新版人教版八年级上数学册第十二 三章全等三角形,轴对称

更新时间:2024-01-11 01:43:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

第十二章全等三角形 12.1 全等三角形

教学目标

1.领会全等三角形对应边和对应角相等的有关概念.

2.经历探索全等三角形性质的过程,能在全等三角形中正确找出对应边、对应角.

重、难点与关键

1.重点:会确定全等三角形的对应元素. 2.难点:掌握找对应边、对应角的方法. 教学过程

一、动手操作,导入课题

1.先在其中一张纸上画出任意一个多边形,再用剪刀剪下,?思考得到的图形有何特点?

2.重新在一张纸板上画出任意一个三角形,再用剪刀剪下,?思考得到的图形有何特点?

学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的两张纸,注意整个过程要细心.

【互动交流】剪出的多边形和三角形,可以看出:形状、大小相同,能够完全重合.这样的两个图形叫做全等形,用“≌”表示. 概念:能够完全重合的两个三角形叫做全等三角形.

【教师活动】在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平移、翻折、旋转,观察其运动前后的三角形会全等吗? 【学生活动】动手操作,实践感知,得出结论:两个三角形全等. 【教师活动】要求学生用字母表示出每个剪下的三角形,同时互相指出每个三角形的顶点、三个角、三条边、每条边的边角、每个角的对边.

【学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流:(1)何时能完全重在一起?(2)此时它们的顶点、边、角有何特点? 【交流讨论】通过同桌交流,实验得出下面结论:

1.任意放置时,并不一定完全重合,?只有当把相同的角旋转到一起时才能完全重合.

2.这时它们的三个顶点、三条边和三个内角分别重合了.

3.完全重合说明三条边对应相等,三个内角对应相等,?对应顶点在相对应的位置.

【教师活动】根据学生交流的情况,给予补充和语言上的规范.

1.概念:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,?重合的边叫做对应边,重合的角叫做对应角.

2.证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上. 【问题提出】课本图11.1─1中,△ABC≌△DEF,对应边有什么关系?对应角呢?

【学生活动】经过观察得到下面性质: 1.全等三角形对应边相等; 2.全等三角形对应角相等. 二、随堂练习,巩固深化 课本练习.

三、课堂总结,发展潜能 1.什么叫做全等三角形? 2.全等三角形具有哪些性质? 四、布置作业,专题突破

课本习题12.1第1,2,3,4题.

课后反思:

12.2.三角形全等的判定(SSS)

教学目标

1.了解三角形的稳定性,会应用“边边边”判定两个三角形全等. 2.经历探索“边边边”判定全等三角形的过程,解决简单的问题. 重、难点与关键

1.重点:掌握“边边边”判定两个三角形全等的方法. 2.难点:理解证明的基本过程,学会综合分析法. 教具准备

一块形状如图1所示的硬纸片,直尺,圆规.

(1) (2) 教学过程

一、设疑求解,操作感知 【教师活动】(出示教具)

问题提出:一块三角形的玻璃损坏后,只剩下如图2所示的残片,?你对图中的残片作哪些测量,就可以割取符合规格的三角形玻璃,与同伴交流.

【学生活动】观察,思考,回答教师的问题.方法如下:可以将图1?的玻璃碎片放在一块纸板上,然后用直尺和铅笔或水笔画出一块完整的三角形.如图2,?剪下模板就可去割玻璃了. 【理论认知】

如果△ABC≌△A′B′C′,那么它们的对应边相等,对应角相等.?反之,?如果△ABC与△A′B′C′满足三条边对应相等,三个角对应相等,即AB=A′B′,BC=B′C′,CA=C′A′,∠A=∠A′,∠B=∠B′,∠C=∠C′.

这六个条件,就能保证△ABC≌△A′B′C′,从刚才的实践我们可以发现:?只要两个三角形三条对应边相等,就可以保证这两块三角形全等. 信不信?

【作图验证】(用直尺和圆规)

先任意画出一个△ABC,再画一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画出的△A′B′C′剪下来,放在△ABC上,它们能完全重合吗?(即全等吗)

【学生活动】拿出直尺和圆规按上面的要求作图,并验证.(如课本图11.2-2所示)

画一个△A′B′C′,使A′B′=AB′,A′C′=AC,B′C′=BC: 1.画线段取B′C′=BC;

2.分别以B′、C′为圆心,线段AB、AC为半径画弧,两弧交于点A′; 3.连接线段A′B′、A′C′.

