Measurement and correlation of critical heat flux in two-pha
更新时间:2023-04-20 15:49:01 阅读量: 实用文档 文档下载
InternationalJournalofHeatandMassTransfer47(2004)
2045–2059
/locate/ijhmt
Measurementandcorrelationofcriticalheat uxin
two-phasemicro-channelheatsinks
WeilinQu,IssamMudawar
*
BoilingandTwo-phaseFlowLaboratory,SchoolofMechanicalEngineering,1288MechanicalEngineeringBuilding,PurdueUniversity,
WestLafayette,IN47907-1288,USA
Received17October2003;receivedinrevisedform11December2003
Abstract
Criticalheat ux(CHF)wasmeasuredforawater-cooledmicro-channelheatsinkcontaining21parallel215·821lmchannels.Testswereperformedwithdeionizedwateroveramassvelocityrangeof86–368kg/m2s,inlettemper-aturesof30and60°C,atanoutletpressureof1.13bar.AsCHFwasapproached, owinstabilitiesinducedvaporback owintotheheatsink’supstreamplenum,whichsigni cantlyalteredthecoolanttemperatureatthechannelinlets.Theback ownegatedtheadvantagesofinletsubcooling,resultinginaCHFvirtuallyindependentofinlettemperaturebutwhichincreaseswithincreasingmassvelocity.Duetothevaporback owandotheruniquefeaturesofparallelmicro-channels,ingthenewheatsinkwaterCHFdataaswellaspreviousdataforR-113inheatsinkswithmultiplecircularmini-andmicro-channels,anewCHFcorrelationisproposedwhichshowsexcellentaccuracyinpredictingexistingheatsinkdata.Ó2004ElsevierLtd.Allrightsreserved.
1.Introduction
Thepastdecadehaswitnessedunprecedentedimprovementsintheperformanceofcomputerproces-sorswhichwerebroughtabout,forthemostpart,byarestlesspursuitofmicro-miniaturizationofcomponentsintheprocessoritself.Theseadvanceshaveledtoalarmingincreasesintheamountofheatthatisdissi-patedandhastoberemovedfromtheseprocessors.Thelargeincreaseinheatdissipationperunitsurfaceareaandperunitvolumeisnotlimitedtocomputerproces-sors.Infact,thistrendisevidentinmanycutting-edgepowerandswitchingdevicesaswellaslaserdiodear-rays.Heatdissipationratesinthesedeviceshavealreadyescalatedtolevelsthatcannolongerbemanagedwithconventionalcoolingtechniques.New,morepowerfulcoolingsystemsarethereforeneededtobothmeetthechallengesofemergingtechnologiesaswellasmake
Correspondingauthor.Tel.:+1-765-494-5705;fax:+1-765-494-0539.
E-mailaddress:mudawar@ecn.purdue.edu(I.Mudawar).
*possiblefurtherdevelopmentsinthesetechnologiesthatwillundoubtedlybringaboutfurtherincreasesinheatdissipation.
Severalcoolingschemeshavebeendevelopedinre-centyearsthatcapitalizeuponthemeritsofphasechangetoachievethedesiredcoolingperformance.Theseincludepoolboilingthermosyphons,channel owboiling,jet,andsprays.Two-phasemicro-channelheatsinksareaspecialclassofchannel owboilingsystems.Theyo eruniqueadvantagesthatclearlysetthemapartfromotherhigh-performancecoolingsystems.Atypicalmicro-channelheatsinkconsistsofahigh-conductivityslabcontainingmultiple,parallelchannelswithcross-sectionaldimensionsof10–1000lm.Theheat-dissipat-ingdeviceisattachedtotheplanarsurfaceoftheheatsink,fromwhichtheheatisconductedtoaliquidcoolantthatissuppliedthroughthechannels.Highdeviceheat uxescausethecoolanttoboilalongthemicro-channel.Twokeymeritsofboilinginmicro-channelsare(1)verylargeconvectiveheattransfercoe cients(i.e.,lowdevicetemperatures)and(2)relati-velysmalltemperaturerisealongthechannelcompared
0017-9310/$-seefrontmatterÓ2004ElsevierLtd.Allrightsreserved.
doi:10.1016/j.ijheatmasstransfer.2003.12.006
2046W.Qu,I.Mudawar/InternationalJournalofHeatandMassTransfer47(2004)2045–2059
NomenclatureAAchAhAtCC0cPdde
parameterinempiricalcorrelationsmicro-channelcross-sectionalareamicro-channelheatedinsidearea
planformareaofheatsink’stopsurfaceparameterinempiricalcorrelationsvoiddistributionparameter
speci cheatatconstantpressureinnerdiameterofcircularchannel
heatedequivalentdiameterofrectangularchannel
F1toF4parametersinempiricalcorrelationsggravitationalconstantGmassvelocityinmicro-channelh uidenthalpyHcellheightofheatsinkunitcellHchheightofmicro-channelhfenthalpyofsaturatedliquidhfglatentheatofvaporizationDhsub;ininletsubcoolingHw1thicknessofplasticcoverplateHw2distancefromthermocoupletomicro-chan-nelbottomwallKinletsubcoolingparameter
K1toK3parametersinempiricalcorrelationskfthermalconductivityofliquidksthermalconductivityofcopperheatsinkLheatedlengthofmicro-channel_mtotalmass owrateMnumberofdatapointsMAEmeanabsoluteerrornparameterinempiricalcorrelationsNnumberofmicro-channelsinheatsinkPpressurePhinsideheatedperimeterofchannelPp;outpumpexitpressurePRreducedpressureinBowringcorrelationPWtotalelectricalpowerinputtoheatsink’s
cartridgeheaters
e ectiveheat uxbasedonheatsink’stopplanformarea
00qeff;mCHFbasedonheatsink’stopplanformarea00qpmeanheat uxbasedonchannelheatedin-sidearea00qp;mCHFbasedonchannelheatedinsidearea00qp;m0CHFbasedonchannelheatedinsidearea
forzeroinletsubcooling
00
qp;m01toq00p;m05parametersinempiricalcorrelationstc1totc4thermocouplesTtemperatureTsatsaturationtemperatureTtcithermocouplereading(i¼1to4)Tw;tcichannelbottomwalltemperatureatther-mocouplelocationWcellwidthofheatsinkunitcellWchwidthofmicro-channelWwhalf-widthofwallseparatingmicro-chan-nelsWeWebernumberxethermodynamicequilibriumqualityzstream-wiselocationGreeksymbolskcharacteristicwavelengthqdensityrsurfacetensionSubscriptsexpexperimental(measured)fliquidgvaporininletoutoutletmmaximum(criticalheat ux)predpredictedssolid(copperheatsink)tcithermocouple(i¼1to4)q00eff
tosingle-phasemicro-channelcooling.Coupledwith
theirintrinsicallysmallthickness,thesetwoadvantagesgreatlyreduceoverallthermalresistancebetweenthedeviceandcoolant,reducecoolant owrateandinventoryrequirements,andprovideahighdegreeoftemperatureuniformityalongthe owdirection.Theseattributeshavemadetheseheatsinksaprimecon-tenderforcompact,lightweightcoolingsystemsinsuchapplicationsassatellites,avionics,andportablecom-puters.Thesepracticalmeritsoftwo-phasemicro-channelheatsinkshaveattractedconsiderableattentioninre-centyearsonseveralissuesconcerningtheirphasechangecharacteristics.Theseincludeboilingincipience[1,2],dominant owpatterns[3–5],hydrodynamicinstability[6–9],heattransfer[10–14],andpressuredrop[9,12,15–19].Theissueofcriticalheat ux(CHF),however,hasreceivedverylimitedattention,despitethegreatimportanceofthisparametertothedesignandsafeoperationofaheatsink.
