考前两个月数学高考理科总复习训练题:考前回扣5Word版含答案(1)

更新时间:2023-04-19 07:39:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

1 / 6 考前两个月数学高考理科总复习训练题:考前回扣5Word 版

含答案(1)

1.一元二次不等式的解法

解一元二次不等式的步骤:一化(将二次项系数化为正数);二

判(判断Δ的符号);三解(解对应的一元二次方程);四写(大于取两边,小于取中间).

解含有参数的一元二次不等式一般要分类讨论,往往从以下几

个方面来考虑:①二次项系数,它决定二次函数的开口方向;②判别式Δ,它决定根的情形,一般分Δ>0,Δ=0,Δ<0三种情况;③在有根的条件下,要比较两根的大小.

2.一元二次不等式的恒成立问题

(1)ax2+bx +c >0(a≠0)恒成立的条件是????? a >0,Δ<0.

(2)ax2+bx +c<0(a≠0)恒成立的条件是????? a<0,Δ<0. 3.分式不等式

错误!>0(<0)?f(x)g(x)>0(<0);

错误!≥0(≤0)?错误!

4.基本不等式

(1)≥(a,b∈(0,+∞)),当且仅当a =b 时取等号.

(2)在利用基本不等式求最值时,要特别注意“拆、拼、凑”等

技巧,满足基本不等式中“正”“定”“等”的条件.

5.线性规划

(1)可行域的确定,“线定界,点定域”.

(2)线性目标函数的最大值、最小值一般在可行域的顶点处取得.

(3)线性目标函数的最值也可在可行域的边界上取得,这时满足条件的最优解有无数多个.

1.不等式两端同时乘以一个数或同时除以一个数,不讨论这个数的正负,从而出错.

2.解形如一元二次不等式ax2+bx+c>0时,易忽视系数a的讨论导致漏解或错解,要注意分a>0,a<0进行讨论.

3.应注意求解分式不等式时正确进行同解变形,不能把≤0直接转化为f(x)·g(x)≤0,而忽视g(x)≠0.

4.容易忽视使用基本不等式求最值的条件,即“一正、二定、三相等”导致错解,如求函数f(x)=+的最值,就不能利用基本不等式求最值;求解函数y=x+(x<0)时应先转化为正数再求解.5.解线性规划问题,要注意边界的虚实;注意目标函数中y的系数的正负;注意最优整数解.

6.求解线性规划问题时,不能准确把握目标函数的几何意义导致错解,如是指已知区域内的点(x,y)与点(-2,2)连线的斜率,而(x-1)2+(y-1)2是指已知区域内的点(x,y)到点(1,1)的距离的平方等.

1.(2017·泰州二中调研)函数y=的定义域是________.

答案[-3,1]

解析由3-2x-x2≥0,得x2+2x-3≤0,

解得x∈[-3,1].

2 / 6

本文来源:https://www.bwwdw.com/article/my1q.html

Top