【教师活动】巡视、指导,引入课题:“上述的生活实例和尺规作图的结果反映了什么规律?”

【学生活动】在思考、实践的基础上可以归纳出下面判定两个三角形全等的定理.

(1)判定方法:三边对应相等的两个三角形全等(简写成“边边边”或“SSS”). (2)判断两个三角形全等的推理过程,叫做证明三角形全等. 二、范例点击,应用所学

【例1】如课本图11.2─3所示,△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,求证△ABD≌△ACD.(教师板书)

【教师活动】分析例1,分析:要证明△ABD≌△ACD,可看这两个三角形的三条边是否对应相等.

证明:∵D是BC的中点, ∴BD=CD

在△ABD和△ACD中

?AB?AC,??BD?CD, ?AD?AD.? ∴△ABD≌△ACD(SSS).

【评析】符号“∵”表示“因为”,“∴”表示“所以”;从例1可以看出,?证明是由题设(已知)出发,经过一步步的推理,最后推出结论(求证)正确的过程.书写中注意对应顶点要写在同一个位置上,哪个三角形先写,哪个三角形的边就先写.

三、实践应用,合作学习 【问题思考】

已知AC=FE,BC=DE,点A、D、B、F在直线上,AD=FB(如图所示),要用“边边边”证明△ABC≌△FDE,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件?

四、随堂练习,巩固深化

课本练习.

五、课堂总结,发展潜能 1.全等三角形性质是什么?

2.正确地判断出全等三角形的对应边、对应角,?利用全等三角形处理问题的基础,你是怎样掌握判断对应边、对应角的方法?

3.“边边边”判定法告诉我们什么呢??(答:只要一个三角形三边长度确定了,则这个三角形的形状大小就完全确定了,这就是三角形的稳定性) 六、布置作业,专题突破

1.课本习题11.2第1,2题.

课后反思:

12.2. 三角形全等判定(SAS)

教学目标

1.领会“边角边”判定两个三角形的方法.

2.经历探究三角形全等的判定方法的过程,学会解决简单的推理问题. 重、难点及关键

1.重点:会用“边角边”证明两个三角形全等. 2.难点:应用结合法的格式表达问题. 教学过程

一、回顾交流,操作分析 【动手画图】 作一个角等于已知角.

【学生活动】动手用直尺、圆规画图. 已知:∠AOB.

求作:∠A1O1B1,使∠A1O1B1=∠AOB. 【导入课题】

教师叙述:请同学们连接CD、C1D1,回忆作图过程,分析△COD和△C1O1D1?中相等的条件.

【学生活动】与同伴交流,发现下面的相等量:

OD=O1D1,OC=O1C1,∠COD=∠C1O1D1,△COD≌△C1O1D1. 归纳出规律:

两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS?”). 二、范例点击,应用新知

【例2】如课本图11.2-6所示有一池塘,要测池塘两侧A、B的距离,可先在平地上取一个可以直接到达A和B的点,连接ACD,使CD=CA,连接BC并延长到E,?使CE=CB,连么量出DE的长就是A、B的距离,为什么?

【教师活动】分析:如果能够证明△ABC≌△DEC,就可以得出AB=DE.在△ABC和△DEC中,CA=CD,CB=CE,如果能得出∠1=∠2,△ABC和△DEC?就全等了.

证明:在△ABC和△DEC中

?CA?CD???1??2 ?CB?CE?并延长到接DE,那

∴△ABC≌△DEC(SAS) ∴AB=DE

三、辨析理解,正确掌握

【问题探究】

我们知道,两边和它们的夹角对应相等的两个三角形全等,由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么? 【教师活动】拿出教具进行示范,让学生直观地感受到问题的本质.

操作教具:把一长一短两根细木棍的一端用螺钉铰合在一起,?使长木棍的另一端与射线BC的端点B重合,适当调整好长木棍与射线BC所成的角后,固定住长木棍,把短木棍摆起来(课本图11.2-7),出现一个现象:△ABC与△ABD满足两边及其中一边对角相等的条件,但△ABC与△ABD不全等.这说明,?有两边和其中一边的对角对应相等的两个三角形不一定全等.

【学生活动】观察教师操作教具、发现问题、辨析理解,动手用直尺和圆规实

验一次,做法如下:(如图1所示)

(1)画∠ABT;(2)以A为圆心,以适当长为半径,画弧,交BT于C、C′;(3)?连线AC,AC′,△ABC与△ABC′不全等.

