The SCUBA HAlf Degree Extragalactic Survey (SHADES) - III. Identification of radio and mid-
更新时间:2023-07-23 13:27:02 阅读量: 实用文档 文档下载
- the推荐度:
- 相关推荐
Determining an accurate position for a submm galaxy (SMG) is the crucial step that enables us to move from the basic properties of an SMG sample - source counts and 2-D clustering - to an assessment of their detailed, multi-wavelength properties, their con
Mon.Not.R.Astron.Soc.000,000–000(0000)Printed5February2008
A(MNLTEXstyle lev2.2)
TheSCUBAHAlfDegreeExtragalacticSurvey—III.Identi cation
ofradioandmid-infraredcounterpartstosubmillimetregalaxies
R.J.Ivison,1,2T.R.Greve,3J.S.Dunlop,2J.A.Peacock,2E.Egami,4IanSmail,5E.Ibar,2E.vanKampen,6I.Aretxaga,7T.Babbedge,8A.D.Biggs,1A.W.Blain,3S.C.Chapman,9D.L.Clements,8K.Coppin,5,10D.Farrah,11M.Halpern,10D.H.Hughes,7M.J.Jarvis,12T.Jenness,13J.R.Jones,14A.M.J.Mortier,2S.Oliver,15C.Papovich,4P.G.P´erez-Gonz´alez,16A.Pope,10S.Rawlings,17G.H.Rieke,4M.Rowan-Robinson,8R.S.Savage,15D.Scott,10M.Seigar,18S.Serjeant,19C.Simpson,20J.A.Stevens,12M.Vaccari,21,8J.Wagg7,22andC.J.Willott23
UKAstronomyTechnologyCentre,RoyalObservatory,BlackfordHill,EdinburghEH93HJ
ScottishUniversitiesPhysicsAlliance,InstituteforAstronomy,UniversityofEdinburgh,BlackfordHill,EdinburghEH93HJ3AstronomyDepartment,CaliforniaInstituteofTechnology,Pasadena,CA91125,USA
4StewardObservatory,UniversityofArizona,933N.CherryAvenue,Tuscon,AZ85721,USA5InstituteforComputationalCosmology,UniversityofDurham,SouthRoad,DurhamDH13LE6InstituteforAstrophysics,UniversityofInnsbruck,Technikerstr.25,A-6020Innsbruck,Austria7InstitutoNacionaldeAstrof´ sica,OpticayElectr´onica,ApartadoPostal51y216,72000Puebla,Pue.,Mexico8AstrophysicsGroup,BlackettLaboratory,ImperialCollegeLondon,PrinceConsortRoad,LondonSW72BW9InstituteofAstronomy,MadingleyRoad,Cambridge,CB30HA
10DepartmentofPhysics&Astronomy,UniversityofBritishColumbia,Vancouver,BCV6T1Z1,Canada11DepartmentofAstronomy,CornellUniversity,106SpaceSciences,Ithaca,NY14853,USA
12CentreforAstrophysicsResearch,UniversityofHertfordshire,CollegeLane,Hat eldAL109AB13JointAstronomyCentre,660N.A‘oh¯ok¯uPlace,UniversityPark,Hilo,HI96720,USA14CenterforAstrophysicsandSpaceAstronomy,389UCB,Boulder,CO80309,USA15AstronomyCentre,UniversityofSussex,Falmer,BrightonBN19QH16DepartmentodeAstrof´ sicayCC.deAtm´osfera,FacultaddeCC.F´ sicas,UniversidadComplutensedeMadrid,28040Madrid,Spain17Astrophysics,DepartmentofPhysics,DenysWilkinsonBuilding,KebleRoad,OxfordOX13RH
18DepartmentofPhysicsandAstronomy,4129FrederickReinesHall,UniversityofCalifornia,Irvine,CA92697,USA19AstrophysicsGroup,DepartmentofPhysics,TheOpenUniversity,MiltonKeynesMK76AA
20AstrophysicsResearchInstitute,LiverpoolJohnMooresUniversity,TwelveQuaysHouse,EgertonWharf,BirkenheadCH411LD21DepartmentofAstronomy,UniversityofPadova,Vicolodell’Osservatorio3,I-35122,Italy22NationalRadioAstronomyObservatory,P.O.Box0,Socorro,NM87801,USA
23PhysicsDepartment,UniversityofOttawa,150LouisPasteur,PavillonMacDonaldHall,Ottawa,OntarioK1N6N5,Canada
21
arXiv:astro-ph/0702544v2 30 May 2007
Accepted...;Received...;inoriginalform2007February20
ABSTRACT
c0000RAS
Determininganaccuratepositionforasubmillimetre(submm)galaxy(SMG)isthecrucial
stepthatenablesustomovefromthebasicpropertiesofanSMGsample–sourcecountsand2-Dclustering–toanassessmentoftheirdetailed,multi-wavelengthproperties,theircontributiontothehistoryofcosmicstarformationandtheirlinkswithpresent-daygalaxypopulations.Inthispaper,weidentifyrobustradioand/orinfrared(IR)counterparts,andhenceaccuratepositions,forovertwothirdsoftheSCUBAHAlf-DegreeExtragalacticSurvey(SHADES)SourceCatalogue,presentingoptical,24-µmandradioimagesofeachSMG.Observedtrendsinidenti cationratehavegivennostrongrationaleforpruningthesample.Uncertaintiesinsubmmpositionarefoundtobeconsistentwiththeoreticalexpectations,withnoevidenceforsigni cantadditionalsourcesoferror.Employingthesubmm/radioredshiftindicator,viaaparameterisationappropriateforradio-identi edSMGswithspectroscopicredshifts,yieldsamedianredshiftof2.8fortheradio-identi edsubsetofSHADES,somewhathigherthanthemedianspectroscopicredshift.Wepresentadiagnosticcolour-colourplot,exploitingSpitzerphotometry,inwhichweidentifyregionscommensuratewithSMGsatveryhighredshift.Finally,we ndthatsigni cantlymoreSMGshavemultiplerobustcounterpartsthanwouldbeexpectedbychance,indicativeofphysicalassociations.ThesemultiplesystemsaremostcommonamongstthebrightestSMGsandaretypicallyseparatedby2–6arcsec,~15–50/sinikpcatz~2,consistentwithearlyburstsseeninmergersimulations.
Keywords:galaxies:starburst–galaxies:formation–cosmology:observations–cosmol-ogy:earlyUniverse
Determining an accurate position for a submm galaxy (SMG) is the crucial step that enables us to move from the basic properties of an SMG sample - source counts and 2-D clustering - to an assessment of their detailed, multi-wavelength properties, their con
2Ivisonetal.
1INTRODUCTION
Observationalcosmologyinthesubmmwavebandhasbeenoneofthefew eldsthatcanclaimtohavebeatenMoore’sLaw(Moore1965),theothernotableastronomicalexceptionbeingtheVirgoconsortium’s‘MillenniumSimulation’(Springeletal.2005).Ithasbene tedenormouslyfromthedevelopmentofbolometerarrayssuchasSCUBA(Hollandetal.1999)andMAMBO(Kreysaetal.1998):thecommissioningofthesegroundbreakingcameras,ontheJamesClerkMaxwellTelescope(JCMT)andtheIRAM30-mtelescope,respectively,yieldedathousand-foldincreaseinmap-pingspeedoversingle-pixeldevicessuchasUKT14(Duncanetal.1990).Adecadeon,thenextgenerationofcamerasexempli edbyLABOCA(Kreysaetal.2003)andSCUBA-2(Hollandetal.2003)willyieldasimilarincreaseinmappingspeedoverexistingarrays.
SCUBAbroughtaboutaradicalshiftinourunderstandingoftheformationandevolutionofgalaxies,withthediscoverythatlu-minous,dustygalaxieswereathousandtimesmoreabundantintheearlyUniversethanatthepresentday(Smail,Ivison&Blain1997;Hughesetal.1998;Bargeretal.1998;Ealesetal.1999).SCUBAwascapableofprovidingonlyapproximatecoordinatessoitwasimmediatelyclearthatthenatureofthesesourceswouldre-mainamysteryuntilmoreaccuratepositionscouldbedetermined–thesubjectofthispaper.Tore nepositionsprovidedbySCUBA,wearereliantonradioobservations;theradioemissionisahigh-resolutionproxyfortherest-framefar-IRemissionobservedinthesubmm(Ivisonetal.1998,2000,2002;Smailetal.2000;Webbetal.2003a;Clementsetal.2004;Dannerbaueretal.2004;Bo-rysetal.2004;Garrett,Knudsen&vanderWerf2005;Vossetal.2006).Althoughlikelytobeinef cientintheeraofSCUBA-2,ra-dioimagingalsoenabledlargesamplesofSMGstobeacquiredbytargetingopticallyfaintµJyradiosources(OFRS)usingSCUBA’sfastPHOTOMmode(Barger,Cowie&Richards1999;Chapmanetal.2002).
Mid-IRimagingwithSpitzerhasalsoprovedusefulforre n-ingSMGpositions(Egamietal.2004;Ivisonetal.2004;Popeetal.2006;Ashbyetal.2006),albeitwithpoorangularresolutionandanimpreciseconnectiontobolometricluminosity.Tobeuseful,suchdataneedtobeclosetothe24-µmconfusionlimit(~50µJy),soradioimagingislikelytoremainthepreferredprocedure.
Radioandsubmm uxdensities,takentogether,aresensitivetoredshift(Carilli&Yun1999;Dunne,Clements&Eales2000;Rengarajan&Takeuchi2001),albeitlimitedtoz<~3bythedepthofradioimagingavailablecurrently.ThisapproachisthesubjectofpaperIVinthisseries(Aretxagaetal.2007).EarlyworkinthisveinconstrainedthemedianredshiftoftheSMGpopulationtobez>~2(Carilli&Yun2000;Smailetal.2000;Ivisonetal.2002).
Thetruetriumphoftheradioidenti cationprocedure,how-ever,hasbeeninidentifyingthecorrectoptical/IRcounterpartssothattheirmorphologies,colours,magnitudes,etc.canbede-terminedunambiguously;moreimportantly,thishasalsoallowedspectroscopiststoplacetheirslitsaccurately,sometimesonappar-entlyblankskywhenopticalcounterpartsweretoofaintforexist-ingimaging(RAB>~26,e.g.LE850.12andSSA13.332–Chap-manetal.2005).Thispainstakingapproachwasslowtopaydivi-dends,withonlyahandfulofredshiftsreportedinitially(Ivisonetal.1998,2000;Bargeretal.1999;Ledlowetal.2002;Knudsen,vanderWerf&Jaffe2003;Simpsonetal.2004).Deeperradioob-servationsalliedwiththelargestexistingsubmmsurveysandtheOFRStechniqueresultedeventuallyintheacquisitionofapprox-imately100spectroscopicredshifts,themajoritybyChapmanetal.(2003,2005).Thishasenabledthedirectdetectionofcolossal
moleculargasreservoirsinarepresentativesampleofSMGs(Nerietal.2003;Greveetal.2005;Tacconietal.2006),followingonfromthepioneeringCOdetectionsofFrayeretal.(1998,1999).ItallowedAlexanderetal.(2005a,2005b)tosuggestthatthebulkoftheSMGpopulationcontainsobscured,oftenCompton-thick,activegalacticnuclei(AGN)viathe rstmeaningfulanalysisoftheirX-rayproperties;itpermittedarigoroustestoftheradio/far-IRrelationathighredshift,viaobservationsnearthepeakofSMGspectralenergydistributions(SEDs)at350µm(Kovacsetal.2006)and, nally,itallowedathoroughanalysisoftheirrest-frameop-ticalphotometricandspectroscopicproperties(Smailetal.2004;Swinbanketal.2004;Takataetal.2006).
Untilnow,themostadventurousblank- eldsurveyshavecov-eredafew×100arcmin2,detectingtypically40galaxies(Scottetal.2002;Webbetal.2003a;Borysetal.2003;Greveetal.2004).Thepropertiesofthesegalaxieswerequicklycharacterisedovertheentireobservablespectralrange(Lillyetal.1999;Ealesetal.2000;Gearetal.2000;Lutzetal.2001;Foxetal.2002;Ivisonetal.2002;Webbetal.2003a,2003b;Waskettetal.2003;Bo-rysetal.2004;Dunlopetal.2004;Popeetal.2005,2006),butitsoonbecameclearthatsomeofthekeyremainingquestions–thedegreeofclusteringandtheroleplayedbyAGN–couldonlybeaddressedbyasigni cantlylargersampleselectedhomogeneouslyfromcontiguoussky.
Despitethesteepslopeofthesubmmnumbercounts(Blainetal.1998,1999),the850-µmconfusionlimit–setataround2mJybytheJCMT’s15-mprimary–dictatesthatwemustmapmoreskyifwearetoobtainlargersampleswithwell-characterisedpositionsand uxdensities.SHADESaimedtodetect200SMGsovertwo0.25-degree2 elds–theLockmanHole(LH;10h52m,+57 .4)andtheSubaru-XMM-NewtonDeepField(SXDF;02h18m, 5 .0).SeeMortieretal.(2005),PaperIofthisseries,foradescriptionofitsmotivationanddesign.SCUBAwasretiredin2005July,beforeSHADEScouldbecompleted,aftertwoyearsplaguedbycryogenicproblems.TheSHADESSourceCatalogue,gleanedfrom800arcmin2andcomprising120SMGsintheLHandtheSXDF,ispresentedinPaperIIofthisseries(Coppinetal.2006).
Inthis,PaperIII,weidentifyradioand/ormid-IRcounter-partsandhenceaccuratepositionsfortheSHADESsampleusing1.4-GHzradioimagingfromtheNationalRadioAstronomyObser-vatory’s(NRAO1)VeryLargeArray(VLA)and24-µmdatafromMIPS(Riekeetal.2004)onboardSpitzer(Werneretal.2004).ThisisthecrucialstepthatallowsustomovefromthebasicpropertiesofanSMGsample–sourcecountsand2-dimensionalclustering–toanassessmentoftheirdetailedpropertiesacrosstheentireacces-siblewavelengthrange,theircontributiontothehistoryofcosmicstarformationandtheirlinkswithpresent-daygalaxypopulations.In§2wedescribethedataexploitedin§3to ndradioandmid-IRcounterpartsforourSMGsample.Weusetheseassociationsin§comparing4todeterminewiththeorythepositionaldevelopeduncertaintyinAppendixassociatedB.In§5withwediscussSMGs,SMGswithmultiple,robustcounterpartsandin§6weexploreiden-ti cationtrends.Finally,in§7and§8weutilisethemagnitudesandcoloursofSMGs,nowrobustlyidenti ed,toconstraintheirred-shiftdistributionandtoidentifyoutliers.Weassume m=0.27, Λ=0.73,H0=71kms 1Mpc 1throughout(Spergeletal.2003).
1
NRAOisoperatedbyAssociatedUniversitiesInc.,underacooperativeagreementwiththeNationalScienceFoundation.
c0000RAS,MNRAS000,000–000
Determining an accurate position for a submm galaxy (SMG) is the crucial step that enables us to move from the basic properties of an SMG sample - source counts and 2-D clustering - to an assessment of their detailed, multi-wavelength properties, their con
Identi cationofsubmillimetregalaxiesintheSHADESSourceCatalogue
3
57 45
4035SHADES
)
030LHEX4
002J( N25
OITAN20ILCED15LOCK-3
100500
10 5554
53RIGHT ASCENSION (J2000)
525150
49
-04 35
4045
SXDF1
)
005002J( N55OITANIL-05 00
CED05SXDF2
SXDF3
10152002 19 30
00
18 30RIGHT ASCENSION (J2000)
0017 30
0016 30
Figure1.IndividualpointingsforradiomosaicsintheSHADES elds,togetherwithanindicationofthesubmmcoverage.ThediameterofthecirclesistheFWHMoftheVLA’sprimarybeamat1.4GHz.