W.Qu,I.Mudawar/InternationalJournalofHeatandMassTransfer47(2004)2045–20592047
CHFgenerallyreferstotheoutcomeofeventsthatcauseasudden,appreciabledecreaseintheheattransfercoe cientforasurfaceonwhichboilingisoccurring.Foraheat- ux-controlledsystem,suchasthecasewithmostpracticaltwo-phasemicro-channelheatsinks,exceedingCHFcanleadtoasuddenlargeincreaseinsurfacetemperature,which,formostcoolants,canleadtocatastrophicsystemfailure.TheabilitytodetermineCHFisthereforeofvitalimportancetothesafetyoftwo-phasemicro-channelheatsinkssinceonlywithsuchknowledgecanaheatsinkbedesignedwithanaccept-ablemarginofsafetyrelativetomaximumheat uxdissipationorminimumcoolant owrate.
Two-phasemicro-channelheatsinksgenerallyin-volve owboilinginstraight,constant-cross-sectional-areachannelswithconstantmass owrateanduniformheatdistributionalongthe owdirection.Forsuchsystems,CHFgenerallycommencesatthechanneloutlet[20,21].Accordingtowhetherthebulk uidatchanneloutletissubcooledorsaturatedwhenCHFoccurs, ow-boilingCHFcanbeclassi edaseithersubcooledCHForsaturatedCHF.ThetwotypesofCHFaretriggeredbydrasticallydi erentmechanisms.SubcooledCHFindicatessituationswherethebulk uidtemperatureatthechanneloutletissub-cooledwhenCHFoccurs.Thisconditionisrepresentedbyathermodynamicequilibriumquality,whichisde- nedasxhÀhf
e¼
h;ð1Þ
fg
thatislessthanzeroattheoutlet,xe;out<0.ConditionsthatoftenleadtosubcooledCHFincludelargemassvelocity,highinletsubcooling,and/orchannelswithasmalllength-to-diameterratio.Atthechanneloutlet,thebulk uidremainsinmostlyliquidstatewithalargenumberofverysmallvaporbubblescon nedtotheheatedwall.ResearchershaveproposedseveraltheoriestoexplainthetriggermechanismforsubcooledCHF:intenseboilingcausesthebubble-liquidboundarylayertobeseparatedfromtheheatedwallandtheresultingstagnantliquidtoevaporate[22],bubblecrowdingwithintheboundarylayerinhibitsliquidreplenishmentnearthesurfacecausingtheformationofaninsulatingvaporlayer[23],anddryoutofaliquidsublayerbeneathlargevaporbubblescausesthelocalwalltemperaturetoriseappreciably[24].HallandMudawar[25]providedacomprehensivereviewofthecurrentstateofknowl-edgeofsubcooledCHFforwater owboilinginchan-nels,andderivedastatisticalcorrelationbasedontheentireworldsubcooledCHFdatabaseavailableuntil1999.
SaturatedCHFisencounteredinsituationswherexe;outP0whenCHFoccurs.Conditionsthatcom-monlyleadtosaturatedCHFincludesmallmass
velocity,lowinletsubcooling,and/orchannelswithalargelength-to-diameterratio.Thecorresponding owpatternatthechanneloutletismostlyannularwiththevaporphaseoccupyingmostofthechannelcorewhiletheliquid owsasathin lmalongthechannelwall.Dryoutoftheliquid lmneartheoutletiswidelyre-gardedasthetriggermechanismforsaturatedCHF[20,21].Micro-channelheatsinksareespeciallypronetothistypeofCHFsincetheyareusedinapplicationsdemandingminimal owratesandsmallcoolantinventory.
Asthetransportprocessbehind owboilingCHFisextremelycomplex,CHFpredictionsrelyheavilyonempiricalcorrelationsthatarederivedfromexperi-mentalCHFdatabases[21,25].AvailablesaturatedCHFdatafor owboilinginmini/micro-channelswerecompiledbythepresentauthorsandaresummarizedinTable1.Inthispaper,mini-channelsrefertochannelswithcharacteristiccross-sectionaldimensionsfromabout1to3mm,andmicro-channelslessthan1mm.Thedatabasecontains438saturatedCHFdatapoints,including392forwater owinsinglecircularmini-channels(d¼1–3mm),22forRefrigerantR-113insinglecircularmini-channels(d¼3:15mm),and24forR-113incircularmini-(d¼2:54mm)andmicro-channel(d¼510lm)heatsinks.SourcesandparameterrangesfortheCHFdataarealsoprovidedinTable1.InadditiontothoselistedinTable1,Nariaietal.[32]andYuetal.[33]alsoconductedexperimentalstudiesonsaturatedCHFofwaterinsinglecircularmini-channels.However,theirdataareexcludedfromthedatabaseastheywerenotavailableinfullycharacterizedtabularform.CloseexaminationofTable1revealsasevereshortageofdataformicro-channels,andclearlypointstoaneedforfurtherexperimentalstudy.WiththeexceptionofBowersandMudawar’swork[15],allothersaturatedCHFdatawereobtainedusingsinglechan-nels.CHFinaheatsinkcontainingmultipleparallelchannelsmaybesigni cantlydi erentfromthatinasinglechannel,asboilingandtwo-phase owarelessstableintheformer.AnotheraspectofthedatabaseisthatalltheavailablesaturatedCHFdataareforcircularchannels,whilechannelsinpracticalheatsinksaremostlyrectangularbecauseoftheireaseoffabrication.Finally,themajorityofthesaturatedCHFdataareformini-channelswhoseinnerdiametersareconsider-ablylargerthanthoseemployedinmicro-channelheatsinks.