【形成共识】“边边角”不能作为判定两个三角形全等的条件. 【教学形式】观察、操作、感知,互动交流. 四、随堂练习,巩固深化 课本练习第1、2题. 五、课堂总结,发展潜能 1.请你叙述“边角边”定理.

2.证明两个三角形全等的思路是:首先分析条件,?观察已经具备了什么条件;然后以已具备的条件为基础根据全等三角形的判定方法,来确定还需要证明哪些边或角对应相等,再设法证明这些边和角相等. 六、布置作业,专题突破 1.课本习题第3、4题.

课后反思:

12.2.三角形全等判定(ASA)

教学目标

1.理解“角边角”、“角角边”判定三角形全等的方法.

2.经历探索“角边角”、“角角边”判定三角形全等的过程,能运用已学三角形判定法解决实际问题.

重、难点与关键

1.重点:应用“角边角”、“角角边”判定三角形全等. 2.难点:学会综合法解决几何推理问题. 教学过程

一、回顾交流,巩固学习

【知识回顾】 情境思考:

1.小菁做了一个如图1所示的风筝,其中∠EDH=∠FDH,ED=FD,?将上述条件注在图中,小明不用测量就能知道EH=FH吗?与同伴交流.

(1) (2) [答案:能,因为根据“SAS”,可以得到△EDH≌△FDH,从而EH=FH]

2.如图2,AB=AD,AC=AE,能添上一个条件证明出△ABC≌△ADE吗?[答案:BC=?DE(SSS)或∠BAC=∠DAE(SAS)].

3.如果两边及其中一边的对角对应相等,两个三角形一定会全等吗?试举例说明.

二、实践操作,导入课题 【动手动脑】

问题探究:先任意画一个△ABC,再画出一个△A′B′C′,使A′B′=AB,∠A′=∠A,∠B′=∠B(即使两角和它们的夹边对应相等),把画出的△A′B′C′剪下,?放到△ABC上,它们全等吗?

【学生活动】动手操作,感知问题的规律,画图如下:

画一个△A′B′C′,使A′B′=AB, ∠A′=∠A,∠B′=∠B: 1. 画A′B′=AB; 2. 在A′B′的同旁画∠DA′B′=∠A, ∠EBA′=∠B,A′D,B′E交于点C′。 探究规律:两角和它们的夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”).

【知识铺垫】课本图11.2─8中,∠A′=∠A,∠B′=∠B,那么∠C=∠A′C′B?′吗?为什么?

【学生回答】根据三角形内角和定理,∠C′=180°-∠A′-∠B′,∠C=180°-∠A-∠B,由于∠A=∠A′,∠B=∠B′,∴∠C=∠C′.

【教师提问】在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF(课本图11.2─9),△ABC与△DEF全等吗?

【学生活动】运用三角形内角和定理,以及“ASA”很快证出△ABC≌△EFD,并且归纳如下:

? ?归纳规律:?两个角和其中一个角的对边对应相等的两个三角形全等(简与成AAS).

三、范例点击,应用所学

【例3】如课本图,D在AB上,E在AC上,AB=AC,∠B=∠C,求证:AD=AE.

【教师活动】引导学生,分析例3.?关键是寻找到和已知条件有关的△ACD?和△ABE,再证它们全等,从而得出AD=AE.

证明:在△ACD与△ABE中,

??A??A(公共角)? ?AC?AB??C??B?DBAEC ∴△ACD≌△ABE(ASA) ∴AD=AE

【教师提问】三角对应相等的两个三角形全等吗?

【学生活动】与同伴交流,得到有三角对应相等的两个三角形不一定会全等,拿出三角板进行说明,如图3,下面这块三角形的内外边形成的△ABC和△A′B?′C′中,∠A=∠A′,∠B=∠B′,∠C=∠C′,但是它们不全等.(形状相同,大小不等).

四、随堂练习,巩固深化 课本练习第1,2题. 五、课堂总结,发展潜能

1.证明两个三角形全等有几种方法?如何正确选择和应用这些方法? 2.全等三角形性质可以用来证明哪些问题?举例说明. 六、布置作业,专题突破

1.课本习题11.2第5,6,9,10题.

课后反思:

12.2. 直角三角形全等判定(HL)

教学目标

1.在操作、比较中理解直角三角形全等的过程,并能用于解决实际问题. 2.经历探索直角三角形全等判定的过程,掌握数学方法,提高合情推理的能力.