2OBSERVATIONS2.11.4-GHzradioimaging
Wide- eldradioimageswereobtainedusingtheVLA.TheLHdatausedhere,comprising75hrofintegrationona elddesignatedLOCKMAN-E,weredescribedindetailbyIvisonetal.(2002).Thedatahavesincebeenre-analysedbyBiggs&Ivison(2006),usingthe37-piecemosaicingtechniquedescribedbyOwenetal.(2005),togetherwithadditionalself-calibration.Theresultingimagecov-ersmostoftheprimarybeam,outtoaradiusof23arcmin.Oncecombined,thenoiselevelisunusuallyuniform,4.2µJybeam 1r.m.s.inthecentreofthe eld,witha1.3-arcsecsynthesisedbeam(FWHM).
Wealsoutiliseanewlow-resolutionmap,madebytaperingourLOCKMAN-Edatatogivea4.2-arcsecsynthesisedbeamandthenmosaicingwithB-con gurationdatatakenforseveralnearbypointings:anew eld,11arcmintothesouthwest,designatedLOCK-3,plusarchivaldatafor eldsdesignatedLHEX1,LHEX2,LHEX3andLHEX4,whereLHEX4comprises31hrofintegration,11arcmintothenortheastofLOCKMAN-E.Fig.1illustratesthemosaicofpointings.Thesedata,togetherwithmatched-resolution610-MHzimagingfromtheGiantMetre-waveTelescopeinPune,India,aredescribedbyIbaretal.(inpreparation).
Weobtainednew1.4-GHzdatafortheSXDF,againusingtheVLA,during2003.Manyofthesedatawereaffectedbyinterfer-
c0000RAS,MNRAS000,000–000enceandbyaprolongedfailureofthecorrelator,buttheequiva-lentofaround60hrofnormalintegrationweresalvaged.TheseA-con gurationdatawerecombinedwiththeB-andC-con gurationdatadescribedbySimpsonetal.(2006)resultingina9:3:1ratioofrecordedA:B:Cvisibilities,evenlydistributedinthreepoint-ingsseparatedby15arcmin(seeFig.1).Eachpointingwasimagedasa37-piecemosaic,aswiththeLH.The nalimagewasknit-tedtogetherandcorrectedfortheresponseoftheprimarybeamusingtheAIPStask,FLATN.Theresultingnoiselevelisaround6.3µJybeam 1inthebestregionsofthemap,thoughashighas8.4µJybeam 1nearbright,complexradioemitters,withasynthe-sisedbeammeasuringaround1.7arcsec(FWHM).AswiththeLH,wealsoutilisealow-resolutionmap,taperingourentiredatasettogivea4.2-arcsecsynthesisedbeam.
2.2Opticalimaging
R-bandopticalimagingfortheLHandSXDFwereobtainedusingtheSubaru8-mtelescope.TheLHdataweretakenfromthearchiveandaredescribedinIvisonetal.(2004)andreacha3σdepthof27.7mag;similardataforSXDFaredescribedbyFurusawaetal.(inpreparation),reachinga3σdepthof27.5mag(bothontheVegascale,for2-arcsec-diameterapertures).
2.3Near-andmid-IRimaging
Thenear-andmid-IRdataemployedherewereobtainedusingIRAC(at4.5and8µm)andMIPS(at24µm).Theimagingcov-erstheentireSHADESregionoftheLHtonear-uniformdepthsofσ=0.54,4.4and11µJyat4.5,8and24µm,respectively(Egamietal.,inpreparation),with uxcalibrationaccurateto±10percent,thatisapproximately3×deeperat24µmthanthedatausedbyEgamietal.(2004),Serjeantetal.(2004)andIvisonetal.(2004).IntheSXDF,IRACandMIPSdataareavailablefromtheSpitzerWide-areaInfraRedExtragalactic(SWIRE–Lonsdaleetal.2003)surveyandreachanear-uniformdepthofσ=1.1,7.5and48µJyat4.5,8and24µm(Shupeetal.,inpreparation).Forcomparison,the5-σconfusionlimitat24µm,with20beamspersource,isaround56µJy.
3ASSOCIATIONSBETWEENSUBMMGALAXIESAND
RADIO/MID-IRSOURCESObservationsinthesubmmwavebandaresensitivetocolddustcreatedforthemostpartbysupernovae(SNe)andstellarwinds,re-radiatingenergyabsorbedfromhot,youngstars(Whittet1992).TheradiowavebandisalsosensitivetoSNe–andhencetorecentstarformation–viasynchrotronradiationfromrelativisticelec-trons.Near-IRwavelengthsprobephotosphericemissionfromstarsandinthemid-IR,at24µm,wearesensitivetoemissionfromdustinthecircumnucleartorusofAGNandtothewarmestdustinstar-bursts.ThecorrelationbetweensubmmandradioemissionfromSMGsispoorerthanexpected(fromlocalstudies–e.g.Dunneetal.2000),probablyduetoawiderangeofcharacteristicdusttemperaturesandtotheeffectofradio-loudAGN;nevertheless,predictingtherest-framefar-IRpropertiesofSMGsisbetterac-complishedfromtheradioendoftheSEDthanfromthenear-ormid-IR,addingtothebene tofveryhighspatialresolution(~0.1arcsec)availableatradiowavelengths(Chapmanetal.2004;Muxlowetal.2005;Biggsetal.,inpreparation)andmakingitthe
Determining an accurate position for a submm galaxy (SMG) is the crucial step that enables us to move from the basic properties of an SMG sample - source counts and 2-D clustering - to an assessment of their detailed, multi-wavelength properties, their con
4Ivisonetal.
Table1.RadiopropertiesofSMGsintheLockmanHoleSHADESSourceCatalogue.
Nickname
Positionat850µmαJ2000δJ2000
′′′
hms105201.417105257.316105238.247105204.171
+572443.04+572105.79+572436.54+572658.85
S850µm(S+,S )/mJy8.8(1.0,1.0)13.4(2.1,2.1)10.9(1.8,1.9)10.6(1.7,1.8)
SNRa
Positionat1.4GHzαJ2000δJ2000
′′′
hms105201.249105257.014105257.084105238.401105238.299105203.691105204.079105204.226
—
105204.013105203.549105300.956
—
105215.636105248.992105129.824105227.579105228.793
—
105228.995105230.717105319.025105319.271105319.067105151.690105150.113105158.018105227.778105228.995
————
105200.445105240.726105240.698105241.453105204.579105257.667105131.305105207.490105208.054105215.989105155.470105213.584105214.202105246.655
—
105124.595105124.342105307.253105306.568105306.933105225.643105201.721105202.070105200.248105159.760105256.561105256.655105256.576105235.138105255.181105245.808
—
105143.488105154.261105252.231105253.121
——
105147.894
+572445.76+572108.31+572102.82+572439.50+572435.76+572707.06+572658.52+572655.46
—
+572524.20+572517.38+572552.06
—
+572504.26+573256.26+572415.19+572512.46+572516.01
—
+572222.42+572209.56+572109.47+572108.45+572116.28+572636.09+572635.73+571800.27+572218.18+572222.42
————
+572040.16+572315.18+572309.96+572320.65+571806.11+573058.71+572040.28+571904.01+571902.58+571619.34+572312.77+573320.81+573328.30+572052.54
—
+572331.08+572336.18+572430.82+572432.65+572427.27+571607.65+571917.00+571923.13+572421.69+572424.94+572352.80+572354.13+572358.62+572516.04+573245.38+573119.86
—
+572435.90+572502.55+573232.39+573240.22
——
+573044.37
bS1
.4GHz
/µJy78.9±4.740.7±5.652.4±5.635.0±5.225.8±4.947.0±5.732.0±5.173.0±5.05σ<2215.0±4.822.2±4.642.6±5.85σ<2252.6±4.725.5±6.319.0±5.444.3±5.119.2±4.55σ<2825.3±4.237.4±4.243.9±7.861.5±7.622.6±7.1106±6115±692.3±4.529.4±4.425.3±4.15σ<275σ<305σ<305σ<2528.5±4.814.5±5.531.4±5.21,050±5020.0±4.563.0±8.223.7±4.9245±1320.0±4.243.0±4.751.0±4.328.7±8.758.4±8.517.4±5.05σ<2014.8±5.441.8±8.724.4±6.713.8±6.520.9±6.25σ<2016.2±4.318.0±4.943.6±4.722.1±4.825.4±5.419.4±5.540.8±5.95σ<2243.7±10.038.7±8.05σ<2122.3±4.922.6±4.845.5±7.431.7±7.45σ<215σ<2121.9±7.2
Submm–radioseparationc/arcsec
3.043.513.513.210.89(9.08)0.813.42—2.34(10.1)4.22—3.653.87(10.3)0.67(9.98)—(11.3)7.741.842.265.742.12(10.9)1.960.81(11.5)————2.753.652.89(9.55)(11.0)(9.99)5.323.524.561.854.217.365.634.27—5.332.161.334.514.35—2.667.343.661.575.014.76(8.33)—(8.53)3.05—(10.1)3.82(10.4)(10.8)——5.52
Pc
Notes
LOCK850.01LOCK850.02LOCK850.03LOCK850.04
8.546.836.396.42
LOCK850.05LOCK850.06LOCK850.07LOCK850.08LOCK850.09LOCK850.10LOCK850.11LOCK850.12LOCK850.13LOCK850.14LOCK850.15
105302.615105204.131105301.403105153.862105216.088105248.607105129.531105227.612105132.333105230.110105319.200
+571826.95+572526.34+572554.24+571839.75+572504.11+573258.58+572405.21+572513.08+573134.76+572215.55+572110.64
8.1(2.0,2.1)6.8(1.3,1.3)8.5(1.8,1.9)5.4(1.1,1.2)5.9(1.6,1.6)9.1(2.7,2.9)6.2(1.7,1.8)6.1(1.7,1.7)5.6(2.3,2.9)7.2(1.8,1.9)13.2(4.3,5.0)
4.905.835.305.244.674.534.534.583.894.844.51
LOCK850.16LOCK850.17LOCK850.18LOCK850.19LOCK850.21LOCK850.22LOCK850.23LOCK850.24LOCK850.26
105151.453105158.250105227.693105235.709105256.858105137.551105213.737105200.227105240.950
+572637.00+571800.81+572217.75+573119.05+573038.05+573323.32+573154.11+572038.05+572312.01
5.8(1.8,1.9)4.7(1.3,1.3)6.0(1.9,2.1)5.1(2.0,2.4)4.1(2.0,2.5)7.5(3.2,4.2)4.3(1.9,2.4)2.7(1.2,1.2)5.8(2.4,2.9)
4.324.494.273.923.624.003.713.603.93
LOCK850.27LOCK850.28LOCK850.29LOCK850.30LOCK850.31LOCK850.33LOCK850.34LOCK850.35LOCK850.36LOCK850.37LOCK850.38
105203.574105257.001105130.923105207.786105216.055105155.975105213.502105246.915105209.335105124.130105307.104
+571813.46+573107.14+572035.95+571906.59+571621.11+572311.76+573328.14+572056.25+571806.78+572334.86+572431.39
5.0(1.3,1.3)6.4(1.7,1.8)6.7(2.0,2.2)4.7(1.5,1.6)6.0(1.8,2.0)3.8(1.0,1.1)14.0(3.1,3.2)6.1(2.2,2.4)6.3(1.7,1.8)7.5(2.9,3.5)4.3(2.2,2.7)
4.634.674.394.194.344.455.374.124.554.103.63
LOCK850.39LOCK850.40LOCK850.41LOCK850.43
105224.851105202.014105159.861105257.169
+571609.80+571915.80+572423.60+572351.81
6.5(2.2,2.5)3.0(1.1,1.2)3.8(0.9,1.0)4.9(2.1,2.6)
4.203.794.543.80
LOCK850.47LOCK850.48LOCK850.52LOCK850.53LOCK850.60LOCK850.63LOCK850.64LOCK850.66LOCK850.67LOCK850.70
105235.629105256.239105245.531105240.488105143.583105153.906105251.808105138.687105208.998105148.516
+572514.04+573245.82+573121.94+571928.42+572445.97+572505.07+573242.23+572017.24+572355.13+573046.69
3.5(1.7,2.1)5.4(2.1,2.5)3.9(2.2,2.7)4.4(2.3,2.9)3.1(1.7,2.0)3.6(1.2,1.3)5.8(2.5,3.2)4.2(1.9,2.2)2.5(1.5,1.5)3.8(2.2,2.5)
3.543.943.523.623.404.003.873.743.303.52
0.0110.0260.0200.0270.005(0.104)0.0040.014—0.038(0.176)0.032—0.0210.048(0.181)0.002(0.180)—(0.178)0.0680.0090.0090.0710.004(0.059)0.0040.004(0.178)————0.0260.0640.026(0.004)(0.181)(0.091)0.0660.0040.0640.0100.0270.0750.0350.065—0.0780.0130.0110.0750.059—0.0420.0750.0260.0150.0600.067(0.105)—(0.103)0.023—(0.176)0.049(0.124)(0.159)——0.070
z=2.148
z=3.036z=1.48
24µmid
24µmid
Confusedat24µmz=2.14?
z=2.611
z=1.147z=2.239z=1.95624µmid24µmid24µmid
CandidateidRadio+24µmidz=2.689
z=2.686
Radio+24µmid
24µmid
z=0.68924µmidTrainwreck?24µmid24µmid24µmid
24µmid
a)Rawsignal-to-noiseratio(SNR),beforedeboosting.
b)Integrated uxdensities;fortentativedetections,thesearegiveninitalics.
c)Possiblecounterpartswith8.0–12.5-arcsecoffsetsarelistedinparenthesesforcompleteness.Reliableidenti cations(P 0.05)arelistedinbold.
c0000RAS,MNRAS000,000–000
Determining an accurate position for a submm galaxy (SMG) is the crucial step that enables us to move from the basic properties of an SMG sample - source counts and 2-D clustering - to an assessment of their detailed, multi-wavelength properties, their con
Identi cationofsubmillimetregalaxiesintheSHADESSourceCatalogue
Table1.Cont...
Nickname
Positionat850µmαJ2000δJ2000
′′′
hms105218.618105141.660105315.927105148.516105157.004105145.333105152.104105231.989105307.939105153.302105139.056
+571903.79+572217.63+572645.47+572838.69+572210.07+571738.68+572127.38+571800.40+572839.14+571733.38+571509.81
S850µm(S+,S )/mJy3.9(1.8,2.0)3.5(1.9,2.3)4.4(2.2,2.6)4.7(2.5,3.1)3.2(1.2,1.3)4.5(2.2,2.7)3.1(1.3,1.5)5.3(1.9,2.3)3.1(2.0,2.1)3.4(1.5,1.7)11.2(4.2,5.3)
SNR
Positionat1.4GHzαJ2000δJ2000
′′′
hms105219.086105141.705105141.992105315.439105149.101105157.153105157.665
—
105152.594105151.198105231.523
—
105153.365105138.877
+571857.87+572220.10+572217.52+572637.42+572840.28+572209.58+572212.35
—
+572124.43+572127.29+571751.67
—
+571730.05+571503.90
S1.4GHz
/µJy95.8±4.626.7±4.627.3±4.827.1±7.848.0±6.015.5±4.439.5±7.85σ<2322.4±4.526.3±4.655.2±5.35σ<2884.5±5.319.8±6.3
Submm–radioseparation/arcsec
7.032.502.69(8.96)4.981.305.81—4.947.33(9.51)—3.376.09
P
Notes
5
LOCK850.71LOCK850.73LOCK850.75LOCK850.76LOCK850.77LOCK850.78LOCK850.79LOCK850.81LOCK850.83LOCK850.87LOCK850.100
3.693.483.683.663.843.703.654.013.373.644.300.0300.0250.027(0.150)0.0360.0170.050—0.0640.077(0.096)—0.0120.077
Radio+24µmid
24µmidPlausibleid24µmidRadio+24µmid
wavebandofchoicefortheidenti cationofcounterpartsatotherwavelengthsandseveralrelatedobjectives.