Thepresentstudyexplores owboilingCHFforawater-cooledtwo-phasemicro-channelheatsink.Theprimaryobjectivesofthepresentstudyare:(1)topro-videnewsaturatedCHFdatafor owboilinginaheatsinkcontainingrectangularmicro-channels,(2)toassesstheaccuracyofpreviousempiricalCHFcorrelationsforbothsinglemini-channelsaswellasmini/micro-channelheatsinks,and(3)todevelopanewCHFcorrelation
2048W.Qu,I.Mudawar/InternationalJournalofHeatandMassTransfer47(2004)2045–2059
Table1
ParameterrangesofsaturatedCHFdatafor owboilinginmini/micro-channelsReference
No.ofdata
d(mm)
L=d
G(kg/m2s)94.930379.84370.05180.0365.02725.0776.02738.0246.61036.9232.0503.0
Pout(bar)1.017.9113.813.831.071.029.472.03.3610.421.144.141.061.37
Tin(°C)22.225.6153.87165.6219.3383.7822.9288.048.9072.5023.9094.3037.2637.26
xe;out0.0200.9800.2100.2650.2070.8910.6600.9900.3621.1820.2900.8870.5811.528
2
q00p;m(W/cm)
(a)Water owboilinginsinglecircularmini-channels
Lowdermilk1881.3050.0etal.[26]2.44250.0Weatherhead61.14100.0[27]1.14100.0Becker[28]822.40166.7
3.00208.3
Lezzietal.681.00239.0[29]1.00975.0Roachetal.481.17110.5[30]1.45137.0(b)R-113 owboilinginsinglecircularmini-channelsLazarekand223.1540.0Black[31]3.1540.0
23.0
2504.8732.0732.0114.0513.028.5236.386.0369.818.333.635.54105.50
(c)R-113 owboilingincircularminiandmicro-channelheatsinksBowersand240.513.9429.8Mudawar[15]2.5419.61476.3
thatisparticularlysuitedformini/micro-channelheatsinks.
2.Experimentalapparatus2.1.Testmodule
Fig.1(a)illustratesthelayeredconstructionofthemicro-channelheatsinktestmodule.Themicro-chan-nelswerecutintothe4.48cmlongand1.0cmwidetopsurfaceofanoxygen-freecopperblock.Twenty-one215lmwideand821lmdeepmicro-slotsweremachinedwithinthe1-cmwidthofthetopsurface.Heatwassuppliedtothemicro-channelsfromtwelvehigh-power-densitycartridgeheatersthatwereinsertedintoboresintheundersideofthecopperblock.
Thecopperbockwasinsertedalongthecentralhol-lowedsectionofathermallyinsulatingG-7 berglassplastichousing.Asmallprotrudingplatformaroundtheperipheryoftheheatsinkensuredthatthetopsurfaceoftheheatsinkwas ushwiththetopsurfaceofthehousing.Thehousingcontainedadeepplenumleadingtoanothershallowplenumbothupstreamanddown-streamoftheheatsinktoensureeven owdistribution.Apolyetherimidethermoplastic(GEUltem1000)coverplatewasboltedatoptheheatsink.Asidefromformingthetopsurfacefortheinpidualmicro-channels,thissemi-transparentcoverplateprovidedvisualaccesstothe owboilinginsidethemicro-channels.Afterthetestmodulewasassembled,multiplelayersofceramic berwerewrappedaroundthecopperblocktoreduceheatlosstotheambient.
FourTypeKthermocouples,indicatedinFig.1(a)astc1totc4(fromupstreamtodownstream),wereinsertedbelowthetopsurfaceoftheheatsinktomeasurethestream-wisetemperaturedistributionalongthecentralplane.Errorassociatedwiththethermocouplereadingswassmallerthan±0.3°C.Thecartridgeheaterswerepoweredbya0–110VACvariacandtheirtotalelectricalpowerinputmeasuredbya0.5%accuracywattmeter.LocatedinthedeepplenumsweretwoabsolutepressuretransducersandtwoType-Kthermocouplesforinletandoutletpressureandtemperaturemeasurements,respectively.Theuncertaintyforthesepressureandtemperaturemeasurementswas3.5%and±0.3°C,respectively.
PriortoperformingtheCHFmeasurements,aseriesofsingle-phasetestswereconductedwithinthesame parisonbetweenelectricalpowerinputandtheincreaseinwaterenthalpyduringthesesingle-phasetestsshowedheatlosswassmallerthan4%.Allheat uxdatapresentedinthisstudywerethereforebasedonthemeasuredelectricalpowerinput.2.2.Flowloop
Deionizedwaterwassuppliedtothetestmoduleusingthe owloopillustratedschematicallyinFig.1(b).Thebulkofthewaterresidedinareservoirwhichalsoservedasadeaerationchamber.Agearpumpprovidedthenecessarypressureriseatthemoduleinletoverthedesiredrangeof owrates.Thewater owratewasmeasuredbyoneoftworotametersthatwerearrangedinparallel.Measurementuncertaintyofthe owmeterswasbetterthan4%.Twocontrolvalves,onesituated
upstreamandtheotherdownstreamofmodule,playedavitalroleinthe owregulation.Thedownstreamvalvewasusedtoregulatetheheatsink’soutletpressure.Throttlingtheupstreamvalveeliminatedatypeofinstability,severepressuredroposcillation,whichiscausedbyinteractionbetweenthetwo-phase owintheparallelmicro-channelsandtheupstreamcompressiblevolumeintheloop.Anothermildparallel
channel
instabilitypersistedinthemicro-channelsevenwiththethrottlingoftheupstreamvalve.Thislatterinstabilitycausedrandomaxialoscillationsoftheboundarybe-tweentheliquidanddownstreamtwo-phasemixture,buthadarelativelymilde ectonheatsinkpressuredrop.These owinstabilitiesweredescribedinaprevi-ouspaperbythepresentauthors[9],andwillbead-dressedbrie ylaterinthispaper.2.3.Experimentalprocedure
BeforemakinganyCHFmeasurements,thewaterinthereservoirwasbroughttoavigorousboilinsidethereservoirforaboutonehourtopurgeanydissolvedgasesintotheambient.Subsequently,the owloopcomponentswereadjustedtoyieldthedesiredoperatingconditionsaccordingtoTable2.
Usingtheupstreamvalve,thepumpexitpressure,Pp;out,waselevatedtoabout2.0bartopreventtheaforementionedseverepressuredroposcillation.Afterthe owbecamestable,theheaterpowerwasadjustedtoalevelbelowincipientboiling.Thepowerwasthenin-creasedinsmallincrementsandthe owloopcompo-nentswerecontinuouslyadjustedtomaintainthedesiredoperatingconditions.Followingeachpowerincrement,theheatsinkwasallowedsu cienttimetoreachsteady-state,andtheinletandoutletpressures,PinandPout,inletandoutlettemperatures,TinandTout,andheatsinktemperatures,Ttc1toTtc4,wereallrecordedusinganHPdataacquisitionsystemthatwasinterfacedtoaPC.EachtestwasterminatedwhenCHFwasencoun-teredinthemicro-channelheatsink.AfterCHFwastriggeredatthechanneloutlet,itpropagatedupstreamalongthechannel.Withashorttimedelay,thether-mocoupleclosesttothechanneloutlet(tc4)sensedasuddenunsteadytemperaturerise.ThetestwasthenterminatedonceCHFreachedthelocationoftc4toavoidoverheatingofthetestmodule.