重、难点与关键

1.重点:理解利用“斜边、直角边”来判定直角三角形全等的方法. 2.难点:培养有条理的思考能力,正确使用“综合法”表达. 教学过程

一、回顾交流,迁移拓展 【问题探究】

图1是两个直角三角形,除了直角相等的条件,还要满足几个条件,?这两个直角三角形才能全等?

【情境导入】如图2所示.

舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量. (1)你能帮他想个办法吗?

(2)如果他只带了一个卷尺,能完成这个任务吗?

工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的”,你相信他的结论吗?

【思路点拨】(1)学生可以回答去量斜边和一个锐角,或直角边和一个锐角,?但对问题(2)学生难以回答.此时,?教师可以引导学生对工作人员提出的办法及结论进行思考,并验证它们的方法,从而展开对直角三角形特殊条件的探索. 【学生活动】思考问题,探究原理.

做一做如课本图11.2─11:任意画出一个Rt△ABC,使∠C=90°,再画一个Rt?△A′B′C′,使B′C′=BC,A′B′=AB,把画好的Rt△A′B′C′剪下,放到Rt△ABC上,?它们全等吗?

【学生活动】画图分析,寻找规律.如下:

规律:斜边和一条直角边对应相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”).

画一个Rt△A′B′C′,使B′C′=BC,AB=AB; 1.画∠MC′N=90°。 2.在射线C′M上取B′C′BC。 3.以B′为圆心,AB为半径画弧,交射线C′N于点A′。 4.连接A′B′。 二、范例点击,应用所学

【例4】如课本图,AC⊥BC,BD⊥AD,AC=BD,求证BC=AD.

【思路点拨】欲证BC=?AD,?首先应寻找和这两条线段有关的三角形,?这里有△ABD和△BAC,△ADO和△BCO,O为DB、AC的交点,经过条件的分析,△ABD和△BAC?具备全等的条件.

【教师活动】引导学生共同参与分析例4. 三、随堂练习,巩固深化 课本第练习1、2题. 【探研时空】

如图3,有两个长度相同的滑梯,左边滑梯的高度AC?与右边滑梯水平方面的

长度DF相等,两个滑梯的倾斜角∠ABC和∠DEF的大小有什么关系?

下面是三个同学的思考过程,你能明白他们的意思吗?(如图4所示)

?BC?EF,AC?DF ?→△ABC≌△DEF→∠ABC→∠DEF→∠ABC+∠DEF=90°.

??CAB??FDE?90? 有一条直角边和斜边对应相等,所以△ABC与△DEF全等.这样∠ABC=∠DEF,也就是∠ABC+∠DEF=90°.

在Rt△ABC和Rt△DEF中,BC=EF,AC=DF,因此这两个三角形是全等的,这样∠ABC=∠DEF,所以∠ABC与∠DEF是互余的. 四、课堂总结,发展潜能

本节课通过动手操作,在合作交流、比较中共同发现问题,培养直观发现问题的能力,在反思中发现新知,体会解决问题的方法.通过今天的学习和对前面三角形全等条件的探求,可知判定直角三角形全等有五种方法.(教师让学生讨论归纳)

五、布置作业,专题突破

1.课本习题12.2第7,8题, 8阅读与思考.

课后反思:

12.3 角的平分线的性质

教学目标

1.通过作图直观地理解角平分线的两个互逆定理. 2.经历探究角的平分线的性质的过程,领会其应用方法. 重、难点与关键

1.重点:领会角的平分线的两个互逆定理. 2.难点:两个互逆定理的实际应用. 教学过程

一、创设情境,导入新课 【问题探究】

如课本图,是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线,你能说明它的道理吗?

【教师活动】首先将“问题提出”,然后运用教具(如课本图11.3─1?)直观地进行讲述,提出探究的问题.

【学生活动】小组讨论后得出:根据三角形全等条件“边边边”课本图11.3─1判定法,可以说明这个仪器的制作原理. 【教师活动】

请同学们和老师一起完成下面的作图问题. 操作观察: 已知:∠AOB.

求法:∠AOB的平分线.

作法:(课本图12.3). 二、随堂练习,巩固深化 课本P19练习. 【探研时空】

如课本图12.3─3,将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?

【学生活动】实践感知,互动交流,得出结论,“从实践中可以看出,第一条折痕是∠AOB的平分线OC,第二次折叠形成的两条折痕PD、PE是角的平分线上一点到∠AOB两边的距离,这两个距离相等.” 论证如下:

已知:OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别是D、E(课本图11.3─4)

求证:PD=PE.