Aradiosourcepeakingat 4σwithanintegrated uxden-sityinexcessof3σ,ineitherthehigh-orlow-resolutionimages,whereσisthenoisemeasuredlocally,isconsideredarobustdetec-tion.IntheLHandSXDF,thesurfacedensitiesofallradiosourcesabovethisthresholdare1.9±0.1arcmin 2(Ivisonetal.2005)and1.6±0.1arcmin 2,respectively.Wherearobustdetectiondoesnotexist,welistthosesourcespeakingat 3σwithanintegrated uxdensityinexcessof2σ,thesebeingconsideredtentativedetec-tions.Positionsand uxdensitiesweremeasuredusingJMFITwithmulti-component ts:usuallyaGaussianandasurfacebaseline,withanextraGaussiancomponentforclosemultipleradiosources.Toenableustomakeappropriatecorrectionsforbandwidthsmear-ing–theradio avourofchromaticaberrationwhichcausesthepeak uxdensitytofallasafunctionofdistancefromthepointingcentre–measurementsweremadeinimagesofeachpointingratherthaninthe nal,largemosaic.Incaseswheresourcesappearedinmorethanone400-arcmin2pointing,error-weightedmeanswereobtained.
ForeachSMGwehavesearchedforpotentialradio(1.4-GHz)counterpartsinsideapositionalerrorcircleofradius8arcsec(see§4),alsolistingthosewithin12.5arcsecforcompleteness.Thisrelativelylargesearchareaensuresthatnorealassociationsaremissed.Attheextremedepthsreachedbytheradioimagingre-portedhere,thecumulativesurfacedensityofradiosourcesinthe8-arcsec-radiuserrorcirclesyieldsonerobustsourceineverytensearchareas,thoughnotallwillberegardedassigni cantassocia-tionsasweshallseeshortly.
Wehavealsosearchedforpotential24-µmcounterpartsin-sideapositionalerrorcircleofradius8arcsec,listingthosewithin15arcsecforcompleteness(aslightlylargerradiusthanforthera-diocounterpartstoaccountforthelarger24-µmbeam).
Toquantifytheformalsigni canceofeachofthepotentialsubmm/radioandsubmm/mid-IRassociationswehaveusedthemethodofDownesetal.(1986;seealsoDunlopetal.1989).ThiscorrectstherawPoissonprobability,P,thataradioor24-µmsourceoftheobserved uxdensitycouldlieattheobserveddis-tancefromtheSMG,forthenumberofwaysthatsuchanappar-entlysigni cantassociationcouldhavebeenuncoveredbychance.
Thepositions, uxdensitiesandPvaluesofallLHandSXDFradioand24-µmcounterpartsarepresentedinTables1through4,adoptingthosecounterpartswithin8arcsecwithP 0.05asro-bust.Pvaluesforcounterpartswithlargerseparationsarelistedin
c0000RAS,MNRAS000,000–000
parenthesis,usingsearchradiiof12.5or15arcsecat1.4GHzand
24µm,respectively.Wehavealsosearchedforcaseswherecoin-cidentradioand24-µmcounterpartswithin8arcsechaveP1.4GHzandP24µm 0.10, ndingthreesuchcases.FigsA1andA2con-tain25-arcsec×25-arcsecpostagestampimagescentredontheLHandSXDFSMGpositions,respectively.AlternativenamesusedfortheseSMGsintheliteraturearelistedinTable5.
Ouridenti cations–basedonradioand/or24-µmdata–aresummarisedinTable6.Clementsetal.(inpreparation)andDyeetal.(inpreparation)willpresentindependentidenti cationanalysesinSXDFandLH,respectively,usingopticalandnear-IRcolourswhicharebelievedtoprovideausefulcomplementtodeepradioimaging(e.g.Webbetal.2003b;Popeetal.2005).
Ofthe32identi cationsmadeinonlyonewaveband–equalnumbersineach eld–21areradiocounterparts,mainlyinSXDF.Ofthese21SMGs,onlysevenhavedetectionsat24µmthathavenotmadethegradeviathePstatistic.Ofthe11mid-IR-onlyidenti cations, vehaveradiocounterpartsjustaboveouradoptedP 0.05threshold.
Intotal,we ndrobustcounterpartsfortwothirds(79)ofthe120sourcesintheSHADESSourceCatalogue,entirelyconsistentwithpreviousstudies(Ivisonetal.2002,2005;Popeetal.2006).
4ONTHEUNCERTAINTYINSMGPOSITIONS
SCUBA-2willheraldavastincreaseinthenumberofcataloguedSMGs,coveringtensofsquaredegrees.Radiocoverageofsuchar-easatthedepthemployedherewillnotbetrivialtoacquire,evenintheeraofe-VLAandLOFAR.Itisinteresting,therefore,tospec-ulateaboutwhetherourknowledgeofpanchromaticSMGprop-ertieswillprogressintheabsenceofradiodetections(andhenceaccuratepositionsandcounterpartsatotherwavelengths)forthemajorityofSMGs.Canwedeterminethesigni canceofsubmmdetectionsrequiredtoenablespectroscopicfollow-upwithmodernintegral- eldunit(IFU)spectrometerssuchasKMOSonthe8-mVeryLargeTelescope(Sharplesetal.2006)?
SubmmpositionsfortheSHADESSourceCataloguewerede-ducedby ttingtothebeampatterninanoptimally lteredmap(i.e.aftersmoothingwiththebeam),thenaveragingoverfourinde-pendentreductionsofthesamerawdata(Coppinetal.2006).Onereductionadoptedthecentreofthenearest3-arcsecpixelastheposition,whiletheothersused1-arcsecpixels,soasmallround-ingerroraddstotheuncertainty.Ignoringthisminoreffect,thepositionaluncertaintyshouldbe α= δ=0.6θ(SNR) 1in
Determining an accurate position for a submm galaxy (SMG) is the crucial step that enables us to move from the basic properties of an SMG sample - source counts and 2-D clustering - to an assessment of their detailed, multi-wavelength properties, their con
6Ivisonetal.
Table2.RadiopropertiesofSMGsintheSXDFSHADESSourceCatalogue.
Nickname
SXDF850.01SXDF850.02SXDF850.03SXDF850.04SXDF850.05SXDF850.06SXDF850.07SXDF850.08SXDF850.09SXDF850.10SXDF850.11SXDF850.12SXDF850.14SXDF850.15SXDF850.16SXDF850.17SXDF850.18SXDF850.19SXDF850.20SXDF850.21SXDF850.22SXDF850.23SXDF850.24SXDF850.25SXDF850.27SXDF850.28
SXDF850.29SXDF850.30SXDF850.31SXDF850.32SXDF850.35SXDF850.36SXDF850.37SXDF850.38SXDF850.39SXDF850.40SXDF850.45SXDF850.47SXDF850.48SXDF850.49SXDF850.50SXDF850.52SXDF850.55SXDF850.56SXDF850.63SXDF850.65SXDF850.69SXDF850.70SXDF850.71SXDF850.74SXDF850.76SXDF850.77SXDF850.86SXDF850.88SXDF850.91SXDF850.93SXDF850.94SXDF850.95SXDF850.96SXDF850.119
Positionat850µmS850µmSNRa
Positionat1.4GHzSb1
.4GHz
Submm–radioPNotes
αJ2000δJ2000
(S+,S )αJ2000δJ2000
separationhms ′′′
/mJyhms ′′′
/µJy/arcsec
021730.531 045936.9610.4(1.5,1.4)7.35021730.629 045936.7054.3±9.71.490.005021803.509 045527.2410.1(1.6,1.6)6.62021803.556 045527.5566.2±10.90.770.001021742.144 045628.228.8(1.5,1.6)5.95021742.128 045627.6777.2±9.30.600.001021738.621 050337.474.4(1.7,2.0)3.88021738.680 050339.46185±122.180.002021802.876 050032.758.4(1.7,1.9)5.35021802.858 050030.91574±101.860.001021729.769
050326.81
8.2(2.2,2.2)
4.72
021730.224 050325.3766.6±12.76.950.034021729.926 050322.0147.4±10.85.340.033021729.753 050318.5092.9±9.6(8.31)(0.044)021738.921 050523.727.1(1.5,1.6)5.16021738.878 050528.0341.2±11.34.360.029021744.432 045554.726.0(1.8,1.9)4.39021744.137 045548.7252.0±9.57.450.042021756.422 045806.746.4(2.0,2.1)4.35021755.772 045814.3146.0±10.5(12.3)(0.110)021825.248 045557.217.7(2.6,3.1)4.24021824.975 045602.85149±126.970.017021825.797 045551.3147.4±10.4(10.1)(0.094)021725.117 045937.444.5(1.9,2.2)3.81021725.101 045933.7756.8±10.03.680.018021759.369 050503.745.7(1.7,1.8)4.34021759.294 050504.0442.0±10.81.160.004021819.256 050244.214.8(1.9,2.1)3.93021818.748 050249.2530.4±11.4(9.11)(0.109)021819.018
050248.90
40.0±11.15.890.040021815.699 045405.226.2(1.6,1.6)4.76—
—
5σ<37——021813.887 045741.744.8(1.7,1.8)4.10021813.805
045743.22
36.5±8.81.920.011021754.980 045302.837.6(1.7,1.7)5.25—
—
5σ<39——021757.790 050029.756.4(2.0,2.2)4.30021757.591 050033.6940.8±9.04.940.034021828.149 045839.214.3(1.8,2.1)3.79021827.782
045837.17
95.9±10.15.860.020021744.182 050215.974.4(2.0,2.2)3.78—
—
5σ<34——021742.803 050427.715.2(2.0,2.2)3.99021742.499
050424.50
690±505.560.002021800.379 050741.506.2(2.3,2.6)4.08—
—
5σ<36——021742.526 050545.475.2(1.7,2.0)4.12021742.455 050545.8871.3±10.11.140.002021734.578 050437.715.1(2.0,2.3)3.93021734.696 050439.1835.3±10.32.300.014021734.749
050430.47
42.3±12.07.680.047021812.120 050555.744.0(2.1,2.5)3.58—
—
5σ<38——021807.861 050148.495.6(2.0,2.3)4.08021807.934 050145.38316±123.300.002021807.043
045915.50
4.8(2.2,2.7)
3.76
021806.920 045912.7296.7±10.43.340.009021806.831 045917.5296.2±9.63.760.011021806.419 045920.0557.9±9.0(10.4)(0.085)021816.468 045511.825.3(1.8,1.9)4.15021816.484 045508.66245±93.170.003021740.305 050116.225.7(2.0,2.2)4.14021740.020 050115.3229.3±11.34.350.037021736.301 045557.466.0(1.7,2.0)4.37021735.856
045555.10
55.9±11.87.070.039021722.888 050038.106.0(2.4,3.0)3.96—
—
5σ<40—–-021800.888 045311.245.3(1.8,2.1)4.06021800.867
045305.71
45.1±11.35.540.035021832.272 045947.215.4(1.8,1.9)4.20—
—
5σ<38——021724.445 045839.934.5(2.2,2.6)3.71021724.569 045841.2940.9±9.22.300.013021825.427 045714.713.8(2.3,2.7)3.49021825.176
045719.70
49.8±18.26.250.037021750.595 045540.164.0(1.7,2.1)3.69—
—
5σ<37——021729.669 050059.213.6(1.5,1.6)3.78021729.625
050058.57
40.3±9.50.920.003021829.328 050540.7121.9(6.2,6.8)4.92—
—
5σ<40——021733.887 045857.713.0(1.6,1.9)3.39
021734.363 045857.23175±117.150.015021734.400 045859.7643.1±10.17.950.048021733.616
045858.21
64.2±13.24.090.018021724.621 045717.687.6(2.5,2.9)4.28——5σ<39——021820.259 045648.473.3(2.0,2.2)3.43—
—
5σ<35——021802.858 045645.495.3(2.0,2.5)3.93021802.827 045647.8038.8±12.72.360.014021804.896 050453.743.2(1.8,2.1)3.41021805.118 050452.1289.3±11.13.690.011021804.972 050501.0288.8±10.37.370.029021752.190 050446.503.9(2.2,2.7)3.52021751.865
050446.96
41.7±13.84.880.033021750.679 050631.823.6(2.2,2.5)3.47——5σ<40——021745.802 045750.494.1(1.7,2.1)3.73——5σ<38——021807.935 050403.244.3(1.9,2.4)3.70——5σ<27——021751.395 050250.823.6(2.1,2.4)3.49——5σ<38——61.4±10.4µJy,13.0′′toSSW021811.199 050247.164.0(1.9,2.3)3.64——5σ<29——021821.235 045903.224.1(1.9,2.4)3.66—
—
5σ<35——24µmid
021758.732 045428.833.3(1.8,2.1)3.45021758.729 045433.4138.9±12.74.580.032021755.781 050621.824.4(2.0,2.4)3.73021756.308 050624.9184.2±13.1(8.46)(0.049)021736.432 050432.153.0(2.0,2.1)3.35021735.951 050425.9743.8±10.7(9.48)(0.093)021736.175
050433.26
34.0±9.94.000.047021817.184 050404.703.6(1.9,2.2)3.54—
—
5σ<37——021800.994 050448.494.5(2.1,2.5)3.74021801.494
050443.74
40.8±9.3(8.85)(0.091)54.5±10.8µJy,12.6′′toESE
021734.808 045723.933.5(2.1,2.5)3.43——5σ<35——021733.082 045813.483.1(2.0,2.1)3.36——5σ<28——021740.079 045817.734.1(1.8,2.1)3.75——5σ<41——021741.715 045833.703.4(1.9,2.2)3.47—
—
5σ<35——021800.000 050212.754.7(2.1,2.5)3.79021800.238 050216.8337.5±8.45.410.03985.3±9.9µJy,12.7′′toNNW
021756.345
045255.24
4.5(2.1,2.5)
3.73
021756.205 045303.3671.9±8.7(8.39)(0.056)021756.005
045251.96
38.0±9.7
6.06
0.043
a)RawSNR,beforedeboosting.
b)Fluxdensitiesfortentativedetectionsaregiveninitalics.
c)Possiblecounterpartswith8.0–12.5-arcsecoffsetsarelistedinparenthesesforcompleteness.Reliableidenti cations(P 0.05)arelistedinbold.
c0000RAS,MNRAS000,000–000
Determining an accurate position for a submm galaxy (SMG) is the crucial step that enables us to move from the basic properties of an SMG sample - source counts and 2-D clustering - to an assessment of their detailed, multi-wavelength properties, their con
Identi cationofsubmillimetregalaxiesintheSHADESSourceCatalogue
7
Table3.Mid-IRpropertiesofSMGsintheLHSHADESSourceCatalogue.