ThewatermassvelocityGwasdeterminedfromthe
_,numberofmicro-channels,measuredmass owrate,m
N,andcross-sectionalarea,Ach,ofamicro-channel.G¼
_m:NAch
ð2Þ
bythewattmeter,PW,pidedbythetopplanformareaoftheheatsink,At¼1:0Â4:48cm2.q00eff¼
PW
:At
ð3Þ
Thesecondde nitionisameanheat uxaveragedoverthemicro-channelheatedinsidearea,q00p,asillustratedinFig.2foraheatsinkunitcellcontainingasinglemicro-channelaswellassurroundingsolid-dimensionsoftheunitcellaregiveninTable3.Whileq00effprovidesaglobalmeasureoftheheatsink’sthermalperformance,q00pismoreusefulwheninvestigatingempirical owboilingCHFcorrelations.ReferringtoFig.2,q00pcanberelated
00
toqeffbyq00p
q00effWcell
¼:Wchþ2Hch
ð4Þ
TheCHFvaluesreportedinthisstudyrepresentthe
00
highestheat ux(q00eff;morqp;m)measuredforstable owboilingbeforethelastpowerincrementthatprecipitatedtheunsteadytemperaturerise.
Twode nitionsareusedinthepresentstudyforheat uxtotheheatsink.The rstisan‘‘e ective’’heat ux,q00eff,de nedasthetotalelectricalpowerinputmeasured
Table2
OperatingconditionsforpresentstudyCoolantDeionizedwater
Inlettemperature,Tin(°C)Massvelocity,G(kg/m2s)30.060.0
86–36886–368
Outletpressure,Pout(bar)1.131.13
Pumpexitpressure,Pp;out(bar)2.02.0
Table3
Dimensionsofmicro-channelheatsinkunitcellWw(lm)Wch(lm)Hw1(lm)125
215
12,700
3.Resultsanddiscussion3.1.Boilingcurve
Fig.3(a)and(b)showtypicalboilingcurvesobtainedatthefourthermocouplelocationsforamassvelocityof228kg/m2sandinlettemperaturesof30and60°C,respectively.Thee ectiveheat ux,q00di erencebetweenthelocalchanneleff,isplottedversusthebottomwalltemperature,Tw;tci,andinlettemperature,Tin.ReferringtoFig.2,Tw;tciwasevaluatedfromq00effandthermocouple
Hch(lm)Hw2(lm)821
2354
readingsTtcibyassumingone-dimensionalheatcon-ductionbetweenthermocouplelocationandchannel
bottomwallimmediatelyabove.Tq00Hw2
w;tci¼TtciÀ
effk:ð5Þ
s
TheinlettemperatureTinwasmeasureddirectlybythethermocouplelocatedintheupstreamplenum.However,astheheat uxapproachedCHF,theparallel-channelinstability,whichhadbeenmildoverawiderangeofheat uxes,becamequiteintense.Thiscausedasigni cantamountofvaporfromthemicro-channelsto owbackwardsintotheupstreamplenumandmixwiththeincomingsubcooledliquid.Thiswasclearlymanifestbyupstreamplenumthermocouplereadingtemperaturessigni cantlyhigherthanthatoftheincomingliquid,Tin.Undertheseconditions,theincomingliquidtemperatureisassignedthevalueofTin.Thisissuewillbediscussedinmoredetailinthenextsection.
Fig.3(a)and(b)showtheslopesofallboilingcurvesarefairlyconstantatlowheat uxescorrespondingtothesingle-phaseliquidcoolingregime.Withincreasingheat ux,theslopeoftheboilingcurvebeginsincreasingatztc4,indicating owboilingisinitiatedneartheoutlet.Furtherheat uxincreasescausesimilarslopechangesfortheupstreamthermocouplelocationsinuniformsuccession.Astheheat uxapproachesCHF,theslopebeginstodecreaseagain,indicativeofreducedheattransfere ectiveness,whichalsobeginsatztc4andpropagatesupstreamatslightlyhigher uxes.Eventu-ally,CHFisdetectedatztc4.CHFvaluesforthecon-ditionsgiveninFig.3(a)and(b)areq00respectively.eff;m¼184:5and
184.4W/cm2
,3.2.Hydrodynamicinstability
Inapreviousstudybythepresentauthors[9],twotypesof owinstabilitywereidenti edintheheatsinktestmoduleasdescribedintheprevioussection.The rst-severepressuredroposcillation-wastheresultofinteractionbetweenthetwo-phase owintheheatsinkandtheupstreamcompressiblevolumeinthe owloop.Thisinstabilityproducedsevere owoscillationsacrosstheheatsink,whichoccurredwhenthecontrolvalveupstreamofthemodulewasfullyopen.Theboilingboundarybetweentheliquidanddownstreamtwo-phasemixtureinallchannelsshowedsevere uctuation,movingbackandforthinunisonbetweentheinletandoutlet.Bythrottlingtheupstreamcontrolvalve,this
severe owoscillationwasvirtuallyeliminated,andtheboilingboundary uctuatedbetweenmicro-channelsinarandombutmildmanner.Thissecondtypeofinsta-bilitywasclassi edasmildparallelchannelinstability,resultingfrommicro-channelinteractionsthatareintrinsictotheheatsinkitself.
Allthepresenttestswerethereforeconductedwiththeupstreamcontrolvalvethrottled.Duringthetests,how-ever,itwasobservedthattheparallelchannelinstability,whichwasverymildoveralargeportionoftheheat uxrange,becamesevereasCHFwasapproached.Fig.4showsaschematicofthemicro-channelinletatthesehighpre-CHFheat uxes.Vaporwasobservedto owback-wardsfromtheinpidualmicro-channelsintotheup-streamshallowplenum,eventuallyformingathickintermittentvaporlayer.Thislayerwasbrokenupintomanysmallvaporbubbles,whichpropagatedfurtherupstreamevenintodeepplenum,whereitmixedwiththeincomingliquid.Theupstreamplenuminteractionsbe-tweenthevaporandincomingliquidsigni cantlyalteredthe uidtemperatureinthedeepplenum.Fig.5showstheupstreamplenumthermocouplereadingsarefairlycon-stantoverabroadrangeofheat uxesbutbegintoin-creasesigni cantlyforthelasttwoorthreeheat uxincrementsimmediatelypriortoCHF.RecallthattheboilingcurvesshowninFig.3(a)and(b)werereferencedrelativetoaTinvalueequaltothemeanthermocouplereadingscorrespondingtolowerheat uxes.ThesevaluesareshownashorizontallinesinFig.5.