证明:∵PD⊥OA,PE⊥OB,

∴∠PDO=∠PEO=90° 在△PDO和△PEO中,

??PDO??PEO,???AOC??BOC, ?OP?OP,? ∴△PDO≌△PEO(AAS) ∴PD=PE 【归纳如下】

角的平分线上的点到角的两边的距离相等. 三、情境合一,优化思维 【问题思索】

如课本图12.3─5,要在S区建一个集贸市场,使它到公路、铁路的距离相等,?离公路与铁路交叉处500米,这个集贸市场应建于何处(在图上标出它的位置,比例尺为1:20 000)?

【学生活动】四人小组合作学习,动手操作探究,获得问题结论.从实践中可知:角平分线上的点到角的两边距离相等,将条件和结论互换:到角的两边的距离相等的点也在角的平分线. 四、范例点击,应用所学

【例】 如课本图12.3─6,△ABC的角平分线BM,CN相交于点P,求证:点P?到三边AB,BC,CA的距离相等.

【思路点拨】因为已知、求证中都没有具体说明哪些线段是距离,而证明它们相等必须标出它们.所以这一段话要在证明中写出,同辅助线一样处理.如果已知中写明点P到三边的距离是哪些线段,那么图中画实线,在证明中就可以不写.

五、随堂练习,巩固深化

课本练习.

六、课堂总结,发展潜能

1.学生自行小结角平分线性质及其逆定理,和它们的区别.

2.说明本节例子实际上是证明三角形三条角平分线相交于一点的问题,?说明这一点是三角形的内切圆的圆心(为以后学习设伏). 七、布置作业,专题突破

1.课本习题12.3第1、2、3题.

课后反思:

第十三章 轴对称

13.1 轴对称

教学目标

1.在生活实例中认识轴对称图. 2.分析轴对称图形,理解轴对称的概念. 教学重点:轴对称图形的概念.

教学难点:能够识别轴对称图形并找出它的对称轴. 教学过程

Ⅰ.创设情境,引入新课

我们生活在一个充满对称的世界中,许多建筑物都设计成对称形,艺术作品的创作往往也从对称角度考虑,自然界的许多动植物也按对称形生长,中国的方块字中些也具有对称性??对称给我们带来多少美的感受!初步掌握对称的奥秒,不仅可以帮助我们发现一些图形的特征,还可以使我们感受到自然界的美与和谐. 轴对称是对称中重要的一种,从这节课开始,我们来学习第十二章:轴对称.今天我们来研究第一节,认识什么是轴对称图形,什么是对称轴. Ⅱ.导入新课

出示课本的图片,观察它们都有些什么共同特征.

这些图形都是对称的.这些图形从中间分开后,左右两部分能够完全重合. 小结:对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,?甚至日常生活用品,人们都可以找到对称的例子.现在同学们就从我们生活周围

的事物中来找一些具有对称特征的例子.

我们的黑板、课桌、椅子等.

我们的身体,还有飞机、汽车、枫叶等都是对称的.

如课本的图12.1.2,把一张纸对折,剪出一个图案(折痕处不要完全剪断),?再打开这张对折的纸,就剪出了美丽的窗花.观察得到的窗花和图12.1.1中的图形,你能发现它们有什么共同的特点吗?

窗花可以沿折痕对折,使折痕两旁的部分完全重合.不仅窗花可以沿一条直线对折,使直线两旁重合,上面图12.1.1中的图形也可以沿一条直线对折,使直线两旁的部分重合.

结论:如果一个图形沿一直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)?对称.

了解了轴对称图形及其对称轴的概念后,我们来做一做.

取一张质地较硬的纸,将纸对折,并用小刀在纸的中央随意刻出一个图案,?将纸打开后铺平,你得到两个成轴对称的图案了吗?与同伴进行交流. 结论:位于折痕两侧的图案是对称的,它们可以互相重合.

由此可以得到轴对称图形的特征:一个图形沿一条直线折叠后,折痕两侧的图形完全重合.

接下来我们来探讨一个有关对称轴的问题.有些轴对称图形的对称轴只有一条,但有的轴对称图形的对称轴却不止一条,有的轴对称图形的对称轴甚至有无数条。

下列各图,你能找出它们的对称轴吗?

结果:图(1)有四条对称轴;图(2)有四条对称轴;图(3)有无数条对称轴;图(4)有两条对称轴;图(5)有七条对称轴.

(1) (2) (3) (4) (5)

展示挂图,大家想一想,你发现了什么?

像这样,把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.