Nickname
Positionat24µmIDa
S24µmOffPb
αJ2000δJ2000
/µJy-set
hms ′′′
′′
LOCK850.01105201.30+572446.11934217±163.200.024LOCK850.02105257.07+572102.919460545±313.510.010LOCK850.03
105238.66+572443.71745173.7±21.37.900.196105238.31+572439.520054183±333.000.026105238.31+572434.820603175±231.810.012LOCK850.04
105204.21+572655.615970261±733.270.020105204.04+572658.315971179±681.190.006105203.67+572707.037071,104±33(9.10)(0.026)LOCK850.05105302.86+571823.91192158.6±15.13.640.107LOCK850.06
105204.12+572525.81192275.1±12.70.550.005105203.51+572517.117409379±18(10.5)(0.107)105205.19+572522.920753540±48(9.22)(0.060)LOCK850.07105300.97+572552.25670341±214.050.021LOCK850.08105153.69+571834.91811481±255.050.021LOCK850.09105215.73+572501.713577159±733.760.043105215.65+572504.513578466±743.560.012LOCK850.10105247.39+573257.91608865.9±11.1(9.82)(0.429)105248.27+573251.01760479.6±10.8(8.05)(0.313)LOCK850.11
105129.16+572406.88740112±573.390.053105129.39+572410.38741177±515.220.063105129.81+572416.38742111±17(11.3)(0.349)LOCK850.12105227.60+572512.43757263±190.690.001LOCK850.13105131.45+573129.111931240±17(9.09)(0.137)105131.77+573141.211932172±147.880.110LOCK850.14105230.72+572209.45560188±167.880.102105229.06+572221.85563103±13(10.5)(0.343)LOCK850.15105319.26+572108.33834353±202.390.009105318.99+572115.6383670.4±12.15.240.141LOCK850.16105151.67+572636.03626314±242.020.008LOCK850.17105158.48+571801.21338764.2±26.11.900.040105157.96+571759.917315239±182.520.015LOCK850.18105229.06+572221.85563103±13(11.8)(0.381)LOCK850.19
105236.09+573119.613661118±153.120.045105235.52+573111.717536242±197.510.076105235.06+573123.717539221±367.000.075LOCK850.21105256.79+573037.9283297.9±14.10.570.004105257.80+573035.32833124±18(8.07)(0.218)LOCK850.22105137.09+573316.92895402±217.410.045105136.68+573332.82896377±20(11.8)(0.127)LOCK850.23105212.83+573200.52722116±17(9.70)(0.288)105214.71+573154.71751657.3±11.37.860.213LOCK850.24105200.45+572039.71842455±212.450.007LOCK850.26105241.13+572319.823975.9±12.77.920.193105240.66+572309.75601195±163.290.029LOCK850.27105203.45+571819.31984106±155.930.117105204.77+571805.91986196±13(12.3)(0.247)LOCK850.28105257.69+573058.613901252±14(10.2)(0.154)LOCK850.29105131.65+572040.818689111±147.630.149LOCK850.30105207.68+571904.12004233±192.630.016LOCK850.31105215.96+571619.23434467±192.060.005LOCK850.33105155.40+572312.91917104±144.790.091LOCK850.34
105213.66+573321.3293293.5±12.06.960.153105214.21+573327.9293384.9±16.75.700.134105213.97+573332.82934128±195.990.101LOCK850.35
105246.46+572056.815351.0±12.73.720.124105245.94+572051.415952161±14(9.26)(0.206)105246.42+572106.615953110±38(11.1)(0.346)105246.91+572106.115954108±34(9.85)(0.309)105247.94
+572101.3
1955575.0±11.4(9.71)(0.393)LOCK850.36———5σ<60——LOCK850.37105124.60+572331.01870250±175.420.047105124.27+572341.417334126±166.640.116LOCK850.38105307.06
+572431.6
5682260±160.410.001LOCK850.39———5σ<60——LOCK850.40105201.54+571915.9199491.9±15.03.840.077105203.07+571923.5199785.2±14.0(11.5)(0.422)LOCK850.41
105200.24+572421.513508475±373.710.013105159.81+572425.113509651±461.560.002105159.27+572413.317394108±15(11.4)(0.358)105200.19+572415.317395212±22(8.72)(0.147)LOCK850.43105256.64+572351.45780261±244.300.031105256.61+572358.05781456±357.660.042LOCK850.47
105234.85
+572504.6
17453107±16(11.3)(0.359)
a)UsedtoidentifysourcesinFig.A1.
b)Pwascalculatedusingasearchradiusof8arcsec.Forpossiblecounterpartswith8–15-arcsecoffsets,Pwascalculatedusingasearchradiusof15arcsec—thesevaluesarelistedinparentheses.Reliableidenti cations(P 0.05)within8arcsecarelistedinbold.
c0000RAS,MNRAS000,000–000Table3.Cont...
Nickname
Positionat24µmID
S24µmOffP
αJ2000δJ2000
/µJy
-set
hms ′′′
′′
LOCK850.48105256.03+573242.318826203±173.900.035105255.37+573246.52010585.2±13.77.030.165LOCK850.52105246.16+573120.218804561±865.360.019105245.76+573120.620079310±352.280.009LOCK850.53105240.29+571924.413519168±154.330.050LOCK850.60
105143.50+572435.81941150±15(10.2)(0.247)105143.90+572443.61351287.8±12.03.490.070105143.08+572452.21351382.5±13.47.440.176105143.81+572454.913514109±15(9.12)(0.282)LOCK850.63
105153.43+572506.2192553.0±13.04.010.130105154.27+572502.71931236±173.780.029105155.24+572459.3193279.1±12.0(12.2)(0.461)LOCK850.64
105251.67+573248.7274088.5±12.56.560.150105252.57+573248.9274153.1±11.8(9.06)(0.454)105252.32+573233.012103425±25(10.1)(0.089)LOCK850.66105139.57+572027.11336571.2±12.1(12.2)(0.484)LOCK850.67105208.07+572348.02044102±14(10.4)(0.340)105208.87+572356.32045108±141.560.017LOCK850.70105147.88+573044.62571106±125.530.108LOCK850.71105219.10+571857.33487181±207.570.100105219.53+571904.8348854.3±16.07.460.212LOCK850.73105141.92+572218.61855278±192.320.011LOCK850.75
105315.19+572645.95713147±175.960.089105315.02+572653.25714150±16(10.7)(0.260)105315.52+572637.116059262±18(8.99)(0.124)LOCK850.76105149.12+572840.12512592±265.070.016LOCK850.77
105156.99+572208.4360251.7±13.11.670.042105157.57+572213.43603154±155.660.080105156.23+572212.3360855.4±13.56.650.199LOCK850.78105143.93+571744.9173485.6±14.7(13.0)(0.462)LOCK850.79105151.22+572127.8188492.8±13.17.160.158105152.63+572124.41892292±185.200.037LOCK850.81105231.52+571751.6173533,667±51(9.59)(0.007)LOCK850.83105307.17+572840.02815344±256.260.041LOCK850.87105153.36+571730.51975399±222.920.011LOCK850.100
105138.76
+571504.7
1623118±135.650.101
thelimitwherecentroidinguncertaintydominatesoversystematicastrometryerrorsandforuncorrelatedGaussiannoise.Here, αand δarether.m.s.errorsinR.A.andDec.,respectively,θistheFWHMofthesubmmbeamandSNRisthesignal-to-noiseratioaftercorrectionfor uxboosting(seeAppendixBforderivations).
Wecanuseourradioassociations,whichshouldprovidenear-perfectpositions,tocheckwhethertheuncertaintiesinsubmmpo-sitionareconsistentwiththistheoreticalexpectation,giventhesizeoftheJCMT’sbeamandtheSNRofthe850-µmsources.
ForaGaussiandistributionofdistributionofradialoffsets(re r2errorsinR.A.andDec.,the
/2σ2
)peaksatσ(= α= δ).Thispeakboundsonly39.3percentofsources,with68percentoftheanticipatedradial√offsetslyingwithin1.51σ(closeto,butnotpreciselyequalto
α2+δ2.ThevalueofσobservedinFig.
2isapproximately3arcsecsoouradoptedsearchradiusof8arcsec(§3)correspondsto~2.5σandshouldthusinclude~95percentofallgenuinera-dioidenti cations;moreover,sincethetypicaldeboostedSNRofthesubmmsourcesis~3(Coppinetal.2006),thetheoreticalex-pectationisalsoσ~3arcsec(fromequation2ofAppendixBforθ=14.5arcsecandSNR=3).Itisclear,therefore,thattheob-serveddistributionofradialoffsetsfortheradioidenti cationsisatleastcomparablewiththeoreticalexpectations.
Determining an accurate position for a submm galaxy (SMG) is the crucial step that enables us to move from the basic properties of an SMG sample - source counts and 2-D clustering - to an assessment of their detailed, multi-wavelength properties, their con
8Ivisonetal.
Table4.Mid-IRpropertiesofSMGsintheSXDFSHADESSourceCata-logue.
Nickname
Positionat24µmSa24µm
Off
P
b
αJ2000δJ2000
/µJy
-set
hms ′′′
′′
SXDF850.01021729.59 045936.6485±47(14.1)(0.109)SXDF850.02021803.54 045526.9313±470.580.001SXDF850.04021738.69 050339.2488±472.010.005SXDF850.05021802.83 050031.0956±471.880.002SXDF850.06
021729.77 050319.6873±477.210.017021729.91 050333.3179±476.820.060021730.15 050324.2532±476.260.023SXDF850.07021738.86 050529.1325±475.460.031SXDF850.08021743.98 045552.1221±477.260.056SXDF850.10021825.61 045559.2153±475.780.057021824.88 045603.3177±47(8.21)(0.132)SXDF850.11021725.16 045935.0195±472.520.017SXDF850.12021758.60 050503.8397±47(11.5)(0.101)SXDF850.14021819.58 050232.2256±47(13.0)(0.161)021818.77 050249.0240±47(8.70)(0.110)SXDF850.16021814.41 045749.0247±47(10.7)(0.136)SXDF850.17021755.11 045250.5174±47(12.5)(0.195)SXDF850.19021827.83 045836.7536±475.400.019SXDF850.21021742.54 050425.86,844±474.370.001SXDF850.24021734.87 050432.7381±476.640.034SXDF850.27021807.93 050144.8334±473.830.018SXDF850.28
021806.32 045914.3176±47(10.9)(0.175)021806.43 045920.3477±47(10.4)(0.075)021806.87 045912.4877±474.040.007SXDF850.29021816.49 045508.2971±473.630.005SXDF850.30021740.00 050115.1523±474.690.016SXDF850.31
021736.75 045610.4452±47(14.6)(0.120)021735.83 045556.7594±477.100.025021736.37 045603.4251±476.030.043SXDF850.32021722.58 050044.4168±477.800.066SXDF850.35021800.86 045306.6215±474.660.036SXDF850.36
021831.92 045959.1162±47(13.0)(0.205)021831.95 045953.2177±477.690.065021833.04 045941.4181±47(12.9)(0.195)021831.86 045937.3182±47(11.7)(0.181)SXDF850.37021724.41 045842.0183±472.140.015SXDF850.45021830.11 050535.4157±47(12.8)(0.206)SXDF850.47021734.37 045859.9298±477.560.048021733.72 045858.7250±472.690.015SXDF850.52021805.09 050452.7151±473.080.029SXDF850.56021751.23 050630.5299±47(8.34)(0.086)SXDF850.69021751.77 050258.6157±47(9.59)(0.168)021751.06 050302.8724±47(13.0)(0.068)SXDF850.71021821.28 045858.8404±474.470.019SXDF850.76021756.32 050625.5183±47(8.86)(0.140)SXDF850.77021736.02 050428.2726±477.320.021021736.51 050425.6295±476.650.042SXDF850.86021816.66 050400.0208±47(9.13)(0.131)SXDF850.88021801.54 050442.1446±47(10.4)(0.079)SXDF850.91021734.24 045714.3203±47(12.9)(0.184)SXDF850.94021740.26 045824.0187±476.830.059021739.24 045813.1198±47(13.4)(0.192)SXDF850.96021800.40 050201.5478±47(12.7)(0.097)SXDF850.119
021756.20 045302.1784±477.200.019021755.65 045258.0202±47(10.8)(0.158)021756.24
045250.9
275±474.620.029
a)Objectsmissinghere,butlistedin
Table2,haveupperlimitsof5σ<235µJyat24µm.
b)Pwascalculatedusingasearchradiusof8arcsec.Forpossiblecounterpartswith8–15-arcsecoffsets,Pwascalculatedusingasearchradiusof15arcsec—thesevaluesarelistedinparentheses.Reliableidenti cations(P 0.05)within8arcsecarelistedinbold.
Wecanquantifythismorepreciselyintwoways.First,wecanusethedistributionofradialoffsetsforallradioidenti ca-tioncounterpartsandattempttocorrectstatisticallyforbackgroundcontamination:thedashedlineinFig.2representsthedistributionandabsolutelevelofarandomlydistributedradiopopulationwiththecountsseenintheLHradioimage(§2.1).Thenumberofradioidenti cationswithina6-arcsecradiusofthesubmmpositionsisseentoexceedtherandomlevelbyalmosttwoordersofmagnitude,whichgivesus(additional)con dencethatthevastmajorityoftheradioidenti cationsaretrulyassociatedwiththeSMGs.The nite
Table5.AlternativenamesfortheSHADESSourceCatalogue.
SHADES8-mJyaMAMBObBolocamcChapmandLOCKJ—LOCK–LE850.–LE1200.–
LE1100.–
SMMJ–105201+572443850.010100514105201.25+572445.7
105257+572105850.02–00401–
105238+572436850.030200108105238.30+572435.8
105204+572658850.0414003––105204+572526850.0604–––105153+571839850.0827104––105216+572504850.0929042––
105227+572513850.121600616105227.58+572512.4105230+572215850.140601005105230.73+572209.5105151+572637850.1607096–105151.69+572636.0105158+571800850.1703011–105158.02+571800.2105227+572217850.18–009–105227.77+572218.2
105200+572038850.2432–––105203+571813850.27–00704–105130+572036850.2911–––
105207+571906850.3012––105207.49+571904.0105155+572311850.3318012–105155.47+572312.7
105202+571915850.4021–––
105159+572423850.410801417105200.22+572420.2
105148+572838
850.76
–
–
15
–
a)Scottetal.(2002).
b)Greveetal.(2004);Ivisonetal.(2005).c)Laurentetal.(2005).d)Chapmanetal.(2005).
Figure2.HistogramsofpositionaloffsetsbetweenthepositionsoftheSMGsandthoseofthecounterparts(left:radio;right:24µm),inR.A.(α,thickblue),Dec.(δ,red)andbothtogether(black).Thedashedlinesshowtheexpecteddistributionandabsolutelevelforarandomlydistributedpopu-lationwiththeaveragecountsseenintheLHandSXDFimages.ThedottedlinesshowGaussian tswithσ=3.2arcsecwhichwereconstrainedtobecentredatα=δ=0arcsec.
searchradiuswithinwhichwehavehuntedforradiocounterpartsexplainswhytheobservednumberofcounterpartsfallsbelowthatpredictedforarandompopulationintheoutermostbinsofFig.2.NotethatFig.2usesalltheradioidenti cations,ratherthanjustthosewiththelowestPvalues,soanybiaspresentisdueonlytothe nitesearchradiiusedto ndradioemittersforthisanalysis(12.5arcsec).
Havingcorrectedtheobserveddistributionsfortheexpectedunrelated‘ eld’radiosources(thoseinthebackgroundandfore-ground),aGaussian tcentredatα=δ=0arcsec,showninFig.2,yieldsaFWHMof7.5±0.7arcsec(7.4±0.6arcsecifthecentroidisunconstrained).Thistranslatesinto α= δ=FWHM/2.354=3.2arcsec.Ourcorrectionfortheexpected‘ eld’sourcesshouldhavedealtwithanybroadeningduetoradiosourcesunrelatedtotheSMGs.ThemedianSNRoftheradio-detectedsam-pleusedinthisanalysisis3.0,aftercorrectionforMalmquist-typebias,whichimpliesthat α= δ=0.66θ(SNR) 1,adoptingθ=14.5arcsec,i.e.10percenthigherthanexpected.
c0000RAS,MNRAS000,000–000
Determining an accurate position for a submm galaxy (SMG) is the crucial step that enables us to move from the basic properties of an SMG sample - source counts and 2-D clustering - to an assessment of their detailed, multi-wavelength properties, their con
Identi cationofsubmillimetregalaxiesintheSHADESSourceCatalogue
9
Table6.Identi cationsummary.