3.3.CHFcharacteristics
TheCHFdatameasuredduringthepresentstudyaregiveninTable4alongwiththecorrespondingoperatingconditions.Inlettemperature,Tin,isbasedontheaver-ageofmeasuredinlettemperaturesbeforethepre-CHFlossofsubcoolingdepictedinFig.5beginstotakee ect.Outletquality,xe;out,isevaluatedusingEq.(1),wheretheoutlet uidenthalpy,hout,isdeterminedbyapplyinganenergybalancefortheentireheat
sink.
W.Qu,I.Mudawar/InternationalJournalofHeatandMassTransfer47(2004)2045–2059
Table4
PresentCHFdataforwaterinrectangularmicro-channelheatsinkTin(°C)32.1630.6631.6631.4630.6530.6030.5430.6530.6359.0060.6960.5058.9660.6959.3460.8859.9459.63
G(kg/m2s)85.9124.2159.2194.5228.0263.2299.5336.1368.485.9124.2159.2194.5228.0263.2299.5336.1368.4
Pin(bar)1.2131.2311.2711.2851.3101.3311.3091.3311.3241.2231.2491.3101.3141.3661.3751.3981.3931.375
Pout(bar)1.1311.1271.1331.1291.1351.1301.1231.1321.1391.1311.1351.1411.1311.1401.1321.1351.1431.133
xe;out0.5240.3980.3760.3100.2880.2500.2140.1780.1720.5620.4340.4240.3610.3440.2950.2830.2330.214
2
q00eff;m(W/cm)
2053
2
q00p;m(W/cm)
107.64
126.48154.94164.93184.48193.64200.00201.66216.76105.66121.69153.21164.60184.43189.59207.33201.59207.8526.9131.6238.7441.2446.1348.4250.0150.4254.2026.4230.4338.3141.1646.1247.4151.8450.4151.97
hout¼hinþ
q00effAt
:_m
ð6Þ
ThethermophysicalpropertiesusedinEq.(1)were
basedontheoutletpressurePout.Table4showsxe;outvaluesatCHFareallpositive,indicatingsaturatedCHFconditions.Inaddition,increasingmassvelocityGfrom85.9to368.4kg/m2sdecreasesxe;outfrom0.524to0.172forTin¼30°Cand0.562to0.214forTin¼60°C.
Fig.6showsCHFincreasesmonotonicallywithincreasingGforbothinlettemperatures.However,whatisquitesurprisingisinlettemperature,Tin,hasvirtuallynoe ectonCHF.
Interestingly,theseCHFtrendsrelativetomassvelocityGandinlettemperatureTinmirrorthoseof
BowersandMudawarforRefrigerantR-113incircularminiandmicro-channelheatsinks[15].WhilethetrendofincreasingCHFwithincreasingGisquitecommon,thelackofinlettemperaturee ectonCHFseemstobeuniquetotwo-phasemini/micro-channelheatsinks,notsinglemicro/mini-channels.Akeydi erencebetweenheatsinksandsinglechannelsistheaforementionedampli cationofparallelchannelinstabilitypriortoCHF.Asdiscussedearlier,thisampli cationcausesback owofvaporintotheupstreamplenum,whichresultsinstrongmixingofthevaporwiththeincomingliquid.Regardlesshowsubcooledtheincomingliquidis,themixingactionappearstoincreasethetemperatureoftheliquidclosetothelocalsaturationtemperatureasitapproachesthechannel
inlet.
2054W.Qu,I.Mudawar/InternationalJournalofHeatandMassTransfer47(2004)2045–2059
3.4.AssessmentofpreviousCHFcorrelations
Inthissection,theapplicabilityofpreviousCHFcorrelationstopredictingsaturated owboilingCHFinsinglemini-channelsaswellasinmini/micro-channelheatsinksisexaminedthroughcomparisonofcorrela-tionpredictionswithexperimentalCHFdata.
SummarizedinTable5aretheBowring[34,35]andtheKattoandOhnocorrelations[36],whicharethemostpopularamongnumerouscorrelationsdevelopedforsaturated owboilingCHFinsingle(isolated)cir-cularchannels[20].Thesetwocorrelationsare rstcomparedwithsaturatedCHFdataforwaterandR-113insinglecircularmini-channelsthatwerecompiledbythepresentauthorsandpresentedearlierinTable1.Fig.7(a)showstheBowringcorrelationagreesquitewellwiththeCHFdatainthelowCHFrange,butshowspoorpredictivecapabilityinthehighCHFrange.The
meanabsoluteerror(MAE)forthiscorrelation,whichisde nedas
00
1Xjq00p;m;predÀqp;m;expj
MAE¼Â100%;ð7Þ
q00Mp;m;expis28.3%foratotalofM¼414datapoint.Fig.7(b)
showstheKattoandOhnocorrelationyieldssuperiorpredictionsovertheentireheat uxrange.TheMAEforthiscorrelationis17.3%withmostofthedatapointsfallingwithina±40%errorband.
Fig.8(a)and(b)comparethepredictionsoftheBowringandtheKattoandOhnocorrelationswiththepresentCHFdataofwaterinthemicro-channelheatsink.Asthepresentchannelshapeisrectangular,ahe-atedequivalentdiameter,de,de nedas[37]de¼
4Ach4Ach
¼;PhWchþ2Hch
ð8Þ
Table5
Correlationsforsaturated owboilingCHFinsinglecircularchannelsReference[34,35]
q00p;m¼
AÀ0:25dGDhsub;in
2:317ðdGh=4ÞF
:077F3dG1
Dhsub;in¼hfÀhin;A¼fgC¼0
24[36]
n¼2:0À0:5PR;PR¼0:145Pout;PoutinMPa
È18:942É1:309FPRexp½20:89ð1:0ÀPRÞ þ0:917;F2¼Pexp½2:444F1¼1:917
ð1:0ÀPRÞ þ0:309R
ÈÉ117:0231:649
F3¼PRexp½16:658ð1:0ÀPRÞ þ0:667;F4¼F3PR
Dhsub;in00
q00¼q1:0þKp;mp;m0fg
À0:0431q00p;m01¼CðGhfgÞWe 0:133qgq00WeÀ1=3p;m02¼0:1ðGhfgÞf 0:133
0:27qg00À0:433ðL=dÞ
qp;m03¼0:098ðGhfgÞfWe 0:6qgÀ0:1731
qp;m04¼0:0384ðGhfgÞfWe 0:513qgðL=dÞ0:27
q00¼0:234ðGhÞWeÀ0:433fgp;m05fÀÁ2LWe¼G;C¼0:25forL<50;C¼0:25þ0:0009LÀ50for506fC¼0:34forL>1500:833ð0:0124þd=LÞð1:52Weþd=LÞ0:261K1¼CWeK3¼1:12K2¼ðq=qÞWeÀ1=3ðq=qÞWeÀ0:173
g
f
g
f
À0:233
L
6150
For
qgf
<0:15:
000000
Whenq00p;m01<qp;m02,qp;m0¼qp;m01
000000000000000000Whenq00p;m01>qp;m02,ifqp;m02<qp;m03,qp;m0¼qp;m02;ifqp;m02>qp;m03,qp;m0¼qp;m03
WhenK1>K2,K¼K1;whenK1<K2,K¼K2Forg>0:15:f
000000
Whenq00p;m01<qp;m05,qp;m0¼qp;m01
000000000000000000Whenq00p;m01>qp;m05,ifqp;m05>qp;m04,qp;m0¼qp;m05;ifqp;m05<qp;m04,qp;m0¼qp;m04q
WhenK1>K2,K¼K1;whenK1<K2,ifK2<K3,K¼K2;ifK2>K3,K¼K3
isemployedtoreplacechanneldiameterdinthetwocorrelations.Fig.8(a)and(b)showbothcorrelationsoverpredictthepresentCHFdatabyalargemargin.Thislargedeviationmaybeattributedtotheafore-mentionedpre-CHFampli cationoftheparallelchan-nelinstabilityaswellastherectangularshapeofthepresentmicro-channels.AlsoshowninFig.8(a)and(b)arecomparisonsofthepredictionsofthetwocorrela-tionswiththesaturatedCHFdataforR-113inmini/micro-channelheatsinksmeasuredearlierbyBowersandMudawar[15].Thecorrelationsgenerallyunder-predicttheR-113dataaswell,eventhoughmanydatapointsarelocatedwithina±40%errorband.