Ⅲ.随堂练习:课本练习 Ⅳ.课时小结

这节课我们主要认识了轴对称图形,了解了轴对称图形及有关概念,进一步探讨了轴对称的特点,区分了轴对称图形和两个图形成轴对称. Ⅴ.作业:课本习题13.1第1、2、6、7、8题.

课后反思:

13.1 .2线段垂直平分线的性质

教学目标

1.了解两个图形成轴对称性的性质,了解轴对称图形的性质. 2.探究线段垂直平分线的性质.

教学重点; 1.轴对称的性质. 2.线段垂直平分线的性质. 教学难点: 体验轴对称的特征. 教学过程

Ⅰ.创设情境,引入新课

上节课我们共同探讨了轴对称图形,知道现实生活中由于有轴对称图形,而使得世界非常美丽.那么大家想一想,什么样的图形是轴对称图形呢? 今天继续来研究轴对称的性质. Ⅱ.导入新课:思考.

如图,△ABC和△A′B′C′关于直线MN点A′、B′、C′分别是点A、?B、C的对称点,AA′、BB′、CC′与直线MN有什么关系? 图中A、A′是对称点,AA′与MN垂直,和CC′也与MN垂直.

AA′、BB′和CC′与MN除了垂直以外还有什么关系吗?

△ABC与△A′B′C′关于直线MN对称,点A′、B′、C′分别是点A、B、C的对称点,设AA′交对称轴MN于点P,将△ABC和△A′B′C′沿MN对折后,点A与A′重合,于是有AP=A′P,∠MPA=∠MPA′=90°.所以AA′、BB′和CC′与MN除了垂直以外,MN还经过线段AA′、BB′和CC′的中点. 对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.

自己动手画一个轴对称图形,并找出两对称点,看一下对称轴和两对称点连线的关系.

我们可以看出轴对称图形与两个图形关于直线对称一样,?对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段. 归纳图形轴对称的性质:

如果两个图形关于某条直线对称,?那么对称轴是任何一对对称点所连线段的垂直平分线.类似地,轴对称图形的对称轴是任何一对对称点所连线段的垂直平分线.

下面我们来探究线段垂直平分线的性质. [探究1]

如右图.木条L与AB钉在一起,L垂直平分AB,P1,P2,P3,?是L上的点,?分别量一量点P1,P2,P3,?到A与B的距离,你有什么发现?

1.用平面图将上述问题进行转化,先作出线段AB,过

BB′对称,线段

AB中点作AB的垂直平分线L,在L上取P1、P2、P3?,连结AP1、AP2、BP1、BP2、CP1、CP2?

2.作好图后,用直尺量出AP1、AP2、BP1、BP2、CP1、CP2?讨论发现什么样的规律. 探究结果:

线段垂直平分线上的点与这条线段两个端点的距离相等.即AP1=BP1,AP2=BP2,? 证明.

证法一:利用判定两个三角形全等. 如下图,在△APC和△BPC中,

?PC?PC?? ??PCA??PCB?AC?BC?Rt ?? △APC≌△BPC ? PA=PB. 证法二:利用轴对称性质.

由于点C是线段AB的中点,将线段AB沿直线L对折,线段PA与PB是重合的,?因此它们也是相等的.带着探究1的结论我们来看下面的问题. [探究2]

如右图.用一根木棒和一根弹性均匀的橡皮筋,做一个简易的“弓”,“箭”通过木棒中央的孔射出去,怎么才能保持出箭的方向与木棒垂直呢?为什么?

活动:1.用平面图形将上述问题进行转化.作线段AB,取其中点P,过P作L,在L上取点P1、P2,连结AP1、AP2、BP1、BP2.会有以下两种可能. 2.讨论:要使L与AB垂直,AP1、AP2、BP1、BP2应满足什么条件? 探究过程:

1.如上图甲,若AP1≠BP1,那么沿L将图形折叠后,A与B不可能重合,也就是∠APP1≠∠BPP1,即L与AB不垂直.

2.如上图乙,若AP1=BP1,那么沿L将图形折叠后,A与B恰好重合,就有∠APP1=∠BPP1,即L与AB重合.当AP2=BP2时,亦然. 探究结论:

与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.也就是说

在[?探究2]图中,只要使箭端到弓两端的端点的距离相等,就能保持射出箭的方向与木棒垂直.

