB=AO∴OA=AB=OB=3∴BD=2OB=6∴AD=【点睛】此题考查了矩形的性质等边三角

解析:

【解析】

试题解析:∵四边形ABCD是矩形,

∴OB=OD,OA=OC,AC=BD,

∴OA=OB,

∵AE垂直平分OB,

∴AB=AO,

∴OA=AB=OB=3,

∴BD=2OB=6,

∴AD==

【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.

15.4【解析】【分析】大量重复试验下摸球的频率可以估计摸球的概率据此求解【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在04附近故摸到白球的频率估计值为04;故答案为:04【点睛】本题考查了利用频率

解析:4

【解析】

【分析】

大量重复试验下摸球的频率可以估计摸球的概率,据此求解.

【详解】

观察表格发现随着摸球次数的增多频率逐渐稳定在0.4附近,

故摸到白球的频率估计值为0.4;

故答案为:0.4.

【点睛】

本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.

16.4【解析】【分析】【详解】解:连接AC交OB于D∵四边形OABC是菱形∴AC⊥OB∵点A在反比例函数y=的图象上∴△AOD的面积=×2=1∴菱形OABC的面积=4×△AOD的面积=4故答案为:4

解析:4

【解析】

【分析】

【详解】

解:连接AC交OB于D.

∵四边形OABC是菱形,

∴AC⊥OB.

∵点A在反比例函数y=2

x

的图象上,

∴△AOD的面积=1

2

×2=1,

∴菱形OABC的面积=4×△AOD的面积=4

故答案为:4

17.12﹣4【解析】【分析】【详解】试题分析:如图所示:连接ACBD交于点E 连接DFFMMNDN∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°180°270°后形成的图形∠BAD=60°AB=2

解析:12﹣3

【解析】

【分析】

【详解】

试题分析:如图所示:连接AC,BD交于点E,连接DF,FM,MN,DN,

∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2,

∴AC⊥BD,四边形DNMF是正方形,∠AOC=90°,BD=2,3

∴∠AOE=45°,ED=1,

∴AE=EO=3,DO=3﹣1,

∴S正方形DNMF=2(3﹣1)×2(3﹣1)×1

2

=8﹣43,

S△ADF=1

2

×AD×AFsin30°=1,

∴则图中阴影部分的面积为:4S△ADF+S正方形DNMF=4+8﹣43=12﹣43.

故答案为12﹣43.

考点:1、旋转的性质;2、菱形的性质.

18.【解析】【分析】先把化简为2再合并同类二次根式即可得解【详解】2-=故答案为【点睛】本题考查了二次根式的运算正确对二次根式进行化简是关键2

【解析】

【分析】

82.

【详解】

82=222.

2.

【点睛】

本题考查了二次根式的运算,正确对二次根式进行化简是关键.

19.【解析】试题分析:要求PE+PC的最小值PEPC不能直接求可考虑通过作辅助线转化PEPC的值从而找出其最小值求解试题解析:如图连接AE∵点C关于BD的对称点为点A∴PE+PC=PE+AP根据两点之间

5

【解析】

试题分析:要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC 的值,从而找出其最小值求解.

试题解析:如图,连接AE,

∵点C关于BD的对称点为点A,

∴PE+PC=PE+AP,

根据两点之间线段最短可得AE就是AP+PE的最小值,

∵正方形ABCD的边长为2,E是BC边的中点,

∴BE=1,

∴AE=22

125

+=.

考点:1.轴对称-最短路线问题;2.正方形的性质.

20.28【解析】【分析】设加分前及格人数为x人不及格人数为y人原来不及格加分为及格的人数为n人所以72x+58y=66(x+y)75(x+n)+59(y-n)=(66+5)(x+y)用n 分别表示xy得到

解析:28

【解析】

【分析】

设加分前及格人数为x人,不及格人数为y人,原来不及格加分为及格的人数为n人,所以,用n分别表示x、y得到x+y=n,然后利用15<n<30,n为正整数,n为整数可得到n=5,从而得到x+y的值.

【详解】

设加分前及格人数为x人,不及格人数为y人,原来不及格加分为为及格的人数为n人,根据题意得,

解得,

所以x+y=n,

而15<n<30,n为正整数,n为整数,

所以n=5,

所以x+y=28,

即该班共有28位学生.

故答案为28.

【点睛】

本题考查了加权平均数:熟练掌握加权平均数的计算方法.构建方程组的模型是解题关键.

三、解答题

21.(1)DE=3;(2)ADB S 15?=.

【解析】

【分析】

(1)根据角平分线性质得出CD=DE ,代入求出即可;

(2)利用勾股定理求出AB 的长,然后计算△ADB 的面积.

【详解】

(1)∵AD 平分∠CAB ,DE ⊥AB ,∠C=90°,

∴CD=DE ,

∵CD=3,

∴DE=3;

(2)在Rt △ABC 中,由勾股定理得:2222AB AC BC 6810=+=+=, ∴△ADB 的面积为ADB 11S AB DE 1031522?=

?=??=. 22.(1) )

,,;(2)见解析;(3)①随着的增大而减小;②图象关于直线

对称;③函数的取值范围是

. 【解析】

【分析】

(1)①利用线段的和差定义计算即可.

②利用平行线分线段成比例定理解决问题即可.

(2)①利用函数关系式计算即可.

②描出点,即可.

③由平滑的曲线画出该函数的图象即可.

(3)根据函数图象写出两个性质即可(答案不唯一).

【详解】

解:(1)①如图3中,由题意,

,,

故答案为:,.

②作于.

,,

故答案为:,.

(2)①当时,,当时,,

故答案为2,6.

②点,点如图所示.

③函数图象如图所示.

(3)性质1:函数值的取值范围为.

性质2:函数图象在第一象限,随的增大而减小.

【点睛】

本题属于几何变换综合题,考查了平行线分线段成比例定理,函数的图象等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.

23.(1)600(2)见解析

(3)3200(4)

【解析】

(1)60÷10%=600(人).

答:本次参加抽样调查的居民有600人.(2分)

(2)如图;…(5分)

(3)8000×40%=3200(人).

答:该居民区有8000人,估计爱吃D粽的人有3200人.…(7分)(4)如图;

(列表方法略,参照给分).…(8分)

P(C粽)==.

答:他第二个吃到的恰好是C粽的概率是.…(10分)

24.43米

【解析】

【分析】

【详解】

解:设CD = x.

在Rt△ACD中,

tan37AD CD

?=,

则3

4

AD

x =,

3

4 AD x

=.

在Rt△BCD中,

tan48° =BD CD

则11

10

BD

x

=,

11

10 BD x

=

∵AD+BD = AB,

∴311

80 410

x x

+=.

解得:x≈43.

答:小明家所在居民楼与大厦的距离CD大约是43米.

25.(1)1000,(2)答案见解析;(3)900.

【解析】

【分析】

(1)结合不剩同学的个数和比例,计算总体个数,即可.(2)结合总体个数,计算剩少数的个数,补全条形图,即可.(3)计算一餐浪费食物的比例,乘以总体个数,即可.【详解】

解:(1)这次被调查的学生共有600÷60%=1000人,

故答案为1000;

(2)剩少量的人数为1000﹣(600+150+50)=200人,

补全条形图如下:

(3),

答:估计该校18000名学生一餐浪费的食物可供900人食用一餐.

【点睛】

考查统计知识,考查扇形图的理解,难度较容易.

本文来源:https://www.bwwdw.com/article/n5je.html

Top