-parisonsbetweencorrelationpredictionsandthepresentCHFdataintherectangularmicro-channelheatsinkareshowninFig.9(a)–(d).Amongthefourcorrelationstested,thecorrelationbySudoetal.[39]showsthebest
agreement(MAEof19.8%)withthedata.However,acloseexaminationofthesamecorrelation,Table6,showsitrelatesCHFtomassvelocityandthermo-physicalpropertiesofthecoolant,butnoneofthechannelgeometricalparameters.Sincesaturated owboilingCHFisa ectedbybothchannellengthLandheatedequivalentdiameterde[20],theseeminglyaccu-ratepredictionsofthiscorrelationarenotsu cienttojustifyitsuseforheatsinkdesign.
Theaboveassessmentofpriorcorrelationspointstotheneedfordevelopinganewcorrelationthatisspe-ci callytailoredtomini/micro-channelheatsinksthatcontainmultiple,parallelchannels.3.5.NewCHFcorrelation
AnewCHFcorrelationisdevelopedbasedonthepresentCHFdataforwaterintherectangularmicro-channelheatsink,aswellasBowersandMudawar’sCHFdataforR-113inthecircularmini/micro-channelheatsinks.Drasticdi erencesbetween
the
thermophysicalpropertiesofwaterandR-113,Table7,aswellasthedi erencesinbothchannelshape,channeldiameter,andL=dratioareallespeciallyusefulindevelopingacorrelationwithabroadapplicationappealbasedonthesetwoCHFdatabases.ThenewCHFcor-relationadoptsthefunctionalformoftheKattoandOhnocorrelation[36].AsshowninTable5,theKattoandOhnocorrelationforzeroinletsubcoolingisgivenby
&'
q00qgLp;m0
;ð9Þ¼f;We;
GhfgqfdewhereWeistheWebernumberbasedonthechannelheatedlengthL,G2LWe¼:
rqf
ð10Þ
q00p;m
¼
q00p;m0
Dhsub;in
:1þK
hfg
ð11Þ
SinceCHFforbothmini/micro-channelheatsinkda-tabasesshowsnodependenceoninletsubcooling,thesedatabasesarecorrelatedaccordingtoEq.(9),i.e.with-outthesubcoolingmultiplier.
1:11 À0:36
q00qgLp;m
¼33:43WeÀ0:21;
deGhfgqf
ð12Þ
AssumingCHFincreaseslinearlywithincreasinginlet
subcoolingyields
wheredeshouldbesetequaltodforcircularmini/micro-channelheatsinks.
Fig.10comparesthepredictionsofthisnewCHFcorrelationwiththe owboilingCHFdataforbothwaterinthepresentrectangularmicro-channelheatsinkandR-113intheBowersandMudawarcircularmini/micro-channelheatsinks.TheoverallMAEof
4%
W.Qu,I.Mudawar/InternationalJournalofHeatandMassTransfer47(2004)2045–2059
Table6
Correlationsforsaturated owboilingCHFinsinglerectangularchannelsReference[37]
Dhsub;in00
q00¼q1:0þKp;mp;m0fg
100À0:0431q00p;m01¼0:25ðGhfgÞeqp;m02¼CðGhfgÞWee
0:133qg1
q00WeÀ1=3p;m03¼0:15ðGhfgÞfe
0:133qgðL=deÞ0:171
q00WeÀ0:433p;m04¼0:26ðGhfgÞfe
L
>50e
0:556ð0:0308þde=LÞ0:261
K1¼1;K2¼K3¼ðqg=qfÞWe000000
Whenq00p;m01<qp;m02,qp;m0¼qp;m01,K¼K1
0000000000
Whenq00p;m01>qp;m02,ifqp;m02<qp;m03,qp;m0¼qp;m02,K¼
0000000000
ifq00m02>qm03,ifqp;m03<qp;m04,qp;m0¼qp;m03,K¼K3
000000
ifq00p;m03>qp;m04,qp;m0¼qp;m04
2057
C¼0:25for
L
e
<50;C¼0:34for
K2
[38]
þq q
C0¼1:35À0:35g
f
q00p;m
¼
Ach
hGDhsub;in
hfgfg
h
10
q i
qggðqfÀqgÞdeÀ0:11
[39][40]
0:005hfgG0:611½kqggðqfÀqgÞ 0:195q00p;m¼q
r
k¼ðqfÀ
qgÞg
hq i
Dhsub;inA¼h0:458G1:0Àq00þ2:412kqggðqfÀqgÞp;mhfgfg
Table7
ThermophysicalpropertiesofsaturatedwaterandsaturatedR-113atoneatmosphereProperties
Saturationtemperature,Tsat(°C)Densityofliquid,qf(kg/m3)Densityofvapor,qg(kg/m3)
Latentheatofvaporization,hfg(kJ/kg)Surfacetension,r(N/m)
Liquidspeci cheatatconstantpressure,cp(kJ/kgK)Thermalconductivityofliquid,kf(W/mK)
Water100.0957.90.602257
0.05894.2170.68
R-11347.61507.37.48158
0.01470.9220.07
tions,channelgeometries,channelsizes,andlength-to-diameterratios.