NicknameRobustidenti cation?
NicknameRobustidenti cation?
LOCK850.01 SXDF850.01 LOCK850.02 SXDF850.02 LOCK850.03 SXDF850.03 LOCK850.04 SXDF850.04 LOCK850.05SXDF850.05 LOCK850.06 SXDF850.06 LOCK850.07 SXDF850.07 LOCK850.08 SXDF850.08 LOCK850.09 SXDF850.09LOCK850.10 SXDF850.10 LOCK850.11SXDF850.11 LOCK850.12
SXDF850.12 LOCK850.13SXDF850.14 LOCK850.14SXDF850.15LOCK850.15 SXDF850.16 LOCK850.16 SXDF850.17LOCK850.17 SXDF850.18 LOCK850.18 SXDF850.19 LOCK850.19 SXDF850.20LOCK850.21 SXDF850.21 LOCK850.22 SXDF850.22LOCK850.23SXDF850.23 LOCK850.24 SXDF850.24 LOCK850.26
SXDF850.25LOCK850.27SXDF850.27 LOCK850.28SXDF850.28 LOCK850.29 SXDF850.29 LOCK850.30 SXDF850.30 LOCK850.31 SXDF850.31 LOCK850.33 SXDF850.32LOCK850.34
SXDF850.35 LOCK850.35SXDF850.36LOCK850.36SXDF850.37 LOCK850.37 SXDF850.38 LOCK850.38 SXDF850.39LOCK850.39SXDF850.40 LOCK850.40 SXDF850.45LOCK850.41 SXDF850.47
LOCK850.43 SXDF850.48LOCK850.47SXDF850.49LOCK850.48 SXDF850.50 LOCK850.52 SXDF850.52 LOCK850.53 SXDF850.55
LOCK850.60SXDF850.56LOCK850.63
SXDF850.63LOCK850.64SXDF850.65LOCK850.66SXDF850.69LOCK850.67 SXDF850.70LOCK850.70 SXDF850.71 LOCK850.71 SXDF850.74 LOCK850.73 SXDF850.76LOCK850.75SXDF850.77
LOCK850.76 SXDF850.86LOCK850.77 SXDF850.88LOCK850.78SXDF850.91LOCK850.79 SXDF850.93LOCK850.81SXDF850.94LOCK850.83 SXDF850.95LOCK850.87 SXDF850.96 LOCK850.100
SXDF850.119
indicatesarobust(P 0.05)radioidenti cation. indicatesarobustidenti cationat24µm.
coincidentradioand24-µmemission(bothP 0.1)yieldsreliableidenti cation. indicatesmultiplerobust(P 0.05)identi cations.
closevisualinspectionofthedatarevealsmorethanonegoodidenti cation.
This
procedurewasreplicatedforthe24-µmcounterpartslistedinTables3and4,correctingforblank- eld,backgroundsourcedensitiesof4.5and1.2arcmin 2tolimitsof50and150µJy,respectively.Theresult,shownintherightpanelofFig.2,isawiderdistribution,borneoutbythebest- tGaussian:aFWHMof10.7±1.0arcsec,whenconstrainedtobecentredatα=δ=0arcsec,or α= δ=4.5arcsec.Thelowaccuracyofthe24-µmpositionsrelativetothosedeterminedat1.4GHzcanaccountformostoftheextrawidth.
c0000RAS,MNRAS000,000–000Figure3.Left:Cumulativedistributionofradialoffsetsbetweentheradioandsubmmpositionsforthe62statisticallysecure(P 0.05)radioidenti- cations.Thedashedlineshowsthepredicteddistribution(1 e r2/2σ2
)assumingthatthepositionaluncertaintyinR.A.orDec.isgivenbyσ=0.6θ/SNR,asdiscussedinAppendixB,wherewehaveusedthemeanSNRsforthesample.AKStestyieldsaprobabilityof0.57thatthedataareconsistentwiththemodel.Right:Thesamepredictedprobabilitydis-tribution(dashedline),thistimecomparedwiththecumulativedistributionforall83sourceswithcandidateradioidenti cations(i.e.includingthoseforwhichP>0.05).Thepoor tintheright-handplot–aKStestyieldsaprobabilityof0.0003thatthedataareconsistentwiththemodel–demon-stratestheimportanceofusingthePstatisticto lterthecandidatelistofassociations.
Asasecondwayofquantifyingthisapproach,wecancon-sideronlythesubsetof‘robust’radioidenti cations(P 0.05)
onthebasisthatthisshouldprovidethemostsecuremeasureofthetruedistributionofuncertaintyinthesubmmpositions.Thera-dialoffsetdistributionforthissubsetof62sourcesisshownintheleft-handpanelofFig.3,whereitiscomparedwiththepredicted
cumulativedistribution(1 e r2/2σ2
),usingσ=0.6θ(SNR) 1asdiscussedinAppendixB.Forthiscalculationwehaveadoptedθ=14.5arcsecandSNR=3.17(theaverageSNRforthedeboosted850-µm uxdensitiesofthese62sources).Itisclearfromthisplotthatthepredicteddistributionisinexcellentagreementwiththatobservedforthissecuresubsetofidenti edsources;indeed,aKolmogorov-Smirnov(KS)testyieldsa57-per-centprobabilitythatthedataareconsistentwiththemodel.Forcompleteness,theright-handpanelinFig.3showsthesamepredictedprobabilitydis-tribution,thistimecomparedwiththecumulativedistributionforall83sourceswithcandidateradioidenti cations,i.e.includingthoseforwhichP>0.05.ThesameKStestnowyieldsaproba-bilityoflessthan0.1percent.Theseplotsgivecon dencethattheradialoffsetdistributionofsecureidenti cationsisconsistentwiththatexpectedgiventheJCMT’sbeamandthedeboosted850-µm uxdensitiesoftheSHADESsourcesandthatthereisnoaddi-tionalsigni cantsourceofastrometricerrorinthesubmmmaps.TheyalsodemonstratetheimportanceofusingthePstatisticto lterthecandidatelistofassociationsforrobustidenti cations.
Inconclusion,thereisnoevidenceforsigni cantadditionalsourcesofpositionalerror.ForanSMGdiscoveredinasubmmsurveywhereaMalmquist-typebiascorrectionhasnotbeenap-plied,wecanparameteriseitspositionaluncertaintyasfollows.Itspositionhavingbeendeterminedaftersmoothingwiththebeam,a
circleofradius0.91θ(SNR2app 1/2
,forpower-lawcountsoftheformN(>f)∝f (2β
,βhas+a4))
68percentchanceofcontainingthesubmmemitter(whereSNRappistherawSNR,un-correctedfor uxboosting–seeAppendixB),or0.91θ(SNR) 1ifacorrectionhasbeenapplied.Thesecorrespondtoconventional1-σerrorcircles.
Determining an accurate position for a submm galaxy (SMG) is the crucial step that enables us to move from the basic properties of an SMG sample - source counts and 2-D clustering - to an assessment of their detailed, multi-wavelength properties, their con
10Ivisonet
al.
Figure4.Deboostedsubmm uxdensityversustheangularseparationofthecounterpartsforSMGswithmorethanonerobustradioidenti cation(P 0.05)within8arcsecofthe850-µmposition.Pointsdenoteradiodoubles(D)andtriples(T).Theaverageofthesingle,unresolvedorbarelyresolvedradiocounterpartsisrepresentedbyadashedline.Thepaucityofdataatverylowandhighseparationsisduetoour nitespatialresolutionontheonehandandtoouruseofa nitesearchareaandthePstatisticontheother.Thehistogramshowsthedistributionofangularseparations,scaledarbitrarily,formultipleidenti cationsfoundintheMonte-Carlosimulationsdescribedin§5.
Wereturnnowtoourinitialmotivationforthisstudyofposi-tionaluncertainty,namelythefeasibilityofaspectroscopicredshiftdistributionforSMGsbasedonKMOSnear-IRspectroscopyofanunbiasedsample.SuchaprogrammecouldaffordtoloseoneSMGduetopositionalerrorduringasingledeploymentofthe24KMOSIFUs.EachIFUcovers2.8×2.8-arcsec2so,leavingroomforsee-ingeffects,werequire2σ~2.5arcsectoensurethat95.6percentofSMGsfallwithinthecentral5arcsec2ofeachIFU.Ourpa-rameterisationsuggeststhatthislevelofaccuracyrequiresanSMGsamplecutatSNR 20.AdoptingthesourcecountsofCoppinetal.(2006),asourcedensityof~2200deg 2–suf cienttoemployall24KMOSIFUs–wouldrequirethatweprobethe3-mJySMGpopulation;this,inturn,wouldrequirethatwedelvewellbelowthe850-µmconfusionlimittoensureSNR 20,orthatweutilisepositionsdeterminedusingthe450-µmdatathatareacquiredsi-multaneouslybySCUBA-2.OptimalexploitationofKMOSmayrequiresharingtheIFUswithotherprogrammesinallbutthedeep-estSCUBA-2survey elds.
5MULTIPLERADIOCOUNTERPARTS
AnumberofSMGswithmore
thanonerobust(P 0.05)radiocounterpartareapparentinTables1–2andFigsA1–A2:sevenintheLHand veintheSXDF.Thistendencyfor~10percentofSMGstohavemultipleradioidenti cationswasnotedpreviouslybyIvisonetal.(2002)andPopeetal.(2006).TheprobabilityofanSMGpossessingtwostatisticallysigni cantradiocounterpartswasquanti edbyplacing106fakesourcesintotherealLHandSXDFradio eldsandcountingthenumberofP<0.05radiocoun-terparts–asimpleMonte-Carloapproach.ThisrevealedthatthecalibrationofthePstatisticissecure,withP=0.05yielding5.05spuriousassociationsforevery100fakeSMGs.Multiplerobustcounterpartsarefarrarer,however.Forevery100fakeSMGsthesimulationssuggestthatonly0.22willhavemorethanonesecure
Figure5.Histogramofdeboostedsubmm uxdensityforthefullSHADESSourceCatalogue.Cross-hatchedareasrepresentthe12SMGswithtwoormoreradiocomponentswithin8arcsecofthe850-µmposition,associatedrobustlywiththeSMG(P 0.05);single-hatchedareasrepresentthesevenSMGswithmultiple,signi cant24-µmidenti cations.FiveSMGshavemultiple,signi cantradioand24-µmidenti cations.
radioidenti cationbychance,a guredominatedbydoubles,soat rstsighttheobservedtendencyformultiplerobustradiocoun-terpartsishighlysigni cant.However,weknowthataroundhalf(65)oftheSHADESSMGshavearealassociationwitharadioemitter,or59afteraccountingforthesixspuriousidenti cationsweexpect(0.05×120),soshouldwebesurprisedto ndadozenSMGswithmultipleradioidenti cations?Oftheradio-identi edSHADESSMGs,5percentwillbespuriouslyassociatedwithan-otherradiosource.Wethusexpectthreemultipleidenti cationswhereasweseeadozen:asigni cantdifference.
Lookingatthisanotherway,thefractionofradio-identi edSMGswithmultipleradiocounterpartsis18.5±5.3percent(12/65),15.4±4.9percent(10)withseparationsbelow6arcsec.Howfrequentaresuchcasesamongstthegeneralradiopopu-lation?TheproportionofradiosourcesintheSHADES eldswithradiocompanionswithin4,6,8and10arcsecare(cumula-tively)1.2±0.3,3.9±0.5,7.1±0.6and10.3±0.7percent(Pois-sonuncertainties).ThenumberofSMGswithseparationsbelow10arcsec,andparticularlybelow6arcsec,isthussigni cant.Inter-estingly,brightSMGsmakeuponeinsevenofallradiomultipleswithseparationsbelow6arcsec.
Whatcausesthismultiplicity?Atleastthreemechanismscouldberesponsible:AGN-drivenjets;physicalinteractions;andconfusion.
Discriminatingbetweenthesemechanismsisextremelydif -cult.The rst–jets–couldberevealedviatheirmorphologyortheirradiospectralindex,buttodateneitherpropertyhasbeenprobedforasigni cantsample.Thespectroscopicevidencere-quiredtorevealthesecondpossibility–aphysicalassociation–isavailableonlyrarelyintheSHADES elds,althoughanumberoflinked,multiplesystemswithfew-arcsecseparationsandnear-identicalredshiftshavebeendocumentedelsewhere(Ivisonetal.1998,2000;Ledlowetal.2002;Nerietal.2003;Smailetal.2003a;Chapmanetal.2005;Tacconietal.2006)whichleaveslittledoubtthatmanySMGswithmultipleradioidenti cationsareinteraction-drivenstarburstswithseparationsoften(orafewtens)ofkpc.
Fig.4showsaplotofsubmm uxdensityversusangularsep-
c0000RAS,MNRAS000,000–000
Determining an accurate position for a submm galaxy (SMG) is the crucial step that enables us to move from the basic properties of an SMG sample - source counts and 2-D clustering - to an assessment of their detailed, multi-wavelength properties, their con
Identi cationofsubmillimetregalaxiesintheSHADESSourceCatalogue
11
Figure6.Toprow:fromlefttoright,plotsofthecumulativeradio-identi edfractionfortheLHSMGsample( lledcircles)andtheSXDFSMGsample(opencircles)againstsubmmSNRbefore uxdeboosting,submmSNRafterdeboosting,850-µm uxdensityafterdeboostingand850-µmnoiselevel.Middlerow:thesameplots,butforsourceidenti cationat24µm.Bottomrow:thesameplots,allowingforidenti cationsat24µm,1.4GHz,orcoincidentweakemissionatbothassummarisedinTable6.
arationforthoseSHADESSMGswithmorethanoneradiocoun-terpartandweseenocontradictionoftheprevioustrend:twothirdsofthemultipleidenti cationshaveseparationsof2–6arcsec.How-ever,ourdataandourapproachbiasusagainst ndingsystemswithsmallerandlargerseparations,ascanbeseenbythedistributionofseparationsfoundforfakeSMGswithmultipleradiocounter-partsduringourMonte-Carlosimulations(Fig.4).High-resolutionradioimagingfromMERLINhasprovidedexamplesofmultiple,discreteradiosourcesseparatedby0.2–2arcsec(Chapmanetal.2004;Biggsetal.,inpreparation),thoughtheyarerare.