[师]上述两个探究问题的结果就给出了线段垂直平分线的性质,即:线段垂直平分线上的点与这条线段两个端点的距离相等;反过来,与这条线段两个端点距离相等的点都在它的垂直平分线上.?所以线段的垂直平分线可以看成是与线段两端点距离相等的所有点的集合. Ⅲ.随堂练习: 课本练习 1、2. Ⅳ.课时小结

这节课通过探索轴对称图形对称性的过程,?了解了线段的垂直平分线的有关性质,同学们应灵活运用这些性质来解决问题.

Ⅴ.课后作业: 课本P36习题12.1第3、4、9题. 课后反思

§13.2 画轴对称图形

教学目标

1.通过实际操作,了解什么叫做轴对称变换. 2.如何作出一个图形关于一条直线的轴对称图形. 教学重点

1.轴对称变换的定义. 2.能够按要求作出简单平面图形经过轴对称后的图形.

教学难点

1.作出简单平面图形关于直线的轴对称图形. 2.利用轴对称进行一些图案设计. 教学过程

Ⅰ.设置情境,引入新课

在前一个章节,我们学习了轴对称图形以及轴对称图形的一些相关的性质问题.在上节课的作业中,我们有个要求,让同学们自己思考一种作轴对称图形的方法,现在来看一下同学们完成的怎么样.

将一张纸对折后,用针尖在纸上扎出一个图案,将纸打开后铺平,?得到的两个图案是关于折痕成轴对称的图形.

准备一张质地较软,吸水性能好的纸或报纸,在纸的一侧上滴上一滴墨水,

将纸迅速对折,压平,并且手指压出清晰的折痕.再将纸打开后铺平,?位于折痕两侧的墨迹图案也是对称的. 这节课我们就是来作简单平面图形经过轴对称后的图形.

Ⅱ.导入新课

?由我们已经学过的知识知道,连结任意一对对应点的线段被对称轴垂直平分.

类似地,我们也可以由一个图形得到与它成轴对称的另一个图形,重复这个过程,可以得到美丽的图案.

对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化.

下面,同学们自己动手在一张纸上画一个图形,将这张纸折叠描图,?再打开看看,得到了什么?改变折痕的位置并重复几次,又得到了什么?同学们互相交流一下.

结论:由一个平面图形呆以得到它关于一条直线L对称的图形,?这个图形与原图形的形状、大小完全相同;新图形上的每一点,都是原图形上的某一点关于直线L的对称点;

连结任意一对对应点的线段被对称轴垂直平分.

我们把上面由一个平面图形得到它的轴对称图形叫做轴对称变换.

成轴对称的两个图形中的任何一个可以看作由另一个图形经过轴对称变换后得到.一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的.

Ⅲ.随堂练习:(一)P41练习1、2。 Ⅳ.课时小结

本节课我们主要学习了如何通过轴对称变换来作出一个图形的轴对称图形,?并且利用轴对称变换来设计一些美丽的图案.在利用轴对称变换设计图案时,要注意运用对称轴位置和方向的变化,使我们设计出更新疑独特的美丽图案.

四、作业:习题12.2第1、5题 课后反思:

13.2 用坐标表示轴对称

教学目标

在平面直角坐标系中,确定轴对称变换前后两个图形中特殊点的位置关系,再利用轴对称的性质作出成轴对称的图形 教学重点:用坐标表示轴对称

教学难点:利用转化的思想,确定能代表轴对称图形的关键点 教学过程:

一、复习轴对称图形的有关性质 二、新授: 1.学生探索:

点(x,y)关于x轴对称的点的坐标(x,-y);点(x,y)关于y轴对称的点的坐标(-x,y);点(x,y)关于原点对称的点的坐标(-x,-y)

2.例3 四边形ABCD的四个顶点的坐标分别为A(-5,1)、B(-2,1)、C(-2,5)、D(-5,4),分别作出与四边形ABCD关于x轴和y轴对称的图形. (1)归纳:与已知点关于y 轴或x轴对称的点的坐标的规律; (2)学生画图

(3)对于这类问题,只要先求出已知图形中的一些特殊点的对应点的坐标,描出并顺次连接这些特殊点,就可以得到这个图形的轴对称图形. 3、探究问题

分别作出△PQR关于直线x=1(记为m)和直线y=-1(记为n)对称的图形,你能发现它们的对应点的坐标之间分别有什么关系吗?