4.Conclusions
Inthisstudy,experimentswereperformedtomeasureCHFforwater owboilinginarectangularmicro-channelheatsink.PreviousempiricalCHFcorrelationswereexaminedforsuitabilitytopredictingsaturatedCHFinsinglemini-channelsaswellasinmini/micro-channelheatsinks.AnewempiricalcorrelationwasdevelopedforCHFintwo-phasemini/micro-channelheatsinks.Key ndingsfromthestudyareasfollows:(1)Themildparallelchannelinstabilityintrinsictomi-cro-channelheatsinkwithmultiple,parallelchan-nelsisgreatlyampli edasheat uxapproachesCHF.Thiscausesthevaporto owbackwardsinto
clearlydemonstratesitsexcellentpredictivecapabilityfordi erent uids,circumferentialheatingcondi-
2058W.Qu,I.Mudawar/InternationalJournalofHeatandMassTransfer47(2004)2045–2059
theinletplenum,mixwiththeincomingliquid,andincreasetheliquidtemperaturetothelocalsaturationtemperatureastheliquidentersthemicro-channels.(2)
CHFinmini/micro-channelheatsinksincreaseswithincreasingmassvelocitybut,becauseofthelossofsubcoolingduetothebackwardvapor ow,CHFisvirtuallyindependentofinlettemperature.Thisisafundamentaldepartureofmini/micro-channelheatsinkbehaviorfromthatofsinglemini-channels.(3)
TheKattoandOhnocorrelation[36]isfairlyaccu-rateatpredictingsaturatedCHFinsinglecircularmini-channels.
(4)
TwowidelyusedcircularchannelCHFcorrelationsandfourrectangularchannelCHFcorrelationsweretestedrelativetothepresentrectangularmicro-channelheatsinkdata.AcorrelationbySudoetal.[39]forCHFinsinglerectangularchannelsshowedthebestagreementwiththeexperimentaldata.However,thiscorrelationisnotrecommendedforheatsinkdesignbecauseofitsfailuretoaccountforchannellengthordiameter.
(5)
Anewempiricalcorrelationisproposedbasedonexperimental owboilingCHFdataforwaterandR-113inmultiple-channelmini/micro-channelheatsinks.TheoverallMAEofthiscorrelationof4%demonstratesitsexcellentpredictivecapabilityfordi erent uids,circumferentialheatingconditions,channelgeometries,channelsizes,andlength-to-diameterratios.
Acknowledgements
TheauthorsaregratefulforthesupportoftheO ceofBasicEnergySciencesoftheUSDepartmentofEn-ergy(Awardno.DE-FG02-93ER14394A7).
References
[1]J.E.Kennedy,G.M.RoachJr.,M.F.Dowling,S.I.Abdel-Khalik,S.M.Ghiaasiaan,S.M.Jeter,Z.H.Quershi,Theonsetof owinstabilityinuniformlyheatedhorizontalmicrochannels,J.HeatTransfer122(2000)118–125.
[2]W.Qu,I.Mudawar,Predictionandmeasurementofincipientboilingheat uxinmicro-channelheatsinks,Int.J.HeatMassTransfer45(2002)3933–3945.
[3]L.Zhang,J.M.Koo,L.Jiang,S.S.Banerjee,M.Ashegi,K.E.Goodson,J.G.Santiago,T.W.Kenny,Measurementandmodelingoftwo-phase owinmicrochannelswithnearly-constantheat uxboundaryconditions,in:A.Leeetal.(Eds.),Micro-Electro-MechanicalSystems(MEMS)––2000,ASME,Orlando,FL,2000,MEMS-vol.2,pp.129–135.
[4]L.Jiang,M.Wong,Y.Zohar,Forcedconvectionboilinginamicrochannelheatsink,J.Microelectromech.Syst.10(2001)80–87.
[5]W.Qu,I.Mudawar,Transportphenomenaintwo-phasemicro-channelheatsinks,in:Y.Bayazitoglu,H.S.Cam-eron,(Eds.),ProceedingsoftheASMEHeatTransferDivision–2002,ASME,NewYork,NY2002,HTD-vol.372–7,pp.135–147.
[6]S.G.Kandlikar,M.E.Steinke,S.Tian,andL.A.Campbell,High-speedphotographicobservationof owboilingofwaterinparallelmini-channels,in:Proceedingsof35thNationalHeatTransferConference,ASME,Anaheim,CA,2001,pp.675–684.
[7]G.Hetsroni,A.Mosyak,Z.Segal,G.Ziskind,Auniformtemperatureheatsinkforcoolingofelectronicdevices,Int.J.HeatMassTransfer45(2002)3275–3286.
[8]H.Y.Wu,P.Cheng,Visualizationandmeasurementsofperiodicboilinginsiliconmicrochannels,Int.J.HeatMassTransfer46(2003)2603–2614.
[9]W.Qu,I.Mudawar,Measurementandpredictionofpressuredropintwo-phasemicro-channelheatsinks,Int.J.HeatMassTransfer46(2003)2737–2753.
[10]X.F.Peng,B.X.Wang,Forcedconvectionand owboiling
heattransferforliquid owingthroughmicrochannels,Int.J.HeatMassTransfer36(1993)3421–3427.
[11]T.S.Ravigururajan,Impactofchannelgeometryontwo-phase owheattransfercharacteristicsofrefrigerantsinmicrochannelheatexchangers,J.HeatTransfer120(1998)485–491.
[12]G.R.Warrier,V.K.Dhir,L.A.Momoda,Heattransfer
andpressuredropinnarrowrectangularchannel,Exp.ThermalFluidSci.26(2002)53–64.
[13]W.Qu,I.Mudawar,Flowboilingheattransferintwo-phasemicro-channelheatsinks––I.Experimentalinvesti-gationandassessmentofcorrelationmethods,Int.J.HeatMassTransfer46(2003)2755–2771.
[14]W.Qu,I.Mudawar,Flowboilingheattransferintwo-phase
micro-channelheatsinks––II.Annulartwo-phase owmodel,Int.J.HeatMassTransfer46(2003)2773–2784.[15]M.B.Bowers,I.Mudawar,High uxboilinginlow ow
rate,lowpressuredropmini-channelandmicro-channelheatsinks,Int.J.HeatMassTransfer37(1994)321–332.[16]M.B.Bowers,I.Mudawar,Two-phaseelectroniccooling
usingmini-channelandmicro-channelheatsinks:part1-Designcriteriaandheatdi usionconstraints,J.Electron.Packaging116(1994)290–297.
[17]M.B.Bowers,I.Mudawar,Two-phaseelectroniccooling
usingmini-channelandmicro-channelheatsinks:part2-Flowrateandpressuredropconstraints,J.Electron.Packaging116(1994)298–305.
[18]T.N.Tran,M.C.Chyu,M.W.Wambsganss,D.M.France,
Two-phasepressuredropofrefrigerantsduring owboilinginsmallchannels:anexperimentalinvestigationandcorrelationdevelopment,Int.J.MultiphaseFlow26(2000)1739–1754.