ThesizeoftheSHADESsurveyprovidesauniqueopportu-nitytoprobethethirdmechanism–confusion.Thesteepnessofthesubmmcountsmayyieldexampleswheretwoormorefaint,unrelatedSMGsshareasightlineandthusconspiretocreateaseeminglybrightSMG.ThereisapproximatelyoneSMGinthe2<S850µm<4mJy uxdensityrangeforevery4.3arcmin2ofsky,accordingtothedifferentialcountspresentedbyCoppinetal.(2006).Wethusexpect185±50suchsourcesintheSHADES elds.Theprobabilityofa2–4-mJySMGlyingwithin7arcsecofanothersourceis~1percent,sowecouldexpecttoseetwooftheseamalgamatedsourcesat uxdensitiesbetween4and8mJyintheSHADESsample.This uxdensityrangeaccountsfor62.5
c0000RAS,MNRAS000,000–000
percentofthefullsample,sowemightexpectaroundthreesuch
sourcesintotal(perhapsrathermoreifweincludedamalgamationsoffarmorecommon,faintersources).Ofthesethree,twoshouldhavearealradioidenti cation;onemayhaveseveral.Thedif cultywefaceinexploringthissmallsubsetofamalgamatedsourcesisinknowingwhichoftheSHADESSMGstheyare.Onepredictionmightbethattheyareexpectedtohavefaintercounterpartsatotherwavelengths,buteventhismaybepremature(Serjeantetal.2007).WemustcontentourselveswiththeknowledgethattheyshouldberevealedviaSCUBA-2450-µmimaginginthenearfuture.WithoutspectroscopicdatawecannotdeterminewhetherphysicalinteractionsorconfusionmakeupthemajorityoftheSMGswithmultipleidenti cations,letalonewhetherbrightSMGsarespecialcaseswheretwomassivecomponentsaremerging,assuggestedbySmailetal.(2003b).Themediandeboostedsubmm uxdensityoftheSHADESSourceCatalogueis5.0mJy;theerror-weightedmean850-µm uxdensityofSMGswithmorethanoneradiocounterpartis5.8±0.4mJy;thatforacomparisonsam-ple,the48SMGswithasingleP 0.05radiocounterpart,is5.4±0.2mJy,sothesimplestapproachyieldsnoevidenceofadifferencebetweenSMGswithsingleandmultipleidenti cations.Fig.5showsthedistributionofdeboostedsubmm uxdensityfor
Determining an accurate position for a submm galaxy (SMG) is the crucial step that enables us to move from the basic properties of an SMG sample - source counts and 2-D clustering - to an assessment of their detailed, multi-wavelength properties, their con
12Ivisonetal.
thewholeSHADESSourceCatalogueandforthosesourceswithmultiplerobustcounterpartsat1.4GHzor24µm.Takingtheme-dianSHADES uxdensityasourthreshold,eightmultipleiden-ti cationslieaboveand11liebelow,respectively(sixapieceus-ingonlytheradio).However,asour uxdensitythresholdrisesto10mJysothefractionofsourceswithmultipleidenti cationsrisesfrom15/111to4/9(or8/111to4/9usingonlytheradio);evenig-noringthehighprobabilitythatoneoftheremaining vebrightsourcesmaybespurious(SXDF850.45)andthatanotherhassev-eralpossiblecounterparts(Lock850.34–Table6),thisisasignif-icanttrend.Itisplausiblethatthesesourcesareexamplesofcon-fusion(i.e.amalgamatedsources)butwenotethatthephysicallylinkedsystemsreportedtodateareoftensimilarlybright.
Weconcludethattheincidenceofveryhigh uxdensityandcounterpartmultiplicityareweaklylinkedandthatthecaseforapreferredseparationbetweenmultiplecounterpartsisplausiblebutnotproven.Inparticular,wenotethatalmosthalfofthebrightestnineSMGs–all>10mJy–havemultipleradiocounterpartsandthatallhaveseparationsintherange2–6arcsec,or20–70kpcattheirlikelyredshiftsandataninclinationof45 tothesky,per-hapsenablingef cientgasfuelingforcentralstarburstsorAGNviaoverlappinggalacticdisks—seethequalitativediscussionandillustrations(particularlyFigs11–13)inthemergersimulationsofSpringel,DiMatteo,&Hernquist(2005)whereaparticularlyin-tenseburstofactivityoccurson rstpassageforsystemsthatlackprominentbulges,withgalaxyseparationsof~30kpcforthesub-sequentfewtensofMyr.
6RADIOANDMID-IRIDENTIFICATIONTRENDSANDSUBMMSAMPLEREFINEMENTFollowingIvisonetal.(2002),weseektoexploittheclearpre-dictionthatspuriousSMGswilllackradioormid-IRcounterparts.Genuinesourcescan,ofcourse,evaderadioormid-IRdetection–becausetheylieatextremeredshift,forexample(seeIvisonetal.2005)–butgeneraltrendsintheidenti cationratemaybeevident.InthissectionwethereforeexplorewhatcanbelearnedabouttheSMGswithoutcounterparts.
Fig.6showsthecumulativeidenti cationrateforSMGsintheLHandSXDF eldsasafunctionofsubmmSNR(beforeandafter uxdeboosting),deboostedsubmm uxdensityandsubmm uxuncertainty.6.1Radiotrends
Lookingattheradioidenti cationtrendsasfunctionsofsubmm uxdensityandnoise,weseetherecoveryratetailingoffatthefaintest uxdensitylimits(<5mJy)inSXDF,whereastherateisremarkably atforfainter uxdensitiesintheLH eld.Both eldsshowimprovingidenti cationratesasthesubmmnoisedeclines,despitethedeboostingproceduresoutlinedinPaperII–aworryingtrend,thoughweshouldbearinmindthatsearchingforidenti -cationswithina xedradiusmustactasabiasagainstlow-SNRsources.Forthehighestvaluesofsubmm uxdensityandnoiseweseesimilaritieswithtrendsdiscussedbyIvisonetal.(2002)forthe8-mJySurvey,i.e.thebrightestsourceineach eldliesinaregionwithhighnoise,andneitherhasarobustradiocounterpart.
TheSXDFradioidenti cationrateversusrawsubmmSNRshowsasteepdeclinebelowanSNRof4;after uxdeboostingthiseffectismitigatedsomewhat,withmatchingtrendsintheSXDFandLH elds.Itisnoteworthythattheoverallradiorecoveryrate
inSXDFisover10percenthigherthanintheLH eld,despitetheshallowerdepthoftheSXDFradioimaging.Weattributethistothreeeffects,eachofwhichwebelievecontributestotheunexpect-edlylowLHidenti cationrate: rst,theLHradioimageisasinglepointing,designedoriginallytoidentifySMGsinthesmall8-mJySurvey eld(cf.amosaicofthreeinSXDF),sotheperniciousef-fectofbandwidthsmearingwillbeevidentforasigni cantlylargerfractionoftheSHADES eldinLHthaninSXDF;second,al-thoughitisclearlyusefultoworkwiththebestpossibleradiodata,deepimaginginevitablyyieldsmorefaint,unrelated,backgroundsources,causingPvaluesforrelativelybrightcounterpartstoriserelativetothosecalculatedforalowersourcedensity;third,itispossible(thoughithasyettobeshownunambiguously–Ivisonetal.2002;Chapmanetal.2004;Muxlowetal.2005)thatasignif-icantfractionoftheemissioninsomeSMGsisresolvedbyhigh-resolutionradiodata.Thattheseeffectsaresigni cant,collectively,isdemonstratedbythesigni cantlyhigherSMGidenti cationrateintheshallower,lowerresolutionSXDFdata;inaddition,sevenLHSMGs(LOCK850.10,.34,.37,.38,.40,.77and.100)aredetectedrobustlyonlyinthenoisier,low-resolutionradioimage,thoughwenotethatinseveralcasesthe4.2-arcsecFWHMimagealonedoesnotallowustodifferentiatebetweenplausiblespectroscopictar-gets.Thereareseverallessonshere:ensureinterferometricdatacontainanadequatefractionofshortspacings–asynthesisedbeamwith1.5–2arcsecFWHMprovidesagoodcompromiseforidenti -cationofFIR-luminousgalaxies;wherenecessary,i.e.whentheareaofinterestissimilartothatoftheradiointerferometer’spri-marybeamandthespectralresolutionispoor(δλ/λ<1000),obtaindatainacompactmosaicofpointingsratherthanasingle,deeppointing.
6.2Mid-IRtrends
Thetrendofoverallrecoveryrateisreversedinthemid-IR,theLHyieldinga20percenthigheridenti cationratethantheSXDF.Thereasonisobvious,however:itisduetothesubstantialextradepthoftheLHSpitzer24-µmdata(σ=11versus47µJy).OnlyoneSMGisidenti edsolelyonthebasisofitsmid-IRemissioninSXDFcomparedwithtenintheLH.Forboth eldsthedeclineatlowdeboostedSNRislessmarkedthantheradiotrend.Againstsubmm uxdensityandnoise,the24-µmidenti cationtrendsforboth eldsmatchthoseatradiowavelengths(withtheaforemen-tioned20percentoffsetfortheSXDFsources);theverybrightestsourcesagainlackrobustcounterparts.
6.3Overalltrends
ThelowerrowofplotsinFig.6showtheoverallidenti cationtrends–thefractionofsourcesidenti edat1.4GHzand/or24µm,includingthethreecasesmentionedin§3whereweakradioand24-µmcounterpartsarecoincident(oneofwhichisthebrightestLHsource,LOCK850.34).
Theidenti cationtrendsaresimilarforthetwoSHADES elds:identi cationisessentiallycompleteaboveadeboostedsubmmSNRof~4withanabruptstepdownto60–70percentthereafter;also,successratesimproveasthesubmmnoisedeclines.TheSXDFidenti cationratetailsoffbelowadeboostedsubmmSNRof2.5andatsubmm uxdensitiesbelow5mJy.ThismaybeduetothelimiteddepthoftheSXDFradioand24-µmimagingratherthananyde ciencyoftheSXDFcatalogue,butwenotethatitisastrongtendency.
c0000RAS,MNRAS000,000–000
Determining an accurate position for a submm galaxy (SMG) is the crucial step that enables us to move from the basic properties of an SMG sample - source counts and 2-D clustering - to an assessment of their detailed, multi-wavelength properties, their con
Identi cationofsubmillimetregalaxiesintheSHADESSourceCatalogue
13
z
HG4.1S/mµ42S z
Figure7.RatioofS24µm/S1.4GHzasafunctionofredshift,z,forSHADESsourceswithrobustcounterparts( lledcircles:LH;emptycir-cles:SXDF).Thosewithoutspectroscopicredshifts–themajority–areplottedarbitrarilyatz=2.3.ThetracksofArp220,Mrk231andNGC6240areshowntogetherwithasampleoffaintradiosourcesinSXDF(smalldots–Ibaretal.,in
preparation).
Figure8.Log10S24µm/S850µmversuslog10S1.4GHz/S850µmforSHADESSMGswithbothmid-IRandradioidenti cations( lledcircles),withonlyradioidenti cations(squares)andwithonlymid-IRidenti ca-tions(opencircles).Arepresentativeerrorbarisshown,lowerleft.TheredshiftparameterisationofChapmanetal.(2005)isshownasahorizontalbaratlog10S24µm/S850µm=0(see§7.2).
Summarisingtheseplots,thebestavailablecomplementarydataintheLH–equivalenttothoseavailableintheGreatObserva-toriesOriginsDeepSurvey(GOODS)northern eld–allowsustoidentifyrobustlyovertwothirdsofSMGstocurrentsubmmdetec-tionlimits.Theobservedtrendsinidenti cationrategivenostrongrationaleforrejectinganysourcesfromtheparentSHADESSourceCatalogue,althoughaslightquestionmarkisthrownoversomeofthelowestSNRsources.
c0000RAS,MNRAS000,000–0007CONSTRAINTSFROMSPECTRALINDICES
7.1S24µm/S1.4GHz
Sincethespectralslopesat24µmand1.4GHzaresimilar,itmayproveinstructivetoexaminethebehaviourofS24µm/S1.4GHzasafunctionofredshift,asshowninFig.7.Weexpectthisplottobe-trayAGNcontributionstotheradio uxdensityinso-called‘radio-excessAGN’(Drakeetal.2003;Donleyetal.2005)or,conversely,‘mid-IR-excessAGN’whichhaveQSO-heateddustbutlittleornoAGN-relatedemissionintheradio.Forstar-forminggalaxiesthisratioistightlyconstrainedouttoz=1(Appletonetal.2004).GalaxieswithlowvaluesofS24µm/S1.4GHz,i.e.thosewithstrongradiowithrespectto24-µmemission,areunlikelytobedominatedbystarformation.
TheSHADESSMGsshareapproximatelythesamedistribu-tionofS24µm/S1.4GHzvaluesastheotherradiosourcesinSXDF(Ibaretal.,inpreparation).Fig.7showstheredshifttracksofArp220,NGC6240andMrk231–archetypalultraluminousIRgalaxieswithincreasingdegreesofAGNcontribution.MeasuredvaluesofS24µm/S1.4GHzfortheSHADESSMGsareconsistentwithanyoftheseSEDsbutMrk231isthepreferredtemplate,implyinganAGNcontributiontothemid-IRluminosity.Onlyatz<1couldthemostextremeSMGbeclassi edcon dentlyashavingaradioexcess.7.2S850µm/S1.4GHz
Hughesetal.(1998)andCarilli&Yun(1999)pointedoutthevalueofS850µm/S1.4GHzasanindicatorofredshiftforSMGs,atleastforz<3.Smailetal.(2000)andIvisonetal.(2002)werethe rsttoemploythetechniqueforsigni cantsamplesofSMGs, ndingmedianredshifts,z>~2.
Chapmanetal.(2005)foundthattherelationshowedalargedispersionfortheirsampleofradio-identi edSMGswithspectro-scopicredshifts,indicativeofarangeofSEDs.Theynotedthatapurelysubmm-selectedsampleshouldshowanevenwiderrangeofS850µm/S1.4GHzthantheirradio-identi edSMGs,sincetheneedforanaccurateradiopositionbiasesthesampleinredshiftandtem-perature.
Thesurprisingly attrendidenti edbyChapmanetal.,un-correctedforaprobableredshift-dependent~0.3dexshiftat-tributabletotheirradioselectioncriteria,wasparameterisedasS850µm/S1.4GHz=11.1+35.2z.Thisparameterisationwasnotintendedasacarefulphotometricredshifttechnique–ther.m.s.scatterinredshiftis~1,afterall–butlikelyremainsthebestwaytoestimatethemedianredshiftofradio-identi edSMGsamples.Applyingthistooursampleof65SMGswithrobustradiocoun-terpartsyieldsamedianredshiftof2.8,withaninterquartilerangeof1.3–3.8,somewhathigherandbroaderthanthespectroscopicredshiftdistributionreportedbyChapmanetal.(medianz=2.2,interquartile1.7–2.8,beforetheirsmallcorrectionfortheradiose-lectionfunction).TheChapmanetal.parameterisationisnotap-propriateforSMGswithoutradioidenti cations,butfortheentireSHADESsample(adoptingthelimitsinTables1–2forthoselack-ingformaldetections)itindicatesamedianredshiftof3.3.
ThedifferencebetweenthedistributionreportedhereandthatofChapmanetal.(2005)isquitemarked,butcanbeexplainedbyavarietyofeffects:spectroscopicbias; eld-to- eldvariations;strongclusteringoftheSMGpopulation(Blainetal.2004);ouradoptionofdeboosted uxdensitiesforallSHADESsources(alargeproportionoftheChapmanetal.sampleislikelytohavesuf-feredasubmm uxdensityboostofoneformoranother);and,not
Determining an accurate position for a submm galaxy (SMG) is the crucial step that enables us to move from the basic properties of an SMG sample - source counts and 2-D clustering - to an assessment of their detailed, multi-wavelength properties, their con
14Ivisonetal.
least,thedif cultyofmeasuringaccurateandconsistentradio uxdensitiesusingdatawithdifferentuvcoverage.
Fig.8showsalog–logplotofS24µm/S850µmversusS1.4GHz/S850µmforSHADESSMGs,withdifferentsymbolsrepresentingidenti cationsmadeindifferentwavebands(radioplusmid-IR;mid-IRonly;radioonly).Aswehavediscussed,S1.4GHz/S850µmissensitivetoredshift(andtemperature)andtheChapmanetal.parameterisationisshownasahorizontalbar.Itisapparentthat24-µm uxdensityiscorrelatedsigni cantlywithredshift,asexpectedfortheKcorrectionatthatwavelength.TheSMGwithS1.4GHz/S850µm>0.1isSXDF850.21,themostobvi-ousexampleofalocalgalaxyinthesample(z=0.044,Simpsonetal.2006;seeAppendixA,Fig.A2).