(1)学生画图,由具体的数据,发现它们的对应点的坐标之间的关系

(2)若△P1Q1R1中P1(x1,y1)关于x=1(记为m)轴对称的点的坐标P2 (x2,y2) , 则

x1?x2?m,y1= y2. 2若△P1Q1R1中P1(x1,y1)关于y=-1(记为n)轴对称的点的坐标P2 (x2,y2) , 则x1= x2,

y1?y2=n. 2三、练习:课本第1、2、3题 四、作业:课本第2、3、4、6题 课后反思:

13.3 等腰三角形(1)

教学目标

1.等腰三角形的概念. 2.等腰三角形的性质. 3.等腰三角形的概念及性质的应用.

教学重点: 1.等腰三角形的概念及性质. 2.等腰三角形性质的应用. 教学难点:等腰三角形三线合一的性质的理解及其应用. 教学过程

Ⅰ.提出问题,创设情境

在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,?并且能够作出一个简单平面图形关于某一直线的轴对称图形,?还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形? 有的三角形是轴对称图形,有的三角形不是. 问题:那什么样的三角形是轴对称图形?

满足轴对称的条件的三角形就是轴对称图形,?也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.

我们这节课就来认识一种成轴对称图形的三角形──等腰三角形. Ⅱ.导入新课: 要求学生通过自己的思考来做一个等腰三角形.

AABIBCI

作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.

等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角. 思考:

1.等腰三角形是轴对称图形吗?请找出它的对称轴.

2.等腰三角形的两底角有什么关系?

3.顶角的平分线所在的直线是等腰三角形的对称轴吗?

4.底边上的中线所在的直线是等腰三角形的对称轴吗??底边上的高所在的直线呢?

结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.

要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.

沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,?而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.

由此可以得到等腰三角形的性质:

1.等腰三角形的两个底角相等(简写成“等边对等角”).

2.等腰三角形的顶角平分线,底边上的中线、?底边上的高互相重合(通常称作“三线合一”).

由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).

如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为

C?AB?A,?, ?BD?CD?AD?A,D?A 所以△BAD≌△CAD(SSS). 所以∠B=∠C.

BDC ]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为

C?AB?A,?, D ??BAD??CA?AD?A,D? 所以△BAD≌△CAD. 所以BD=CD,∠BDA=∠CDA=

1∠BDC=90°. 2BADC [例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,

求:△ABC各角的度数.

分析:根据等边对等角的性质,我们可以得到

∠A=∠ABD,∠ABC=∠C=∠BDC,?

再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A. 再由三角形内角和为180°,?就可求出△ABC的三个内角.

把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.

Ⅲ.随堂练习:1.课本P51练习 1、2、3. 2.阅读课本P49~P51,然后小结.

Ⅳ.课时小结

这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高. Ⅴ.作业: 课本P56习题12.3第1、2、3、4题.

课后反思:

13.3 等腰三角形(二)

教学目标

1、理解并掌握等腰三角形的判定定理及推论 2、能利用其性质与判定证明线段或角的相等关系. 教学重点: 等腰三角形的判定定理及推论的运用

教学难点: 正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系. 教学过程:

一、复习等腰三角形的性质 二、新授:

I提出问题,创设情境

某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗

作标志)沿南偏东60°方向走一段距离到C处时,测得∠ACB为30°,这时,地质专家测得AC的长度就可知河流宽度. II引入新课

1.由性质定理的题设和结论的变化,引出研究的内容——在△ABC中,苦∠B=∠C,则AB= AC吗?

作一个两个角相等的三角形,然后观察两等角所对的边有什么关系? 2.引导学生根据图形,写出已知、求证.

2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称).

强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”.

4.引导学生说出引例中地质专家的测量方法的根据. III例题与练习 1.如图2

其中△ABC是等腰三角形的是 [ ]

2.①如图3,已知△ABC中,AB=AC.∠A=36°,则∠C______(根据什么?). ②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根据什么?).

③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有______.

④若已知 AD=4cm,则BC______cm. 3.以问题形式引出推论l______. 4.以问题形式引出推论2______.

例: 如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形.

分析:引导学生根据题意作出图形,写出已知、求证,并分析证明.

练习:5.(l)如图6,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点F,过F作DE//BC,交AB于点D,交AC于E.问图中哪些三角形是等腰三角形?

(2)上题中,若去掉条件AB=AC,其他条件不变,图6中还有等腰三角形吗? 练习:P53练习1、2、3。 IV课堂小结

1.判定一个三角形是等腰三角形有几种方法? 2.判定一个三角形是等边三角形有几种方法? 3.等腰三角形的性质定理与判定定理有何关系? 4.现在证明线段相等问题,一般应从几方面考虑? V布置作业:习题13.3第5、6题

本文来源:https://www.bwwdw.com/article/n2so.html

Top