[19]H.J.Lee,S.Y.Lee,Heattransfercorrelationforboiling
owsinsmallrectangularhorizontalchannelswithlowaspectratios,Int.J.MultiphaseFlow27(2001)2043–2062.
[20]J.G.Collier,J.R.Thome,ConvectiveBoilingandConden-sation,thirded.,OxfordUniversityPress,Oxford,1994.[21]D.D.Hall,I.Mudawar,Criticalheat ux(CHF)forwater
owintubes––pilationandassessmentofworldCHFdata,Int.J.HeatMassTransfer43(2000)2573–2604.
W.Qu,I.Mudawar/InternationalJournalofHeatandMassTransfer47(2004)2045–2059
2059
[22]S.S.Kutateladze,A.I.Leont’ev,Someapplicationsofthe
asymptotictheoryoftheturbulentboundarylayer,in:ProceedingsoftheThirdInternationalHeatTransferConference,AmericanInstituteofChemicalEngineers,NewYork,1966,vol.3,pp.1–6.
[23]J.Weisman,B.S.Pei,Predictionofcriticalheat uxin ow
boilingatlowqualities,Int.J.HeatMassTransfer26(1983)1463–1477.
[24]C.H.Lee,I.Mudawar,Amechanisticcriticalheat ux
modelforsubcooled owboilingbasedonlocalbulk owconditions,Int.J.MultiphaseFlow14(1988)711–728.[25]D.D.Hall,I.Mudawar,Criticalheat ux(CHF)forwater
owintubes–II.SubcooledCHFcorrelations,Int.J.HeatMassTransfer43(2000)2605–2640.
[26]W.H.Lowdermilk,nzo,B.L.Siegel,Investigation
ofboilingburnoutand owstabilityforwater owingintubes,NACATN4382,NationalAdvisoryCommitteeforAeronautics,1958.
[27]R.J.Weatherhead,Heattransfer, owinstability,and
criticalheat uxforwaterinasmalltubeat200psia,ANL-6715,ArgonnenationalLaboratory,1963.
[28]K.M.Becker,Burnoutmeasurementsinverticalround
tubes,e ectofdiameter,AE-TPM-RL-1260,AktiebolagetAtomenergi,1970.
[29]A.M.Lezzi,A.Niro,G.P.Beretta,Experimentaldataof
CHFforforcedconvectionwaterboilinginlonghorizontalcapillarytubes,in:G.F.Hewitt(Ed.),HeatTransfer1994:ProceedingsoftheTenthInternalHeatTransferConfer-ence,InstitutionofChemicalEngineers,Rugby,UnitedKingdom,1994,vol.7,pp.491–496.
[30]G.M.RoachJr.,S.I.Abdel-Khalik,S.M.Ghiaasiaan,
M.F.Dowling,S.M.Jeter,Low- owcriticalheat uxinheatedmicrochannels,Nucl.Sci.Eng.131(1999)411–425.
[31]zarek,S.H.Black,Evaporativeheattransfer,
pressuredropandcriticalheat uxinasmallverticaltubewithR-113,Int.J.HeatMassTransfer25(1982)945–960.[32]H.Nariai,F.Inasaka,K.Uehara,Criticalheat uxin
narrowtubeswithuniformheating,HeatTransfer––Jap.Res.18(1989)21–30.
[33]W.Yu,D.M.France,M.W.Wambsganss,J.R.Hull,Two-phasepressuredrop,boilingheattransfer,andcriticalheat uxtowaterinasmall-diameterhorizontaltube,Int.J.MultiphaseFlow28(2002)927–941.
[34]R.W.Bowring,Asimplebutaccurateroundtubeuniform
heat ux,dryoutcorrelationoverthepressurerange0.7-17MN/m2(100–2500psia),AEEW-R789,UnitedKingdomAtomicEnergyAuthority,1972.
[35]N.E.Todreas,M.S.Kazimi,NuclearSystemsI,Hemi-spherePress,NewYork,1990.
[36]Y.Katto,H.Ohno,Animprovedversionofthegeneral-izedcorrelationofcriticalheat uxfortheforcedconvec-tiveboilinginuniformlyheatedverticaltubes,Int.J.HeatMassTransfer27(1984)1641–1648.
[37]Y.Katto,GeneralfeaturesofCHFofforcedconvection
boilinginuniformlyheatedrectangularchannels,Int.J.HeatMassTransfer24(1981)1413–1419.
[38]K.Mishima,M.Ishii,Criticalheat uxexperimentsunder
low owconditionsinaverticalannulus,ANL-82-6,NUREG/CR-2647,1982.
[39]Y.Sudo,K.Miyata,H.Ikawa,M.Kaminaga,M.
Ohkawara,Experimentalstudyofdi erencesinDNBheat uxbetweenup owanddown owinverticalrectangularchannel,J.Nucl.Sci.Technol.22(1985)604–618.
[40]C.H.Oh,S.B.Englert,Criticalheat uxforlow ow
boilinginverticaluniformlyheatedthinrectangularchannels,Int.J.HeatMassTransfer36(1993)325–335.
- 1Unit 2 critical thinking
- 2Unit 2 critical thinking
- 3A critical discourse analysis of racial
- 4A critical discourse analysis of racial
- 5An experimental investigation and correlation on buoyant gas
- 6Measurement of D+- production and the charm contribution to
- 7英语幽默小故事:Dog in Heat
- 8如何在 LoadRunner 脚本中做关联(Correlation)
- 9Effect of a superheating and sub-cooling heat exchanger to the performance
- 10THE THEORY OF SUPERSTRING WITH FLUX ON NON-K¨AHLER MANIFOLD
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Measurement
- correlation
- critical
- heat
- flux
- two
- pha
- 2014-2015上学期深圳市外国语八年级英语期末考试试卷及答案
- 2022年护士实习评语
- 俄罗斯方块游戏(C语言)
- 哈理工电子电工实习付玉洁报告
- 4.2一次函数与正比例函数_课件
- 二级建造师执业资格考试大纲(完整版)(建筑工程专业)(2009年版)
- 浅谈中等职业学校《计算机应用基础》教学
- 经典销售技巧培训ppt
- 春酒上课课件2014邱素珍
- 锂离子电池发展的前瞻——第14届国际锂电池会议评述
- Chap3 消费者理论 微观
- 幼儿园一日常规检查记录表
- 沪教版九年级化学全册《8-1 什么是有机化合物》课件(共24张PPT)
- 高中教材变式题7:立体几何
- 现代企业技术创新管理体制
- 2006年中央国家机关公务员录用考试《行政职业能力测验》试卷
- 投资公司财务管理制度20140313
- 外语系规范教学手册
- 农村高血压危险因素及靶器官损害分析
- 房屋租赁合同范本租房合同(详细完整版)