8THEDIAGNOSTICPOWEROFMID-IRCOLOURIvisonetal.(2004)usedacolour-colourplottoexploitthestrongdiagnosticpotentialofthemid-IRfordiscriminatingbetweengalaxiesdominatedbystarburstsandAGN.Keyspectralindicesforhigh-redshiftgalaxiesareavailablebetween3.6and24µmsincetherest-frame~3–10µmslopeforstarburstsissteeperthanforAGN,witha atterregionbetween1and3µm,whereasAGNexhibitpower-lawspectracoveringrest-frame~0.2–10µm(e.g.Mrk231).
Fig.9showsS24µm/S8µmversusS8µm/S4.5µm.Weexpectthelow-S8µm/S4.5µmportion–theleftside–tobeoccupiedbyz>~0.7starbursts,representedherebytheredshifttrackofArp220.High-redshiftstarburstsareexpectedinthelowerleftre-gionofFig.9,butspectralfeaturesinArp220’sSEDyieldsev-eralkinkswhichlimitthediagnosticpoweroftheplot;power-lawAGN,representedinFig.9byMrk231,trackleft-to-rightwithin-creasingredshiftacrossthelowerthirdoftheplot,returningtotheleftonlyz>~4.TheredshifttrackofNGC6240–aclassi-calCompton-thickAGNdisplayingmid-IRPAHfeaturesindistin-guishablefromthoseofastarburstgalaxy–overlapssigni cantlywiththecolour-colourspaceoccupiedbyArp220,atz~0.4andatmuchhigherredshifts,butmostoftheconfusingoverlapoccurswhereweexpectNGC6240-typeSEDsatz~0.6andMrk231-likeSEDsatz>6.
DoSMGsstandoutfroma24-µm-selectedSpitzersampleincolour-colourspace?Fig.9showsanindependentgalaxysam-pleselectedat24µmintheLH,atdepthscommensuratewithourSpitzeridenti cations,andwecanseethatthedataareclus-teredalongthetrackoccupiedbyArp220-likeSEDsforz 0.7,withasigni cantnumberofsourcesalongthetrackde nedbyaMrk231-likeSED.SMGsaresimilarlypositionedanddonotstandoutclearlyfrom24-µm-selectedgalaxies.However,thehatchedareasofFig.9–thosecolourcombinationswherewemightex-pectto ndSMGswiththehighestredshifts(z>~4)–arewellpopulatedwithSMGs.ThefractionofSMGsintheseregionsissigni cantlylargerthanforthecontrolsample:we ndonly14percentofthe4,457mid-IR-selectedgalaxiesinthehatchedregions.BasedontheChapmanetal.parameterisationofS850µm/S1.4GHz,theirmedianredshiftishigherthanthatoftheradio-detectedfrac-tionofSHADES,3.2versus2.8,althoughwenotethatsomeofthebestz<~1candidatesalsofallintheseregions,e.g.SXDF850.52.Nevertheless,itseemssensiblethatanysearchforahigh-redshiftpopulationofSMGsshouldbaseitstargetselectiononacombina-tionoftheS850µm/S1.4GHz,S1200µm/S850µm(Ealesetal.2003;Greveetal.2004),S24µm/S8µmandS8µm/S4.5µmcolours.
9CONCLUDINGREMARKS
Wehavedeterminedthemostlikelyradioand/ormid-IRidenti ca-tions,andhenceaccuratepositions,fortheSHADESSourceCata-loguepresentedbyCoppinetal.(2006).Wehaveidenti edrobustcounterpartstoovertwothirdsofthissample(54and46percentat1.4GHzand24µm,respectively),presentingoptical,24-µmandradioimagesofeachSMG.
Employingthesubmm/radio uxdensityratioasanindicatorofredshift,guidedbytheChapmanetal.(2005)parameterisation,we ndamedianredshiftof2.8fortheradio-identi edsample,somewhathigherthanthespectroscopicmedian.
Wepresentadiagnosticcolour-colourplot,basedonSpitzerdata,inwhichweidentifyregionscommensuratewithSMGsatveryhighredshift.
Wefurtherexploitouridenti cationstoshowthat:for pruningobservedthetrendsparentinSHADESidenti cationsamplerate(cf.giveIvisonnostrongetal.2002);rationaleexpectations, uncertaintieswithinnosubmmevidencepositionforsigni cantareconsistentadditionalwiththeoreticalsourcesofpositionalerror;
than signi cantlywouldbeexpectedmoreSMGsbychance,havemultipleindicativerobustofphysicalcounterpartsasso-ciations.ThesemultiplesystemsaremostcommonamongstthebrightestSMGsandaretypicallyseparatedby2–6arcsec,~15–50/sinikpcatz~2,consistentwithearlyburstsseeninmergersimulations.
ACKNOWLEDGEMENTS
AWBacknowledgessupportfromtheAlfredP.SloanFoundationandtheResearchCorporation.ISacknowledgessupportfromtheRoyalSociety.CSandSRacknowledge nancialsupportfromthePPARC.IAandDHHacknowledgesupportfromCONACYTgrants39548-Fand39953-F.
References
AlexanderD.A.,BauerF.E.,ChapmanS.C.,SmailI.,BlainA.W.,BrandtW.N.,IvisonR.J.,2005a,ApJ,632,736
AlexanderD.A.,SmailI.,BauerF.E.,ChapmanS.C.,BlainA.W.,BrandtW.N.,IvisonR.J.,2005b,Nature,434,738
AretxagaI.etal.,2007,MNRAS,submitted(astro-ph/0702503)AshbyM.L.N.etal.,2006,ApJ,644,778
BargerA.J.,CowieL.L.,SandersD.B.,FultonE.,TaniguchiY.,SatoY.,KawaraK.,OkudaH.,1998,Nature,394,248
BargerA.J.,CowieL.L.,SmailI.,IvisonR.J.,BlainA.W.,KneibJ.-P.,1999,AJ,117,2656
BargerA.J.,CowieL.L.,RichardsE.A.,2000,AJ,119,2092BertoldiF.etal.,2000,A&A,360,92
BiggsA.D.,IvisonR.J.,2006,MNRAS,371,963
BinneyJ.,Merri eldM.,1998,GalacticAstronomy,PrincetonBlainA.W.,IvisonR.J.,SmailI.,1998,MNRAS,296,L29
BlainA.W.,KneibJ.-P.,IvisonR.J.,SmailI.,1999,ApJ,512,L87BlainA.W.,ChapmanS.C.,SmailI.,IvisonR.J.,2004,ApJ,611,725
BondJ.R.,EfstathiouG.,1987,MNRAS,226,655
BorysC.,ChapmanS.,HalpernM.,ScottD.,2003,MNRAS,344,385
c0000RAS,MNRAS000,000–000
Determining an accurate position for a submm galaxy (SMG) is the crucial step that enables us to move from the basic properties of an SMG sample - source counts and 2-D clustering - to an assessment of their detailed, multi-wavelength properties, their con
Identi cationofsubmillimetregalaxiesintheSHADESSourceCatalogue
15
Figure9.S24µm/S8µmversusS8µm/S4.5µmcolour-colourdiagramforafaint24-µm-selectedsampleof4,457galaxies(dots)with4.5-and8.0-µmdetections.Robustlyidenti edSMGsareplottedas lledcirclesandlesssecurelyidenti edSMGsasopencircles.Arepresentativeerrorbarisshown,topright.TheredshifttracksofArp220,Mrk231andNGC6240areshown(adoptingSEDsfromRigopoulouetal.1999andSpoonetal.2004),withsquarestoindicateredshift.Hatchedregionsindicateregionsofcolour-colourspacewhereonemightexpectto ndthemostdistantSMGs.
BorysC.,ScottD.,ChapmanS.,HalpernM.,NandraK.,PopeA.,2004,MNRAS,355,485
CarilliC.L.,YunM.S.,1999,ApJ,513,L13CarilliC.L.,YunM.S.,2000,ApJ,530,618
ChapmanS.C.,LewisG.F.,ScottD.,BorysC.,RichardsE.A.,2002,ApJ,570,557
ChapmanS.C.,BlainA.W.,IvisonR.J.,SmailI.,2003,Nature,422,695
ChapmanS.C.,SmailI.,WindhorstR.,MuxlowT.,IvisonR.J.,2004,ApJ,611,732
ChapmanS.C.,BlainA.W.,SmailI.,IvisonR.J.,2005,ApJ,622,772
ClementsD.etal.,2004,MNRAS,351,611CondonJ.J.,1997,PASP,109,166
CoppinK.,HalpernM.,ScottD.,BorysC.,ChapmanS.,2005,MNRAS,357,1022
CoppinK.etal.,2006,MNRAS,372,1621(PaperII)
DannerbauerH.,LehnertM.D.,LutzD.,TacconiL.,BertoldiF.,CarilliC.,GenzelR.,MentenK.M.,2004,ApJ,606,664DonleyJ.L.,RiekeG.H.,RigbyJ.R.,P´erez-Gonz´alezP.G.,2005,ApJ,634,169
DownesA.J.B.,PeacockJ.A.,SavageA.,CarrieD.R.,1986,MN-c0000RAS,MNRAS000,000–000
RAS,218,31
DrakeC.L.,McGregorP.J.,DopitaM.A.,vanBreugelW.J.M.,2003,AJ,126,2237
DuncanW.D.,SandellG.,RobsonE.I.,AdeP.A.R.,Grif nM.J.,1990,MNRAS,243,126
DunlopJ.S.,PeacockJ.A.,SavageA.,LillyS.J.,HeasleyJ.N.,Si-monA.J.B.,1989,MNRAS,238,1171DunlopJ.S.etal.,2004,MNRAS,350,769
DunneL.,ClementsD.L.,EalesS.A.,2000,MNRAS,319,813EalesS.A,LillyS.J.,GearW.K.,DunneL.,BondJ.R.,HammerF.,LeF`evreO.,CramptonD.,1999,ApJ,515,518
EalesS.,LillyS.,WebbT.,DunneL.,GearW.,ClementsD.,YunM.,2000,AJ,120,2244
EalesS.,BertoldiF.,IvisonR.J.,CarilliC.,DunneL.,OwenF.,2003,MNRAS,344,169
EgamiE.etal.,2004,ApJS,154,130FoxM.J.etal.,2002,MNRAS,331,839
FrayerD.T.,IvisonR.J.,ScovilleN.Z.,YunM.,EvansA.S.,SmailI.,BlainA.W.,KneibJ.-P.,1998,ApJ,506,L7FrayerD.T.etal.,1999,ApJ,514,L13FrayerD.T.etal.,2004,ApJS,154,137
GearW.K.,LillyS.J.,StevensJ.A.,ClementsD.L.,WebbT.M.,
Determining an accurate position for a submm galaxy (SMG) is the crucial step that enables us to move from the basic properties of an SMG sample - source counts and 2-D clustering - to an assessment of their detailed, multi-wavelength properties, their con
16Ivisonetal.
VossH.,BertoldiF.,CarilliC.,OwenF.N.,LutzD.,HoldawayM.,LedlowM.,MentenK.M.,2006,A&A,448,823WebbT.M.etal.,2003a,ApJ,587,41
WebbT.M.A.,LillyS.J.,ClementsD.L.,EalesS.,YunM.,BrodwinM.,DunneL.,GearW.K.,2003b,ApJ,597,680WernerM.W.etal.2004,ApJS,154,1
WhittetD.C.B.,1992,DustintheGalacticEnvironment,Cam-EalesS.A.,DunneL.,2000,MNRAS,316,L51
GarrettM.A.,KnudsenK.K.,vanderWerfP.P.,2005,A&A,431L21
GreveT.R.,IvisonR.J.,BertoldiF.,StevensJ.A.,LutzD.,DunlopJ.S.,2004,MNRAS,354,779
GreveT.R.etal.2005,MNRAS,359,1165HollandW.S.etal.,1999,MNRAS,303,659
HollandW.S.,DuncanW.,KellyB.D.,IrwinK.D.,WaltonA.J.,bridge
AdeP.A.R.,RobsonE.I.,2003,SPIE,4855,1HughesD.H.etal.,1998,Nature,394,241
IvisonR.J.,SmailI.,LeBorgneJ.-F.,BlainA.W.,KneibJ.-P.,B´ezecourtJ.,KerrT.H.,DaviesJ.K.,1998,MNRAS,298,583IvisonR.J.,SmailI.,BargerA.,KneibJ.-P.,BlainA.W.,OwenF.N.,KerrT.H.,CowieL.L.,2000,MNRAS,315,209IvisonR.J.etal.,2002,MNRAS,337,1IvisonR.J.etal.,2004,ApJS,154,124IvisonR.J.etal.,2005,MNRAS,364,1025
KnudsenK.K.,vanderWerfP.P.,JaffeW.,2003,A&A,411,343KreysaE.etal.,1998,SPIE,3357,319KreysaE.etal.,2003,SPIE,4855,41LaurentG.T.etal.,2005,ApJ,623,742
LedlowM.J.,SmailI.,OwenF.N.,KeelW.C.,IvisonR.J.,MorrisonG.E.,2002,ApJ,577,L79
LonsdaleC.J.etal.,2003,PASP,115,897LutzD.etal.,2001,A&A,378,L70
MooreG.E.,1965,Electronics,38,8,April19
MortierA.M.J.etal.,2005,MNRAS,363,563(PaperI)MuxlowT.W.B.etal.,2005,MNRAS,358,1159NeriR.etal.,2003,A&A,597,L113
OwenF.N.,KeelW.C.,LedlowM.J.,MorrisonG.E.,WindhorstR.A.,2005,AJ,129,26
PeacockJ.A.,1999,Cosmologicalphysics,CambridgeUniversityPress
PopeA.,BorysC.,ScottD.,ConseliceC.,DickinsonM.,MobasherB.,2005,MNRAS,358,149
PopeA.etal.,2006,MNRAS,370,1185
RengarajanT.N.,TakeuchiT.T.,2001,PASJ,53,433RiekeG.H.etal.,2004,ApJS,154,25
RigopoulouD.,SpoonH.W.W.,GenzelR.,LutzD.,MoorwoodA.F.M.,TranQ.D.,1999,AJ,118,2625ScottS.E.etal.,2002,MNRAS,331,817SerjeantS.etal.,2004,ApJS,154,118SharplesR.M.etal.,2006,SPIE,6269,44
SimpsonC.,DunlopJ.S.,EalesS.A.,IvisonR.J.,ScottS.E.,LillyS.J.,WebbT.M.A.,2004.MNRAS,353,179SimpsonC.etal.2006,MNRAS,372,741
SmailI.,IvisonR.J.,BlainA.W.,1997,ApJ,490,L5
SmailI.,IvisonR.J.,OwenF.N.,BlainA.W.,KneibJ.-P.,2000,ApJ,528,612
SmailI.,ChapmanS.C.,IvisonR.J.,BlainA.W.,TakataT.,Heck-manT.M.,DunlopJ.S.,SekiguchiK.,2003a,MNRAS,342,1185SmailI.,ScharfC.A.,IvisonR.J.,StevensJ.A.,BowerR.G.,Dun-lopJ.S.,2003b,ApJ,599,86
SpergelD.N.etal.,2003,ApJS,148,175
SpoonH.W.W.,MoorwoodA.F.M.,LutzD.,TielensA.G.G.M.,SiebenmorgenR.,KeaneJ.V.,2004,A&A,414,873
SpringelV.,DiMatteoT.,HernquistL.,2005,MNRAS,361,776SpringelV.etal.,2005,Nature,435,629StevensJ.A.etal.,2003,Nature,425,264
SwinbankA.M.,SmailI.,ChapmanS.C.,BlainA.W.,IvisonR.J.,KeelW.C.,2004,ApJ,617,64
TacconiL.etal.,2006,ApJ,640,228
c0000RAS,MNRAS000,000–000
Determining an accurate position for a submm galaxy (SMG) is the crucial step that enables us to move from the basic properties of an SMG sample - source counts and 2-D clustering - to an assessment of their detailed, multi-wavelength properties, their con
Identi cationofsubmillimetregalaxiesintheSHADESSourceCatalogue
17
APPENDIXA:POSTAGESTAMPIMAGES
Thissectionpresents25×25-arcsecpostagestampimagesofeachSMGintheSHADESSourceCatalogueaswellasadescriptionofthemostunusualexamples.
FigsA1andA2showgreyscaleR-bandopticaldataintheleft-handpanels,whereavailable,andgreyscale24-µmdataintheright-handpanels.SuperimposedontheR-bandimagesarehigh-resolution(1.3arcsecFWHMfortheLH,1.7arcsecFWHMforSXDF)radiocontours,plottedat 3,3,4...10,20...100×σ,whereσwasmeasuredinsource-freeregionsaroundeachSMGandisquotedinthelower-rightcornerofeachimageinunitsofµJybeam 1.Superimposedonthe24-µmdataarelow-resolution(4.2arcsec,FWHM)radiocontours,plottedat 3,3,4...10,20...100×σ,whereσwasmeasuredinsource-freeregionsaroundeachSMGandisagainquotedinthelower-rightcornerofeachimage.Brokencrossesmarkthepositionsofall24-µmsourcesbrighterthan150µJyfoundwithin15arcsecofSMGpositionsinSXDF–theirpositionsarelistedinTable4.Thelargecentralcirclesin-dicate2σpositionaluncertaintieswhereσ=0.6θ/SNRandde-boostedSNRvalueshavebeenadopted(Coppinetal.2006).Asshownin§4,thereisan86.5percentprobabilitythatthesecirclescontainthesourceofsubmmemission.Forcounterpartidenti ca-tionwesimplyusearadiusof8arcsec(or12.5arcsecfortheradio,15arcsecat24µm,tobemorecomplete).
Solidboxesindicaterobustidenti cations,whereP 0.05basedontheradioor24-µmcounts,oracombinationofthetwo.Dashedboxesindicatetentativeassociations.
Casesworthyofcomment
SomeoftheSMGspresentunusualcombinationsofobservedchar-acteristicsandwecommentonthemhere.
LOCK850.06:Betrayedatboth24µmand1.4GHz,butinvisibleoptically.
LOCK850.07:AsLOCK850.06,thoughwithanopticalcounter-partwithin1arcsec;possiblytypicalofthecompositeblue-redpairsnotedbyIvisonetal.(2002).
LOCK850.08:Anopticalcounterpartlikelyliesbehindthediffrac-tionspike.Anidealtargetforadaptive-optics-(AO-)assistedstud-ies,exploitingthebrightstartothenorth.
LOCK850.11:Thisapparentlyobvious24-µmidenti cationjustfailstoqualifyasa‘robust’counterpartbecauseitcomprisestwofaintersources.Weviewtheseaslikelycounterparts.Theyareco-incidentwithadisturbedopticalgalaxywhichshouldbetargetedspectroscopically.
LOCK850.14:Thenearestradioemitterdoesnotqualifyasaro-bustidenti cationbuthasanexcellentspectroscopicredshiftinthecatalogueofChapmanetal.(2005).
LOCK850.15:Acomplexsystemwithasmanyasthreeplausibleidenti cations,suggestiveofacolossalmerger.
LOCK850.16:DescribedindetailbyIvisonetal.(2002,2005).LOCK850.18:Anobvious–thoughfaint–radioidenti cation,yetthereisnosignof24-µmoropticalemission.
LOCK850.19:Astraightforward24-µmidenti cationwithsup-portfromfaintradioemission.
LOCK850.21:Asolid24-µmidenti cation;24-µmanddistortedopticalemissiontothesouth-eastmayberelatedphysically.
LOCK850.23:Faint24-µmandradioemissionpointtoafaintop-ticalcounterpart(circledinFig.A1);wellworthtargetingspectro-scopically,thoughnotformallyarobustidenti cation.
LOCK850.29:Faintradioand24-µmemissionyieldaformal
c0000RAS,MNRAS000,000–000identi cation;thedoubleopticalgalaxyseemstobeoffsettothe
northeastandyetitresemblesmanySMGs;itshouldbetargetedspectroscopically.
LOCK850.30:Amultipleradioidenti cation.TheweakestradiocomponentremainsstubbornlyaboveP=0.05;thebrightestra-dioemitterwasreportedbyIvisonetal.(2002)tohaveaninvertedradiospectrum(seeBertoldietal.2000forotherexamplesofthisphenomenon).The24-µmemissionappearstoliebetweenthera-diocomponents.Inoneobviousinterpretationtheradioemissionmayemanatefromlobespoweredbyacentral,blackhole-andstar-forminggalaxy.
LOCK850.34:Amultitudeofmultiplecounterparts.Anopportu-nityfordetailedstudyofapotentiallycomplex,interactingsystem.LOCK850.37:Robustbutdistinctidenti cationsat24µmand1.4GHz.Challenging,optically.
LOCK850.48:Aseeminglystraightforwardidenti cation,yetapotentiallycomplexsystem.
LOCK850.52:Anextendedcounterpartat24µm,barelyvisibleinthehigh-resolutionradioimageandyetobviousandextendedinthelower-resolutionmap;extraresolutionavailableintheLHhasclearlyhinderedtheidenti cationprocess.Theopticalcounterpartmustbepartofanextensivesystem,presumablylargelyobscured.LOCK850.53:Atypicalcounterpartconsistingoftwoopticalgalaxies,betrayedbytheir24-µmemission.
LOCK850.60:Severalplausibleidenti cationsat24µm,theclos-estofwhichjustfailstoqualifyasarobustcounterpart.LOCK850.63:AnotherplausibleAOtarget.
LOCK850.67:OpticallyfaintSMG,blankat1.4GHz,givenawaybyits24-µmemission.
LOCK850.70:Aclassicopticalpairbetrayedat24µmandbyweakradioemission.
LOCK850.77:AsLOCK850.34:apairofpairs.
LOCK850.79:AnotherSMGwithseveralplausibleidenti ca-tions,thoughonlyoneoftheseisstatisticallyrobust.
LOCK850.87:Opticallyinvisible,yetbrightat24µmand1.4GHz.
SXDF850.01:Opticallyinvisible,yetbrightat1.4GHz.
SXDF850.02:Theradiomorphologyresemblesthebaseofawide-angletailradiogalaxy.
SXDF850.03:Theradioemissionisapparentlyassociatedwithabright,nearbygalaxy,thoughthealignmentispoorandlensingofabackgroundSMGmustbeapossibility.
SXDF850.05:Seeminglyamulti-componentmerger;suf cientlybrightat24µmand1.4GHztosuggestitliesatrelativelylowred-shift.
SXDF850.06:Animmenselycomplexregionwithatleastthreeradio-detectedcomponents.Thebrightest24-µmidenti cationiscoincidentwiththeradiosourcemostdistantfromtheSMGcen-troid.
SXDF850.07:AnopticallyfaintSMGinacomplexregion,be-trayedbyits24-µmand1.4-GHzemission.
SXDF850.08:Arobustradioidenti cation,offsetbyseveralarcsecfromaplausible24-µmcounterpart.
SXDF850.10:Itisplausiblethatthesubmmemissionemanatesfrombetweenthehotspotsofalobe-dominatedradiogalaxy.
SXDF850.11:Anexcellent,clearlyidenti edtargetforAO-assistedstudy,exploitingthenearbystar.
SXDF850.12:AndistortedopticalcounterpartliesbeneathveryfaintradioemissionclosetotheSMGcentroid.
SXDF850.14:Near-coincident,faint24-µmand1.4-GHzemis-sion,thoughitwouldbetemptingtotargetthedistortedopticalgalaxynorthoftheSpitzeremissionforspectroscopy.
Determining an accurate position for a submm galaxy (SMG) is the crucial step that enables us to move from the basic properties of an SMG sample - source counts and 2-D clustering - to an assessment of their detailed, multi-wavelength properties, their con
18Ivisonetal.
SXDF850.16:Faintradioemissionisoffsetfromaseeminglydis-tortedopticalcounterpartby~1arcsec.
SXDF850.21:AlocalgalaxyliesclosetothisSMG–VLA0077inthecatalogueofSimpsonetal.(2006),atz=0.044;thismustbeviewedasthemostlikelyidenti cation–arareexampleofanearbygalaxyinablank-skysubmmsurvey.SXDF850.23:AsSXDF850.16.
SXDF850.24:Tworobustradioidenti cations,onenear-coincidentwithfaint24-µmemission.
SXDF850.28:Animmenselycomplexregionwithatleastthreeradio-detectedcomponents,eachwithdifferent24-µmproperties.SXDF850.29:Abrightradioidenti cation–VLA0225inthecat-alogueofSimpsonetal.(2006)–offsetsigni cantlyfromthecen-troidofabrightz=0.264opticalgalaxy.Thecorrectidenti ca-tionbecomesobviousinthenear-IR(Clementsetal.,inprepara-tion).
SXDF850.30:ThisSMGisbetrayedby24-µmand1.4-GHzemis-sion;anearbyopticalgalaxymaybetheunobscuredcomponentofalargersystem.
SXDF850.31:Tworobust24-µmidenti cations,onecoincidentwithradioemission,bothwithbrightopticalcounterparts.
SXDF850.37:OpticallyfaintSMGwithnear-coincident24-µmand1.4-GHzemission.
SXDF850.47:Acomplexregionwiththreeradio-detectedcompo-nents,eachwithnear-coincident24-µmemission.
SXDF850.52:Tworobustradioidenti cationswithverydifferentopticalproperties,onebright,oneinvisible;thebrightestoftheop-ticalgalaxiesisnotwellalignedwithitsradioemission.
SXDF850.77:AcomplexSMGwithtworadioemitters,neitherofwhichisalignedwellwiththetwo24-µmemittersintheregion.SXDF850.119:Twoplausibleidenti cations,eachwithverydif-ferentopticalproperties–onebrightandpresumablyrelativelylo-cal;theotheropticallyinvisible,likelyathighredshift.
APPENDIXB:POSITIONANDFLUXERRORSUncorrelatednoise
MuchofthetheoryneededforanunderstandingofSCUBAposi-tionerrorscanbefoundinCondon(1997),whichtreatsthegeneralcaseof ttingaGaussianellipsoidtomapdata,forwhichtherearesixfreeparameters:sourcecoordinates,total ux,twoprincipalaxesandapositionangle.Forthepresentapplication,wegenerallyprefertoassumethatSCUBAsourceswillnotberesolvedbythebeam,althoughresolvedorblendedsourcesarecertainlyknown(Ivisonetal.2000;Stevensetal.2003;Popeetal.2005).Themapshouldthereforeconsistofascaledandshiftedreplicaofthebeam,plusnoise.Thisleavesjustthreefreeparameters.
WefollowCondonandassumethatthebeamisasingle2DGaussianwithanr.m.s.‘width’σ( FWHM/2.354)ineachco-ordinate.Letthecoordinatesofthecentroidbe(α,δ)andassumethatthemapisdigitisedona( ne)gridwherethepixelspacingishandthenoisevalueateachpixelisanindependentzero-meanGaussiandeviatewithr.m.s.value,µ;theunitsofµarethoseofsurfacebrightness.Thepeakvalueofthe ttedpro leisA;strictly,thisisasurfacebrightnessvalueandthetotalintegrated uxden-sitywillbeS=2πσ2A.However,normallythefactor2πσ2willbeabsorbedintomapunitsofmJybeam 1orequivalent,sothatAhasthenumericalvalueofthe uxdensityofa ttedunresolvedsource.Withthisnotation,Condon’ssolutionforther.m.s.errors( )onthethree-parameter tis
A=
hπ(B1)
2Ah.
Forapracticalformula,itmakessensetocombinethesebyde ningthe uxsignal-to-noiseratio:SNR=A/ A:
α= δ=
√
Determining an accurate position for a submm galaxy (SMG) is the crucial step that enables us to move from the basic properties of an SMG sample - source counts and 2-D clustering - to an assessment of their detailed, multi-wavelength properties, their con
Identi cationofsubmillimetregalaxiesintheSHADESSourceCatalogue
19
FigureA1.25×25-arcsecpostagestampimagesofeachSMGintheLHSHADESSourceCatalogue.GreyscaleR-bandand24-µmdataareshownintheleft-andright-handpanels,respectively,superimposedwithradiocontours.Circlesindicate2σpositionaluncertainties.Solidboxesindicaterobustidenti cations,whereP 0.05basedontheradioor24-µmcounts,oracombinationofthetwo.Dashedboxesindicatetentativeassociations.c0000RAS,MNRAS000,000–000
Determining an accurate position for a submm galaxy (SMG) is the crucial step that enables us to move from the basic properties of an SMG sample - source counts and 2-D clustering - to an assessment of their detailed, multi-wavelength properties, their con
20Ivisonet
al.
FigureA1.Cont...
c0000RAS,MNRAS000,000–000
Determining an accurate position for a submm galaxy (SMG) is the crucial step that enables us to move from the basic properties of an SMG sample - source counts and 2-D clustering - to an assessment of their detailed, multi-wavelength properties, their con
Identi cationofsubmillimetregalaxiesintheSHADESSourceCatalogue
21
FigureA1.Cont...
c0000RAS,MNRAS000,000–000
正在阅读:
The SCUBA HAlf Degree Extragalactic Survey (SHADES) - III. Identification of radio and mid-07-23
VF单选12-01
基于WordPilot技术建立语料库及在词汇学习中的应用03-21
哪些心理因素会导致人的不安全行为06-05
实验中学慢性病防控工作总结10-26
第三章 航迹推算与陆标定位10-21
质量管理体系内部审核员培训思考题05-15
- 1My favourite Festival is Mid
- 2Identification of impurities and statistical classification of methamphetamine
- 3Abstract Supervised fuzzy clustering for the identification of fuzzy classifiers
- 4A Survey of the Development of English Literature
- 5The cluster environments of radio loud quasars
- 6The Mid-Autumn festival is coming教案
- 7Numerical sensitivity analysis for aerodynamic optimization A survey of approaches
- 84B Mid-term test(1)
- 94B Mid-term test(1)
- 10The Nature of Radio Emission from Distant Galaxies The 1.4 G
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Identification
- Extragalactic
- Degree
- Survey
- SHADES
- SCUBA
- radio
- HAlf
- III
- mid
- GeoPlot地球化学数据投图软件-使用说明
- CO2气体保护焊焊接工艺
- 等离子清洗机介绍及应用原理
- introduction - applied research methods- WEEK 1 (3)(3)
- 《人生寓言》周国平 原文
- 申办保健食品经营企业卫生许可证条件程序
- 十天高速AC-20沥青混合料配合比设计
- TG Team Meeting Minute 20020821
- 符合IEEE802.15.4标准的收发机结构设计
- 2016年教师培训微课设计模板
- 上海2013小升初简历制作指导(择校必备)
- 9.Knowledge and Wisdom
- 西方经济学第七章答案解析
- 电子商务助阵广交会阿里巴巴相约全球买家
- 闭合水准测量实验报告
- 小米手机SWOT分析
- 北师大版一年级数学下册二单元卷及答案(二套)
- 《汉书&183;艺文志》诗赋略文献研究
- 第一讲 可视化编程理论概述
- 华峰测控(688200):事项点评报告:业绩高速增长,SoC、大功率器件测试机前景可期